Add benchmark for conv

This commit is contained in:
bolun 2023-07-20 16:49:14 +08:00
parent 4b762cc8d9
commit 97970c5d94
1 changed files with 146 additions and 33 deletions

View File

@ -12,14 +12,48 @@
using namespace infini;
#define M 1048576
const char algo_name[8][50] = {
"CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM",
"CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM",
"CUDNN_CONVOLUTION_FWD_ALGO_GEMM",
"CUDNN_CONVOLUTION_FWD_ALGO_DIRECT",
"CUDNN_CONVOLUTION_FWD_ALGO_FFT",
"CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING",
"CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD",
"CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED",
};
const char mode_name[2][50] = {
"CUDNN_CONVOLUTION",
"CUDNN_CROSS_CORRELATION"
};
int main() {
int warmupRounds = 200;
int timingRounds = 200;
int warmupRounds = 50;
int timingRounds = 100;
DataType dtype = DataType::Float32;
Shape INPUT_SHAPE = {16, 128, 112, 112};
Shape KERNEL_SHAPE = {128, 256, 3, 3};
cudnnConvolutionMode_t convMode = CUDNN_CROSS_CORRELATION;
cudnnConvolutionFwdAlgo_t convAlgo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
float alpha = 1.f, beta = 0.f;
int n, c, h, w, f, r, s;
int INPUT_BATCH_SIZE = n = 16;
int INPUT_CHANNELS = c = 128;
int INPUT_HEIGHT = h = 128;
int INPUT_WIDTH = w = 128;
Shape INPUT_SHAPE = {INPUT_BATCH_SIZE, INPUT_CHANNELS, \
INPUT_HEIGHT, INPUT_WIDTH};
int OUTPUT_CHANNELS = f = 256;
int KERNEL_HEIGHT = r = 3;
int KERNEL_WIDTH = s = 3;
Shape KERNEL_SHAPE = {INPUT_CHANNELS, OUTPUT_CHANNELS, \
KERNEL_HEIGHT, KERNEL_WIDTH};
int NUM_GROUPS = 1;
int PAD_HEIGHT = 0;
@ -79,13 +113,13 @@ int main() {
warmupRounds, timingRounds
);
auto []
int channelsPerGrp = INPUT_CHANNELS / NUM_GROUPS;
// get inputs
cudnnTensorDescriptor_t inDesc;
checkCudnnError(cudnnCreateTensorDescriptor(&inDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(
inDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, n, channels, h, w));
inDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, n, c, h, w));
// get kernels
cudnnFilterDescriptor_t knDesc;
@ -93,28 +127,107 @@ int main() {
checkCudnnError(cudnnSetFilter4dDescriptor(knDesc, CUDNN_DATA_FLOAT,
CUDNN_TENSOR_NCHW, f,
channelsPerGrp, r, s));
// get bias
cudnnTensorDescriptor_t biasDesc;
checkCudnnError(cudnnCreateTensorDescriptor(&biasDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(
biasDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, f, 1, 1));
// cudnnTensorDescriptor_t biasDesc;
// checkCudnnError(cudnnCreateTensorDescriptor(&biasDesc));
// checkCudnnError(cudnnSetTensor4dDescriptor(
// biasDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, f, 1, 1));
// get convlution descriptor
cudnnConvolutionDescriptor_t convDesc;
checkCudnnError(cudnnCreateConvolutionDescriptor(&convDesc));
// TODO: CUDNN_CONVOLUTION is a tunable argument
checkCudnnError(cudnnSetConvolution2dDescriptor(
convDesc, ph, pw, sh, sw, dh, dw, MODES[record->mode],
CUDNN_DATA_FLOAT));
if (g > 1) {
checkCudnnError(cudnnSetConvolutionGroupCount(convDesc, g));
convDesc, PAD_HEIGHT, PAD_WIDTH, VERTICAL_STRIDE, HORIZONTAL_STRIDE,
DILATION_HEIGHT, DILATION_WIDTH, convMode, CUDNN_DATA_FLOAT));
if (NUM_GROUPS > 1) {
checkCudnnError(cudnnSetConvolutionGroupCount(convDesc, NUM_GROUPS));
}
int outn, outc, outh, outw;
checkCudnnError(cudnnGetConvolution2dForwardOutputDim(
convDesc, inDesc, knDesc, &outn, &outc, &outh, &outw));
cudnnTensorDescriptor_t outDesc;
checkCudnnError(cudnnCreateTensorDescriptor(&outDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(outDesc, CUDNN_TENSOR_NCHW,
CUDNN_DATA_FLOAT, outn, outc,
outh, outw));
Shape OUTPUT_SHAPE = {outn, outc, outh, outw};
size_t outputSize = 1;
for (auto dim: OUTPUT_SHAPE) {
outputSize *= dim;
}
size_t outputSizeInBytes = outputSize * sizeof(dtype);
// Build output data on CPU
Tensor outputCpu =
make_ref<TensorObj>(OUTPUT_SHAPE, dtype, cpuRuntime);
outputCpu->dataMalloc();
// Build output data on GPU
Tensor outputGpu =
make_ref<TensorObj>(OUTPUT_SHAPE, dtype, cudaRuntime);
outputGpu->dataMalloc();
size_t workspaceSize = 0;
checkCudnnError(cudnnGetConvolutionForwardWorkspaceSize(
cudaRuntime->cudnnHandle(), inDesc, knDesc, convDesc,
outDesc, convAlgo, &workspaceSize));
CudaPtr workspace = cudaRuntime->getWorkspace(workspaceSize);
time_op += timeit(
[&]() {
cudnnConvolutionForward(cudaRuntime->cudnnHandle(), &alpha,
inDesc, inputGpu->getRawDataPtr<void *>(),
knDesc, kernelGpu->getRawDataPtr<void *>(),
convDesc, convAlgo, workspace,
workspaceSize, &beta,
outDesc, outputGpu->getRawDataPtr<void *>());
},
[&]() { cudaRuntime->sync(); },
warmupRounds, timingRounds
);
checkCudnnError(cudnnDestroyTensorDescriptor(outDesc));
checkCudnnError(cudnnDestroyConvolutionDescriptor(convDesc));
// checkCudnnError(cudnnDestroyTensorDescriptor(biasDesc));
checkCudnnError(cudnnDestroyFilterDescriptor(knDesc));
checkCudnnError(cudnnDestroyTensorDescriptor(inDesc));
time_memcpy_dtoh += timeit(
[&]() {
outputCpu = outputGpu->clone(cpuRuntime);
},
[&]() { cudaRuntime->sync(); },
warmupRounds, timingRounds
);
// Print Results
printf("Operator - Convolution:\n");
printf("Conv Algo: %s\n", algo_name[convAlgo]);
printf("Conv Mode: %s\n", mode_name[convMode]);
printf("Input shape: (%d, %d, %d, %d)\n",
INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2], INPUT_SHAPE[3]);
printf("Kernel shape: (%d, %d, %d, %d)\n",
KERNEL_SHAPE[0], KERNEL_SHAPE[1], KERNEL_SHAPE[2], KERNEL_SHAPE[3]);
printf("Output shape: (%d, %d, %d, %d)\n",
OUTPUT_SHAPE[0], OUTPUT_SHAPE[1], OUTPUT_SHAPE[2], OUTPUT_SHAPE[3]);
printf("Workspace size: %ld Bytes, dtype: %s\n",
workspaceSize, dtype.toString().c_str());
printf("TFlops: %.5lf tflops\n",
2.0 * INPUT_BATCH_SIZE * channelsPerGrp * outh * outw * \
OUTPUT_CHANNELS * KERNEL_HEIGHT * KERNEL_WIDTH / \
VERTICAL_STRIDE / HORIZONTAL_STRIDE / 1e9 / time_op);
printf("Memcpy time: h2d - %.6lf ms, d2h - %.6lf ms\n",
time_memcpy_htod, time_memcpy_dtoh);
printf("Memcpy throughput: h2d - %.6lf MB/ms, d2h: %.6lf MB/ms\n",
(inputSizeInBytes + kernelSizeInBytes) / M / time_memcpy_htod,
outputSizeInBytes / M / time_memcpy_dtoh);
printf("Operation: %.6lf ms\n", time_op);
return 0;
}