InfiniTensor/pyinfinitensor/tests/test_onnx.py

279 lines
12 KiB
Python
Raw Normal View History

import os, onnx, unittest
from onnx import TensorProto
from onnx.helper import (
make_model,
make_node,
make_tensor,
make_graph,
make_tensor_value_info,
)
from onnx.checker import check_model
from pyinfinitensor.onnx import from_onnx, parse_onnx, backend, runtime
def make_and_import_model(graph: onnx.GraphProto):
model = make_model(graph)
check_model(model)
from_onnx(model)
class TestStringMethods(unittest.TestCase):
def test_load(self):
model_file = next(
(name for name in os.listdir() if name.endswith(".onnx")), None
)
if model_file != None:
print(
"model: {file}({size:.2f} MiB)".format(
file=model_file, size=os.path.getsize(model_file) / 1024 / 1024
)
)
parse_onnx(onnx.load(model_file))
def test_tensor(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
make_and_import_model(make_graph([], "tensor", [x], [x]))
def test_matmul(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
xa = make_tensor_value_info("xa", TensorProto.FLOAT, [1, 2, 4])
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
make_and_import_model(make_graph([matmul], "matmul", [x, a], [xa]))
def test_gemm(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 2, 3])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 4, 3])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 2, 4])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 2, 4])
gemm = make_node("Gemm", ["a", "b", "c"], ["y"], transB=1, name="gemm")
make_and_import_model(make_graph([gemm], "gemm", [a, b, c], [y]))
def test_batch_norm(self):
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 3, 2, 2])
scale = make_tensor_value_info("scale", TensorProto.FLOAT, [1, 3, 1, 1])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 1, 1])
mean = make_tensor_value_info("mean", TensorProto.FLOAT, [1, 3, 1, 1])
var = make_tensor_value_info("var", TensorProto.FLOAT, [1, 3, 1, 1])
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 3, 2, 2])
batch_norm = make_node(
"BatchNormalization",
["x", "scale", "b", "mean", "var"],
["y"],
name="batchNormalization",
)
make_and_import_model(
make_graph([batch_norm], "batchNorm", [x, scale, b, mean, var], [y])
)
def test_max_pool(self):
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 64, 162, 162])
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 64, 80, 80])
pool = make_node(
"MaxPool",
["x"],
["y"],
kernel_shape=[3, 3],
dilations=[1, 1],
pads=[0, 0],
strides=[2, 2],
name="maxPool",
)
make_and_import_model(make_graph([pool], "maxPool", [x], [y]))
def test_avg_pool(self):
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 64, 162, 162])
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 64, 80, 80])
pool = make_node(
"AveragePool",
["x"],
["y"],
kernel_shape=[3, 3],
pads=[0, 0],
strides=[2, 2],
name="avgPool",
)
make_and_import_model(make_graph([pool], "avgPool", [x], [y]))
def test_add(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
add = make_node("Add", ["a", "b"], ["c"], name="add")
make_and_import_model(make_graph([add], "add", [a, b], [c]))
def test_sub(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
sub = make_node("Sub", ["a", "b"], ["c"], name="sub")
make_and_import_model(make_graph([sub], "sub", [a, b], [c]))
def test_mul(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
mul = make_node("Mul", ["a", "b"], ["c"], name="mul")
make_and_import_model(make_graph([mul], "mul", [a, b], [c]))
def test_div(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
div = make_node("Div", ["a", "b"], ["c"], name="div")
make_and_import_model(make_graph([div], "div", [a, b], [c]))
def test_pow(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
pow = make_node("Pow", ["a", "b"], ["c"], name="pow")
make_and_import_model(make_graph([pow], "pow", [a, b], [c]))
def test_relu(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
relu = make_node("Relu", ["x"], ["y"], name="relu")
make_and_import_model(make_graph([relu], "relu", [x], [y]))
def test_sigmoid(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
sigmoid = make_node("Sigmoid", ["x"], ["y"], name="sigmoid")
make_and_import_model(make_graph([sigmoid], "sigmoid", [x], [y]))
def test_tanh(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
tanh = make_node("Tanh", ["x"], ["y"], name="tanh")
make_and_import_model(make_graph([tanh], "tanh", [x], [y]))
def test_softmax(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
softmax = make_node("Softmax", ["x"], ["y"], name="softmax")
make_and_import_model(make_graph([softmax], "softmax", [x], [y]))
def test_abs(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
abs = make_node("Abs", ["x"], ["y"], name="abs")
make_and_import_model(make_graph([abs], "abs", [x], [y]))
def test_identity(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
identity = make_node("Identity", ["x"], ["y"], name="identity")
make_and_import_model(make_graph([identity], "identity", [x], [y]))
def test_flatten(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1 * 3 * 5 * 7])
flatten = make_node("Flatten", ["x"], ["y"], name="flatten")
make_and_import_model(make_graph([flatten], "flatten", [x], [y]))
def test_reshape(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 4, 5])
# shape 对于后端来说并不是一个张量,然而转换中可能没有办法分辨
# 不知道怎么把 ValueInfoProto 转换成 TensorProto
shape = make_tensor_value_info("shape", TensorProto.INT64, [3])
shape_data = make_tensor("shape", TensorProto.INT64, [3], [5, 3, 8])
reshaped = make_tensor_value_info(
"reshaped", TensorProto.FLOAT, shape_data.int64_data
)
reshape = make_node("Reshape", ["data", "shape"], ["reshaped"], name="reshape")
# 可以构造一个 shape 只出现在 initializer 里而不出现在 input 里的图,
# 但实际上的图中 initializer 里的必然会出现在 input 里,不知道为什么这样设计
make_and_import_model(
make_graph([reshape], "reshape", [data, shape], [reshaped], [shape_data])
)
def test_concat(self):
input1 = make_tensor_value_info("input1", TensorProto.FLOAT, [1, 3, 2, 4])
input2 = make_tensor_value_info("input2", TensorProto.FLOAT, [1, 3, 2, 5])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 9])
concat = make_node(
"Concat", ["input1", "input2"], ["output"], axis=3, name="concat"
)
make_and_import_model(
make_graph([concat], "concat", [input1, input2], [output])
)
def test_gather(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [1, 3, 4, 4])
indices = make_tensor_value_info("indices", TensorProto.FLOAT, [2, 1, 2])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 2, 1, 2, 4, 4])
gather = make_node(
"Gather", ["data", "indices"], ["output"], axis=1, name="gather"
)
make_and_import_model(make_graph([gather], "gather", [data, indices], [output]))
def test_reduce_mean(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 3, 4])
reduced = make_tensor_value_info("reduced", TensorProto.FLOAT, [1, 1, 1, 1])
reduceMean = make_node(
"ReduceMean", ["data"], ["reduced"], keepdims=1, name="reduceMean"
)
make_and_import_model(make_graph([reduceMean], "reduceMean", [data], [reduced]))
def test_slice(self):
data = make_tensor_value_info("data", TensorProto.UINT32, [10, 64, 162, 162])
output = make_tensor_value_info("output", TensorProto.UINT32, [2, 1, 100, 96])
starts = make_tensor_value_info("starts", TensorProto.INT64, [4])
starts_data = make_tensor("starts", TensorProto.INT64, [4], [2, 10, 1, 5])
ends = make_tensor_value_info("ends", TensorProto.INT64, [4])
ends_data = make_tensor("ends", TensorProto.INT64, [4], [3, 10, 100, 100])
slice = make_node("Slice", ["data", "starts", "ends"], ["output"], name="slice")
make_and_import_model(
make_graph(
[slice],
"slice",
[data, starts, ends],
[output],
[starts_data, ends_data],
)
)
def test_pad(self):
data = make_tensor_value_info("data", TensorProto.UINT32, [1, 64, 162, 162])
output = make_tensor_value_info("output", TensorProto.UINT32, [3, 84, 164, 172])
pads = make_tensor_value_info("pads", TensorProto.INT64, [8])
pads_data = make_tensor(
"pads", TensorProto.INT64, [8], [2, 10, 1, 5, 0, 10, 1, 5]
)
pad = make_node("Pad", ["data", "pads"], ["output"], name="pad")
make_and_import_model(
make_graph(
[pad],
"pad",
[data, pads],
[output],
[pads_data],
)
)
# see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression>
def test_linear(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 2, 4])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 2, 4])
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
add = make_node("Add", ["xa", "b"], ["y"], name="add")
graph = make_graph([matmul, add], "lr", [x, a, b], [y])
model = make_model(graph)
check_model(model)
from_onnx(model)
parse_onnx(model)
def test_frontend(self):
handler = backend.GraphHandlerObj(runtime)
i = handler.tensor([1, 2, 3], 12)
w = handler.tensor([1, 3, 4], 12)
o = handler.tensor([1, 2, 4], 12)
handler.matmul(i, w, o, False, False, None, backend.ActType.Relu)
if __name__ == "__main__":
unittest.main()