forked from jiuyuan/InfiniTensor
add rope and silu support
This commit is contained in:
parent
afed5d3c3d
commit
e8d111ef5d
|
@ -47,6 +47,7 @@ class GraphHandlerObj {
|
||||||
Tensor max(Tensor a, Tensor b, Tensor c);
|
Tensor max(Tensor a, Tensor b, Tensor c);
|
||||||
|
|
||||||
Tensor relu(Tensor x, Tensor y);
|
Tensor relu(Tensor x, Tensor y);
|
||||||
|
Tensor silu(Tensor x, Tensor y);
|
||||||
Tensor gelu(Tensor x, Tensor y);
|
Tensor gelu(Tensor x, Tensor y);
|
||||||
Tensor sigmoid(Tensor x, Tensor y);
|
Tensor sigmoid(Tensor x, Tensor y);
|
||||||
Tensor hardSigmoid(Tensor x, Tensor y);
|
Tensor hardSigmoid(Tensor x, Tensor y);
|
||||||
|
@ -77,6 +78,7 @@ class GraphHandlerObj {
|
||||||
Tensor attentionKVCache(Tensor input_k_cache, Tensor input_v_cache,
|
Tensor attentionKVCache(Tensor input_k_cache, Tensor input_v_cache,
|
||||||
Tensor input_q, Tensor input_k, Tensor input_v,
|
Tensor input_q, Tensor input_k, Tensor input_v,
|
||||||
Tensor position_id, Tensor output_matmul);
|
Tensor position_id, Tensor output_matmul);
|
||||||
|
Tensor RoPE(Tensor pos, Tensor input, Tensor output);
|
||||||
TensorVec split(Tensor input, std::optional<TensorVec> outputs, int axis,
|
TensorVec split(Tensor input, std::optional<TensorVec> outputs, int axis,
|
||||||
std::variant<int, vector<int>> numOrRatio);
|
std::variant<int, vector<int>> numOrRatio);
|
||||||
Tensor gather(Tensor data, Tensor indices, Tensor output, int axis);
|
Tensor gather(Tensor data, Tensor indices, Tensor output, int axis);
|
||||||
|
|
|
@ -151,10 +151,12 @@ struct OpType {
|
||||||
ReduceSum, // Reduce
|
ReduceSum, // Reduce
|
||||||
ReduceSumSquare, // Reduce
|
ReduceSumSquare, // Reduce
|
||||||
Relu, // Unary
|
Relu, // Unary
|
||||||
|
Silu, // Unary
|
||||||
Reshape,
|
Reshape,
|
||||||
Resize,
|
Resize,
|
||||||
ReverseSequence,
|
ReverseSequence,
|
||||||
RoiAlign,
|
RoiAlign,
|
||||||
|
RoPE, // Fusion
|
||||||
Round, // Unary
|
Round, // Unary
|
||||||
STFT,
|
STFT,
|
||||||
Scan,
|
Scan,
|
||||||
|
|
|
@ -0,0 +1,10 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "operators/rope.h"
|
||||||
|
#include "utils/small_array.h"
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
|
||||||
|
void rope_kernel(int dType, int* pos, void *input, void *output, int size, int dim_model, int dim_head, int hidden_stride, int pos_stride);
|
||||||
|
|
||||||
|
}; // namespace infini
|
|
@ -5,6 +5,7 @@
|
||||||
namespace infini {
|
namespace infini {
|
||||||
template <typename T> void softmax_kernel(T *input, T *output, size_t num);
|
template <typename T> void softmax_kernel(T *input, T *output, size_t num);
|
||||||
template <typename T> void relu_kernel(T *input, T *output, size_t num);
|
template <typename T> void relu_kernel(T *input, T *output, size_t num);
|
||||||
|
template <typename T> void silu_kernel(T *input, T *output, size_t num);
|
||||||
template <typename T> void sigmoid_kernel(T *input, T *output, size_t num);
|
template <typename T> void sigmoid_kernel(T *input, T *output, size_t num);
|
||||||
template <typename T> void tanh_kernel(T *input, T *output, size_t num);
|
template <typename T> void tanh_kernel(T *input, T *output, size_t num);
|
||||||
template <typename T> void abs_kernel(T *input, T *output, size_t num);
|
template <typename T> void abs_kernel(T *input, T *output, size_t num);
|
||||||
|
|
|
@ -0,0 +1,21 @@
|
||||||
|
#pragma once
|
||||||
|
#include "core/operator.h"
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
class RoPEObj : public OperatorObj {
|
||||||
|
public:
|
||||||
|
RoPEObj(GraphObj *graph, Tensor pos, Tensor input, Tensor output);
|
||||||
|
OP_CLONE(RoPEObj);
|
||||||
|
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
|
||||||
|
|
||||||
|
std::string toString() const override;
|
||||||
|
int numInputs() const override { return 2; }
|
||||||
|
int numOutputs() const override { return 1; }
|
||||||
|
DataType getDType() const { return getInputs(1)->getDType(); }
|
||||||
|
|
||||||
|
private:
|
||||||
|
vector<int> getWorkloadVector() const override;
|
||||||
|
vector<int> getOpAttrVector() const override;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace infini
|
|
@ -258,6 +258,7 @@ class LogObj : public OperatorObj {
|
||||||
};
|
};
|
||||||
|
|
||||||
DEFINE_UNARY_OBJ(Relu, OpType::Relu)
|
DEFINE_UNARY_OBJ(Relu, OpType::Relu)
|
||||||
|
DEFINE_UNARY_OBJ(Silu, OpType::Silu)
|
||||||
DEFINE_UNARY_OBJ(Gelu, OpType::Gelu)
|
DEFINE_UNARY_OBJ(Gelu, OpType::Gelu)
|
||||||
DEFINE_UNARY_OBJ(Sigmoid, OpType::Sigmoid)
|
DEFINE_UNARY_OBJ(Sigmoid, OpType::Sigmoid)
|
||||||
DEFINE_UNARY_OBJ(Tanh, OpType::Tanh)
|
DEFINE_UNARY_OBJ(Tanh, OpType::Tanh)
|
||||||
|
|
|
@ -438,6 +438,11 @@ class OnnxStub:
|
||||||
tensors[node.input[0]],
|
tensors[node.input[0]],
|
||||||
tensors.get(node.output[0]),
|
tensors.get(node.output[0]),
|
||||||
)
|
)
|
||||||
|
elif node.op_type == "Silu":
|
||||||
|
tensors[node.output[0]] = self.handler.silu(
|
||||||
|
tensors[node.input[0]],
|
||||||
|
tensors.get(node.output[0]),
|
||||||
|
)
|
||||||
elif node.op_type == "Gelu":
|
elif node.op_type == "Gelu":
|
||||||
tensors[node.output[0]] = self.handler.gelu(
|
tensors[node.output[0]] = self.handler.gelu(
|
||||||
tensors[node.input[0]],
|
tensors[node.input[0]],
|
||||||
|
@ -669,6 +674,12 @@ class OnnxStub:
|
||||||
tensors[node.input[5]],
|
tensors[node.input[5]],
|
||||||
tensors.get(node.output[0]),
|
tensors.get(node.output[0]),
|
||||||
)
|
)
|
||||||
|
elif node.op_type == "RoPE":
|
||||||
|
tensors[node.output[0]]= self.handler.RoPE(
|
||||||
|
tensors[node.input[0]],
|
||||||
|
tensors[node.input[1]],
|
||||||
|
tensors.get(node.output[0]),
|
||||||
|
)
|
||||||
elif node.op_type == "Split":
|
elif node.op_type == "Split":
|
||||||
split = (
|
split = (
|
||||||
_parse_data(data[node.input[1]])
|
_parse_data(data[node.input[1]])
|
||||||
|
|
|
@ -2,6 +2,7 @@
|
||||||
#include "operators/all_gather.h"
|
#include "operators/all_gather.h"
|
||||||
#include "operators/all_reduce.h"
|
#include "operators/all_reduce.h"
|
||||||
#include "operators/attention_kvcache.h"
|
#include "operators/attention_kvcache.h"
|
||||||
|
#include "operators/rope.h"
|
||||||
#include "operators/batch_norm.h"
|
#include "operators/batch_norm.h"
|
||||||
#include "operators/broadcast.h"
|
#include "operators/broadcast.h"
|
||||||
#include "operators/concat.h"
|
#include "operators/concat.h"
|
||||||
|
@ -181,6 +182,7 @@ DEFINE_ELEMENT_WISE_METHOD(max, Maximum)
|
||||||
} \
|
} \
|
||||||
}
|
}
|
||||||
|
|
||||||
|
DEFINE_UNARY_METHOD(silu, Silu)
|
||||||
DEFINE_UNARY_METHOD(relu, Relu)
|
DEFINE_UNARY_METHOD(relu, Relu)
|
||||||
DEFINE_UNARY_METHOD(gelu, Gelu)
|
DEFINE_UNARY_METHOD(gelu, Gelu)
|
||||||
DEFINE_UNARY_METHOD(sigmoid, Sigmoid)
|
DEFINE_UNARY_METHOD(sigmoid, Sigmoid)
|
||||||
|
@ -345,6 +347,16 @@ Tensor GraphHandlerObj::attentionKVCache(Tensor input_k_cache,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Tensor GraphHandlerObj::RoPE(Tensor pos, Tensor input, Tensor output) {
|
||||||
|
if (output) {
|
||||||
|
g->addOpWithOutputs<RoPEObj>(std::move(pos), std::move(input), output);
|
||||||
|
return output;
|
||||||
|
} else {
|
||||||
|
return g->addOp<RoPEObj>(std::move(pos), std::move(input), output)
|
||||||
|
->getOutput();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
TensorVec GraphHandlerObj::split(Tensor input, std::optional<TensorVec> outputs,
|
TensorVec GraphHandlerObj::split(Tensor input, std::optional<TensorVec> outputs,
|
||||||
int axis,
|
int axis,
|
||||||
std::variant<int, vector<int>> numOrRatio) {
|
std::variant<int, vector<int>> numOrRatio) {
|
||||||
|
|
|
@ -515,6 +515,7 @@ void init_graph_builder(py::module &m) {
|
||||||
.def("min", &Handler::min, policy::move)
|
.def("min", &Handler::min, policy::move)
|
||||||
.def("max", &Handler::max, policy::move)
|
.def("max", &Handler::max, policy::move)
|
||||||
.def("relu", &Handler::relu, policy::move)
|
.def("relu", &Handler::relu, policy::move)
|
||||||
|
.def("silu", &Handler::silu, policy::move)
|
||||||
.def("gelu", &Handler::gelu, policy::move)
|
.def("gelu", &Handler::gelu, policy::move)
|
||||||
.def("sigmoid", &Handler::sigmoid, policy::move)
|
.def("sigmoid", &Handler::sigmoid, policy::move)
|
||||||
.def("tanh", &Handler::tanh, policy::move)
|
.def("tanh", &Handler::tanh, policy::move)
|
||||||
|
@ -537,6 +538,7 @@ void init_graph_builder(py::module &m) {
|
||||||
.def("unsqueeze", &Handler::unsqueeze, policy::move)
|
.def("unsqueeze", &Handler::unsqueeze, policy::move)
|
||||||
.def("concat", &Handler::concat, policy::move)
|
.def("concat", &Handler::concat, policy::move)
|
||||||
.def("attentionKVCache", &Handler::attentionKVCache, policy::move)
|
.def("attentionKVCache", &Handler::attentionKVCache, policy::move)
|
||||||
|
.def("RoPE", &Handler::RoPE, policy::move)
|
||||||
.def("split", &Handler::split, policy::move)
|
.def("split", &Handler::split, policy::move)
|
||||||
.def("gather", &Handler::gather, policy::move)
|
.def("gather", &Handler::gather, policy::move)
|
||||||
.def("gatherElements", &Handler::gatherElements, policy::move)
|
.def("gatherElements", &Handler::gatherElements, policy::move)
|
||||||
|
|
|
@ -0,0 +1,38 @@
|
||||||
|
#include "operators/rope.h"
|
||||||
|
#include "cuda/cuda_kernel_wihtout_config.h"
|
||||||
|
#include "cuda/cuda_runtime.h"
|
||||||
|
#include "cuda/cuda_rope.h"
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
|
||||||
|
class RoPECuda : public CudaKernelWithoutConfig {
|
||||||
|
void compute(const Operator &_op,
|
||||||
|
const RuntimeObj *_context) const override {
|
||||||
|
auto op = as<RoPEObj>(_op);
|
||||||
|
|
||||||
|
auto pos = op->getInputs(0);
|
||||||
|
auto input = op->getInputs(1);
|
||||||
|
auto output = op->getOutput();
|
||||||
|
void *const inputData = input->getRawDataPtr<void *>();
|
||||||
|
void *const outputData = output->getRawDataPtr<void *>();
|
||||||
|
const auto &inputShape = input->getDims();
|
||||||
|
int nDims = input->getDims().size();
|
||||||
|
|
||||||
|
int size = input->size();
|
||||||
|
IT_ASSERT(nDims == 3 && pos->getDims().size() == 2);
|
||||||
|
IT_ASSERT(inputShape[1] == pos->getDims()[1]);
|
||||||
|
int dim_model = inputShape[2];
|
||||||
|
int dim_head = dim_model / 32;
|
||||||
|
int hidden_stride = dim_model * inputShape[1];
|
||||||
|
int pos_stride = inputShape[1];
|
||||||
|
|
||||||
|
const int dType = op->getDType().getIndex();
|
||||||
|
rope_kernel(dType, pos->getRawDataPtr<int *>(), inputData, outputData, size, dim_model, dim_head, hidden_stride, pos_stride);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
REGISTER_KERNEL(Device::CUDA, OpType::RoPE, RoPECuda,
|
||||||
|
"RoPE_CUDA");
|
||||||
|
|
||||||
|
|
||||||
|
} // namespace infini
|
|
@ -0,0 +1,91 @@
|
||||||
|
#include "core/common.h"
|
||||||
|
#include "cuda/cuda_common.h"
|
||||||
|
#include "cuda/cuda_utility.h"
|
||||||
|
#include "utils/small_array.h"
|
||||||
|
|
||||||
|
constexpr unsigned int num_threads() { return 32 * 4; }
|
||||||
|
constexpr int thread_work_size() { return 4; }
|
||||||
|
constexpr int block_work_size() { return thread_work_size() * num_threads(); }
|
||||||
|
|
||||||
|
// gridDim (batch, seq_len, dim_model / 1024), blockDim (1024, 1, 1)
|
||||||
|
template <class T>
|
||||||
|
__global__ void _rope_kernel(int* pos, void *in, void *out, int size, int dim_model, int dim_head, int hidden_stride, int pos_stride) {
|
||||||
|
int batch_id = blockIdx.x;
|
||||||
|
int target_pos = pos[batch_id * pos_stride + blockIdx.y];
|
||||||
|
int ith = blockIdx.z * blockDim.x + threadIdx.x;
|
||||||
|
int col = ith % dim_head;
|
||||||
|
int offset = batch_id * hidden_stride + blockIdx.y * dim_model;
|
||||||
|
|
||||||
|
if (ith >= dim_model)
|
||||||
|
return;
|
||||||
|
int half_dim = dim_head / 2;
|
||||||
|
if (col < half_dim) {
|
||||||
|
float freq = target_pos * powf(10000, -float(col * 2) / dim_head);
|
||||||
|
float cos_freq = cos(freq);
|
||||||
|
float sin_freq = sin(freq);
|
||||||
|
((T *)out)[offset + ith] =
|
||||||
|
((T *)in)[offset + ith] * T(cos_freq) - ((T *)in)[offset + ith + half_dim] * T(sin_freq);
|
||||||
|
} else {
|
||||||
|
float freq = target_pos * powf(10000, -float((col - half_dim) * 2) / dim_head);
|
||||||
|
float cos_freq = cos(freq);
|
||||||
|
float sin_freq = sin(freq);
|
||||||
|
((T *)out)[offset + ith] =
|
||||||
|
((T *)in)[offset + ith] * T(cos_freq) + ((T *)in)[offset + ith - half_dim] * T(sin_freq);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#define CASE(T) \
|
||||||
|
_rope_kernel<DT_CUDA<T>::t><<<gridsize, blocksize>>>( \
|
||||||
|
pos, input, output, size, dim_model, dim_head, hidden_stride, pos_stride);
|
||||||
|
|
||||||
|
#define SWITCH_DTYPE(DTYPE) \
|
||||||
|
switch (DTYPE) { \
|
||||||
|
case 1: \
|
||||||
|
CASE(1) \
|
||||||
|
break; \
|
||||||
|
case 2: \
|
||||||
|
CASE(2) \
|
||||||
|
break; \
|
||||||
|
case 3: \
|
||||||
|
CASE(3) \
|
||||||
|
break; \
|
||||||
|
case 4: \
|
||||||
|
CASE(4) \
|
||||||
|
break; \
|
||||||
|
case 5: \
|
||||||
|
CASE(5) \
|
||||||
|
break; \
|
||||||
|
case 6: \
|
||||||
|
CASE(6) \
|
||||||
|
break; \
|
||||||
|
case 7: \
|
||||||
|
CASE(7) \
|
||||||
|
break; \
|
||||||
|
case 10: \
|
||||||
|
CASE(10) \
|
||||||
|
break; \
|
||||||
|
case 11: \
|
||||||
|
CASE(11) \
|
||||||
|
break; \
|
||||||
|
case 12: \
|
||||||
|
CASE(12) \
|
||||||
|
break; \
|
||||||
|
case 13: \
|
||||||
|
CASE(13) \
|
||||||
|
break; \
|
||||||
|
case 16: \
|
||||||
|
CASE(16) \
|
||||||
|
break; \
|
||||||
|
default: \
|
||||||
|
IT_TODO_HALT(); \
|
||||||
|
}
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
void rope_kernel(int dType, int * pos, void *input, void *output, int size, int dim_model, int dim_head, int hidden_stride, int pos_stride) {
|
||||||
|
dim3 blocksize = dim3(1024,1,1);
|
||||||
|
dim3 gridsize = dim3(1, 1, 4);
|
||||||
|
SWITCH_DTYPE(dType)
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace infini
|
|
@ -157,6 +157,7 @@ class SoftmaxCudnn : public CudaKernelWithoutConfig {
|
||||||
|
|
||||||
class ReluCudnn : public ActivationCudnn {
|
class ReluCudnn : public ActivationCudnn {
|
||||||
cudnnActivationMode_t getOpType() const override {
|
cudnnActivationMode_t getOpType() const override {
|
||||||
|
|
||||||
return CUDNN_ACTIVATION_RELU;
|
return CUDNN_ACTIVATION_RELU;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@ -182,6 +183,7 @@ REGISTER_KERNEL(Device::CUDA, OpType::Tanh, TanhCudnn, "Tanh_CUDA");
|
||||||
REGISTER_KERNEL(Device::CUDA, OpType::Abs, UnaryCuda, "Abs_CUDA");
|
REGISTER_KERNEL(Device::CUDA, OpType::Abs, UnaryCuda, "Abs_CUDA");
|
||||||
REGISTER_KERNEL(Device::CUDA, OpType::Sqrt, UnaryCuda, "Sqrt_CUDA");
|
REGISTER_KERNEL(Device::CUDA, OpType::Sqrt, UnaryCuda, "Sqrt_CUDA");
|
||||||
REGISTER_KERNEL(Device::CUDA, OpType::Gelu, UnaryCuda, "Gelu_CUDA");
|
REGISTER_KERNEL(Device::CUDA, OpType::Gelu, UnaryCuda, "Gelu_CUDA");
|
||||||
|
REGISTER_KERNEL(Device::CUDA, OpType::Silu, UnaryCuda, "Silu_CUDA");
|
||||||
REGISTER_KERNEL(Device::CUDA, OpType::Neg, UnaryCuda, "Neg_CUDA");
|
REGISTER_KERNEL(Device::CUDA, OpType::Neg, UnaryCuda, "Neg_CUDA");
|
||||||
REGISTER_KERNEL(Device::CUDA, OpType::Erf, UnaryCuda, "Erf_CUDA");
|
REGISTER_KERNEL(Device::CUDA, OpType::Erf, UnaryCuda, "Erf_CUDA");
|
||||||
|
|
||||||
|
|
|
@ -103,6 +103,17 @@ __global__ void _gelu_kernel(T *input, T *output, size_t n) {
|
||||||
output[i] = 0.5 * x * (1 + erf(x / sqrt(2.0f)));
|
output[i] = 0.5 * x * (1 + erf(x / sqrt(2.0f)));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void _silu_kernel(T *input, T *output, size_t n) {
|
||||||
|
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
int stride = blockDim.x * gridDim.x;
|
||||||
|
for (int i = index; i < n; i += stride) {
|
||||||
|
float x = input[i];
|
||||||
|
output[i] = x / (1.0 + expf(-x));;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
__global__ void _erf_kernel(T *input, T *output, size_t n) {
|
__global__ void _erf_kernel(T *input, T *output, size_t n) {
|
||||||
size_t index = threadIdx.x + blockIdx.x * blockDim.x;
|
size_t index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
@ -190,6 +201,14 @@ template <typename T> void gelu_kernel(T *input, T *output, size_t num) {
|
||||||
int gridsize = (num + block_work_size() - 1) / block_work_size();
|
int gridsize = (num + block_work_size() - 1) / block_work_size();
|
||||||
_gelu_kernel<T><<<gridsize, blocksize>>>(input, output, num);
|
_gelu_kernel<T><<<gridsize, blocksize>>>(input, output, num);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename T> void silu_kernel(T *input, T *output, size_t num) {
|
||||||
|
|
||||||
|
int blocksize = block_work_size();
|
||||||
|
int gridsize = (num + block_work_size() - 1) / block_work_size();
|
||||||
|
_silu_kernel<T><<<gridsize, blocksize>>>(input, output, num);
|
||||||
|
}
|
||||||
|
|
||||||
template <typename T> void erf_kernel(T *input, T *output, size_t num) {
|
template <typename T> void erf_kernel(T *input, T *output, size_t num) {
|
||||||
|
|
||||||
int blocksize = block_work_size();
|
int blocksize = block_work_size();
|
||||||
|
@ -209,6 +228,7 @@ void unary_kernel(const Operator &_op) {
|
||||||
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
|
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
|
||||||
|
|
||||||
size_t num = op->getOutput()->size();
|
size_t num = op->getOutput()->size();
|
||||||
|
|
||||||
if (op->getOpType() == OpType::Softmax) {
|
if (op->getOpType() == OpType::Softmax) {
|
||||||
if (_op->getDType() == DataType::Float32) {
|
if (_op->getDType() == DataType::Float32) {
|
||||||
softmax_kernel<float>((float *)inputData, (float *)outputData, num);
|
softmax_kernel<float>((float *)inputData, (float *)outputData, num);
|
||||||
|
@ -267,6 +287,12 @@ void unary_kernel(const Operator &_op) {
|
||||||
} else {
|
} else {
|
||||||
IT_TODO_HALT();
|
IT_TODO_HALT();
|
||||||
}
|
}
|
||||||
|
} else if (op->getOpType() == OpType::Silu) {
|
||||||
|
if (_op->getDType() == DataType::Float32) {
|
||||||
|
silu_kernel<float>((float *)inputData, (float *)outputData, num);
|
||||||
|
} else {
|
||||||
|
IT_TODO_HALT();
|
||||||
|
}
|
||||||
} else if (op->getOpType() == OpType::Neg) {
|
} else if (op->getOpType() == OpType::Neg) {
|
||||||
if (_op->getDType() == DataType::Float32) {
|
if (_op->getDType() == DataType::Float32) {
|
||||||
neg_kernel<float>((float *)inputData, (float *)outputData, num);
|
neg_kernel<float>((float *)inputData, (float *)outputData, num);
|
||||||
|
|
|
@ -0,0 +1,37 @@
|
||||||
|
#include "operators/rope.h"
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
RoPEObj::RoPEObj(GraphObj *graph, Tensor pos, Tensor input, Tensor output)
|
||||||
|
: OperatorObj(OpType::RoPE, {pos, input}, {output}) {
|
||||||
|
IT_ASSERT(checkValid(graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
optional<vector<Shape>> RoPEObj::inferShape(const TensorVec &inputs) {
|
||||||
|
const auto A = inputs[1];
|
||||||
|
auto input_dim = A->getDims();
|
||||||
|
auto output_dim = input_dim;
|
||||||
|
return {{output_dim}};
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string RoPEObj::toString() const {
|
||||||
|
std::ostringstream os;
|
||||||
|
os << type.toString() << "[" << getGuid() << "]";
|
||||||
|
os << "(";
|
||||||
|
os << vecToString(inputs[0]->getDims()) << ",";
|
||||||
|
os << "input=" << inputs[0]->getGuid() << ",";
|
||||||
|
os << "output=" << outputs[0]->getGuid() << ")";
|
||||||
|
return os.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<int> RoPEObj::getWorkloadVector() const {
|
||||||
|
vector<int> ret{type.underlying()};
|
||||||
|
const Shape shape = outputs[0]->getDims();
|
||||||
|
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<int> RoPEObj::getOpAttrVector() const {
|
||||||
|
return {type.underlying()};
|
||||||
|
}
|
||||||
|
|
||||||
|
}; // namespace infini
|
Loading…
Reference in New Issue