forked from jiuyuan/InfiniTensor
update cuda_conv_fp16
This commit is contained in:
parent
1b51bc54bb
commit
0f63e1bb0f
|
@ -0,0 +1,90 @@
|
|||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "cuda/cuda_runtime.h"
|
||||
#include "cuda/cuda_utility.h"
|
||||
#include "operators/conv.h"
|
||||
#include <bitset>
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
void testConvCudnnFP16(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
vector<uint16_t> ansVec) {
|
||||
union {
|
||||
float f32;
|
||||
uint32_t u32;
|
||||
} x;
|
||||
x.u32 = 1234;
|
||||
x.u32 |= 127 << 23;
|
||||
|
||||
std::cout << x.f32 << std::endl;
|
||||
|
||||
// Construct Runtime and graph for CPU and CUDA
|
||||
Runtime cpu = NativeCpuRuntimeObj::getInstance(); // CPUruntime is singleton
|
||||
Graph gCpu = make_ref<GraphObj>(cpu);
|
||||
Runtime cuda = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cuda);
|
||||
// Set input data on CPU in a CPU Graph
|
||||
Tensor i0Cpu = gCpu->addTensor({1, 3, 4, 4}, DataType::Float16);
|
||||
Tensor w0Cpu = gCpu->addTensor({2, 3, 3, 3}, DataType::Float16);
|
||||
// Malloc data for all tensors in a graph. Do we need implicit allocation?
|
||||
gCpu->dataMalloc();
|
||||
i0Cpu->setData(generator);
|
||||
w0Cpu->setData(generator);
|
||||
|
||||
// Copy input tensors from CPU to CUDA
|
||||
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
|
||||
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
|
||||
// Build CUDA graph
|
||||
auto conv =
|
||||
gCuda->addOp<ConvObj>(i0Cuda, w0Cuda, nullptr, 1, 1, 2, 1, 1, 2);
|
||||
// allocate CUDA memory
|
||||
gCuda->dataMalloc();
|
||||
// Execute on CUDA
|
||||
cuda->run(gCuda);
|
||||
// copy output from CUDA to CPU
|
||||
auto o0Cpu = gCpu->cloneTensor(conv->getOutput());
|
||||
// check results on CPU
|
||||
o0Cpu->printData();
|
||||
EXPECT_TRUE(o0Cpu->equalData(ansVec));
|
||||
// print a tensor/operator/graph by print()
|
||||
gCuda->print();
|
||||
}
|
||||
|
||||
TEST(cuDNN_Conv_FP16, run) {
|
||||
// testConvCudnnFP16(OneGenerator(),
|
||||
// vector<float>{12, 12, 18, 18, 12, 12, 18, 18});
|
||||
testConvCudnnFP16(
|
||||
IncrementalGenerator(),
|
||||
vector<uint16_t>{4794, 4386, 8199, 7506, 11274, 10542, 20835, 19656});
|
||||
}
|
||||
|
||||
TEST(cuDNN_Conv_FP16, tune) {
|
||||
Runtime cpu = NativeCpuRuntimeObj::getInstance(); // CPUruntime is singleton
|
||||
Graph gCpu = make_ref<GraphObj>(cpu);
|
||||
Runtime cuda = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cuda);
|
||||
// Set input data on CPU in a CPU Graph
|
||||
Tensor i0Cpu = gCpu->addTensor({1, 3, 224, 224}, DataType::Float16);
|
||||
Tensor w0Cpu = gCpu->addTensor({2, 3, 3, 3}, DataType::Float16);
|
||||
// Malloc data for all tensors in a graph. Do we need implicit allocation?
|
||||
gCpu->dataMalloc();
|
||||
i0Cpu->setData(IncrementalGenerator());
|
||||
w0Cpu->setData(IncrementalGenerator());
|
||||
|
||||
// Copy input tensors from CPU to CUDA
|
||||
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
|
||||
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
|
||||
// Build CUDA graph
|
||||
auto conv =
|
||||
gCuda->addOp<ConvObj>(i0Cuda, w0Cuda, nullptr, 1, 1, 1, 1, 1, 1);
|
||||
// allocate CUDA memory
|
||||
gCuda->dataMalloc();
|
||||
// Execute on CUDA
|
||||
bool tune = true;
|
||||
cuda->run(gCuda, tune);
|
||||
}
|
||||
} // namespace infini
|
Loading…
Reference in New Issue