2023-02-12 08:23:49 +08:00
|
|
|
|
import os, onnx, unittest
|
|
|
|
|
from onnx import TensorProto
|
2023-02-14 11:27:57 +08:00
|
|
|
|
from onnx.helper import (
|
|
|
|
|
make_model,
|
|
|
|
|
make_node,
|
|
|
|
|
make_tensor,
|
|
|
|
|
make_graph,
|
|
|
|
|
make_tensor_value_info,
|
|
|
|
|
)
|
2023-04-18 15:10:33 +08:00
|
|
|
|
from onnx.checker import check_model, check_graph
|
|
|
|
|
from onnx.shape_inference import infer_shapes
|
2023-09-01 11:20:26 +08:00
|
|
|
|
from pyinfinitensor.onnx import from_onnx, OnnxStub, backend, _parse_data_fp16
|
|
|
|
|
import numpy as np
|
2023-02-12 08:23:49 +08:00
|
|
|
|
|
|
|
|
|
|
2023-02-13 13:50:07 +08:00
|
|
|
|
def make_and_import_model(graph: onnx.GraphProto):
|
2023-04-18 15:10:33 +08:00
|
|
|
|
check_graph(graph)
|
2023-02-13 13:50:07 +08:00
|
|
|
|
model = make_model(graph)
|
|
|
|
|
check_model(model)
|
2023-04-18 15:10:33 +08:00
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
2023-02-13 13:50:07 +08:00
|
|
|
|
|
|
|
|
|
|
2023-02-12 08:23:49 +08:00
|
|
|
|
class TestStringMethods(unittest.TestCase):
|
2023-04-18 15:10:33 +08:00
|
|
|
|
# def test_run(self):
|
2023-04-17 12:15:23 +08:00
|
|
|
|
# model_file = next(
|
|
|
|
|
# (name for name in os.listdir() if name.endswith(".onnx")), None
|
|
|
|
|
# )
|
|
|
|
|
# if model_file != None:
|
|
|
|
|
# print(
|
|
|
|
|
# "model: {file}({size:.2f} MiB)".format(
|
|
|
|
|
# file=model_file, size=os.path.getsize(model_file) / 1024 / 1024
|
|
|
|
|
# )
|
|
|
|
|
# )
|
|
|
|
|
# run_onnx(onnx.load(model_file), runtime)
|
|
|
|
|
|
2023-02-12 08:23:49 +08:00
|
|
|
|
def test_load(self):
|
2023-04-18 15:10:33 +08:00
|
|
|
|
for model_file in os.listdir():
|
|
|
|
|
if model_file.endswith(".onnx"):
|
|
|
|
|
print(
|
|
|
|
|
"model: {file}({size:.2f} MiB)".format(
|
|
|
|
|
file=model_file, size=os.path.getsize(model_file) / 1024 / 1024
|
|
|
|
|
)
|
2023-02-12 08:23:49 +08:00
|
|
|
|
)
|
2023-04-18 15:10:33 +08:00
|
|
|
|
model = OnnxStub(onnx.load(model_file), backend.cpu_runtime()).to_onnx(
|
|
|
|
|
"new"
|
|
|
|
|
)
|
|
|
|
|
model = infer_shapes(model)
|
2023-02-12 08:23:49 +08:00
|
|
|
|
|
2023-02-13 11:25:54 +08:00
|
|
|
|
def test_tensor(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([], "tensor", [x], [x]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
2023-02-22 15:05:44 +08:00
|
|
|
|
def test_conv(self):
|
|
|
|
|
i = make_tensor_value_info("i", TensorProto.FLOAT, [1, 3, 4, 4])
|
|
|
|
|
w = make_tensor_value_info("w", TensorProto.FLOAT, [2, 3, 3, 3])
|
|
|
|
|
o = make_tensor_value_info("o", TensorProto.FLOAT, [1, 2, 2, 2])
|
|
|
|
|
conv = make_node(
|
|
|
|
|
"Conv",
|
|
|
|
|
["i", "w"],
|
|
|
|
|
["o"],
|
|
|
|
|
"conv",
|
2023-04-18 15:10:33 +08:00
|
|
|
|
pads=[1, 1, 1, 1],
|
2023-02-22 15:05:44 +08:00
|
|
|
|
strides=[2, 1],
|
|
|
|
|
dilations=[1, 2],
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([conv], "conv", [i, w], [o]))
|
|
|
|
|
|
2023-08-02 16:38:16 +08:00
|
|
|
|
def test_conv_fp16(self):
|
|
|
|
|
i = make_tensor_value_info("i", TensorProto.FLOAT16, [1, 3, 4, 4])
|
|
|
|
|
w = make_tensor_value_info("w", TensorProto.FLOAT16, [2, 3, 3, 3])
|
|
|
|
|
o = make_tensor_value_info("o", TensorProto.FLOAT16, [1, 2, 2, 2])
|
|
|
|
|
conv = make_node(
|
|
|
|
|
"Conv",
|
|
|
|
|
["i", "w"],
|
|
|
|
|
["o"],
|
|
|
|
|
"conv",
|
|
|
|
|
pads=[1, 1, 1, 1],
|
|
|
|
|
strides=[2, 1],
|
|
|
|
|
dilations=[1, 2],
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([conv], "conv_fp16", [i, w], [o]))
|
|
|
|
|
|
2023-08-16 21:49:43 +08:00
|
|
|
|
def test_conv_bfp16(self):
|
|
|
|
|
i = make_tensor_value_info("i", TensorProto.BFLOAT16, [1, 3, 4, 4])
|
|
|
|
|
w = make_tensor_value_info("w", TensorProto.BFLOAT16, [2, 3, 3, 3])
|
|
|
|
|
o = make_tensor_value_info("o", TensorProto.BFLOAT16, [1, 2, 2, 2])
|
|
|
|
|
conv = make_node(
|
|
|
|
|
"Conv",
|
|
|
|
|
["i", "w"],
|
|
|
|
|
["o"],
|
|
|
|
|
"conv",
|
|
|
|
|
pads=[1, 1, 1, 1],
|
|
|
|
|
strides=[2, 1],
|
|
|
|
|
dilations=[1, 2],
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([conv], "conv_bfp16", [i, w], [o]))
|
|
|
|
|
|
2023-02-13 11:25:54 +08:00
|
|
|
|
def test_matmul(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
|
2023-02-15 13:20:34 +08:00
|
|
|
|
xa = make_tensor_value_info("xa", TensorProto.FLOAT, [1, 2, 4])
|
2023-02-13 11:25:54 +08:00
|
|
|
|
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([matmul], "matmul", [x, a], [xa]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
2023-02-15 13:20:34 +08:00
|
|
|
|
def test_gemm(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 2, 3])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 4, 3])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 2, 4])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 2, 4])
|
|
|
|
|
gemm = make_node("Gemm", ["a", "b", "c"], ["y"], transB=1, name="gemm")
|
|
|
|
|
make_and_import_model(make_graph([gemm], "gemm", [a, b, c], [y]))
|
|
|
|
|
|
2023-02-14 08:54:58 +08:00
|
|
|
|
def test_batch_norm(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 3, 2, 2])
|
2023-02-23 11:48:28 +08:00
|
|
|
|
scale = make_tensor_value_info("scale", TensorProto.FLOAT, [3])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [3])
|
|
|
|
|
mean = make_tensor_value_info("mean", TensorProto.FLOAT, [3])
|
|
|
|
|
var = make_tensor_value_info("var", TensorProto.FLOAT, [3])
|
2023-02-14 08:54:58 +08:00
|
|
|
|
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 3, 2, 2])
|
|
|
|
|
batch_norm = make_node(
|
|
|
|
|
"BatchNormalization",
|
|
|
|
|
["x", "scale", "b", "mean", "var"],
|
|
|
|
|
["y"],
|
|
|
|
|
name="batchNormalization",
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(
|
2023-08-07 11:17:05 +08:00
|
|
|
|
make_graph([batch_norm], "batchNormalzation", [x, scale, b, mean, var], [y])
|
2023-02-14 08:54:58 +08:00
|
|
|
|
)
|
|
|
|
|
|
2023-02-14 16:26:47 +08:00
|
|
|
|
def test_max_pool(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 64, 162, 162])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 64, 80, 80])
|
|
|
|
|
pool = make_node(
|
|
|
|
|
"MaxPool",
|
|
|
|
|
["x"],
|
|
|
|
|
["y"],
|
|
|
|
|
kernel_shape=[3, 3],
|
|
|
|
|
dilations=[1, 1],
|
2023-04-18 15:10:33 +08:00
|
|
|
|
pads=[0, 0, 0, 0],
|
2023-02-14 16:26:47 +08:00
|
|
|
|
strides=[2, 2],
|
|
|
|
|
name="maxPool",
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([pool], "maxPool", [x], [y]))
|
|
|
|
|
|
|
|
|
|
def test_avg_pool(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 64, 162, 162])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 64, 80, 80])
|
|
|
|
|
pool = make_node(
|
|
|
|
|
"AveragePool",
|
|
|
|
|
["x"],
|
|
|
|
|
["y"],
|
|
|
|
|
kernel_shape=[3, 3],
|
2023-04-18 15:10:33 +08:00
|
|
|
|
pads=[0, 0, 0, 0],
|
2023-02-14 16:26:47 +08:00
|
|
|
|
strides=[2, 2],
|
|
|
|
|
name="avgPool",
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([pool], "avgPool", [x], [y]))
|
|
|
|
|
|
2023-02-16 10:33:24 +08:00
|
|
|
|
def test_global_avg_pool(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.UINT32, [30, 30, 30, 30])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.UINT32, [30, 30, 1, 1])
|
|
|
|
|
pool = make_node(
|
|
|
|
|
"GlobalAveragePool",
|
|
|
|
|
["x"],
|
|
|
|
|
["y"],
|
|
|
|
|
name="globalAvgPool",
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([pool], "avgPool", [x], [y]))
|
|
|
|
|
|
2023-02-13 11:25:54 +08:00
|
|
|
|
def test_add(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
add = make_node("Add", ["a", "b"], ["c"], name="add")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([add], "add", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_sub(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
sub = make_node("Sub", ["a", "b"], ["c"], name="sub")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([sub], "sub", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_mul(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
mul = make_node("Mul", ["a", "b"], ["c"], name="mul")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([mul], "mul", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_div(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
div = make_node("Div", ["a", "b"], ["c"], name="div")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([div], "div", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_pow(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
pow = make_node("Pow", ["a", "b"], ["c"], name="pow")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([pow], "pow", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
2023-02-13 11:54:54 +08:00
|
|
|
|
def test_relu(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
relu = make_node("Relu", ["x"], ["y"], name="relu")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([relu], "relu", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
2023-10-16 10:57:08 +08:00
|
|
|
|
"""Gelu operator is not supported by onnx 14.1 currently."""
|
2023-11-23 13:11:50 +08:00
|
|
|
|
|
2023-10-10 15:21:13 +08:00
|
|
|
|
def test_gelu(self):
|
|
|
|
|
pass
|
|
|
|
|
# x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
# y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
# gelu = make_node("Gelu", ["x"], ["y"], name="gelu")
|
|
|
|
|
# make_and_import_model(make_graph([gelu], "gelu", [x], [y]))
|
|
|
|
|
|
2023-08-29 16:06:52 +08:00
|
|
|
|
def test_erf(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
erf = make_node("Erf", ["x"], ["y"], name="erf")
|
|
|
|
|
make_and_import_model(make_graph([erf], "erf", [x], [y]))
|
|
|
|
|
|
|
|
|
|
def test_sqrt(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
sqrt = make_node("Sqrt", ["x"], ["y"], name="sqrt")
|
|
|
|
|
make_and_import_model(make_graph([sqrt], "sqrt", [x], [y]))
|
|
|
|
|
|
2023-02-13 11:54:54 +08:00
|
|
|
|
def test_sigmoid(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
sigmoid = make_node("Sigmoid", ["x"], ["y"], name="sigmoid")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([sigmoid], "sigmoid", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
|
|
|
|
def test_tanh(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
tanh = make_node("Tanh", ["x"], ["y"], name="tanh")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([tanh], "tanh", [x], [y]))
|
2023-10-16 10:57:08 +08:00
|
|
|
|
|
2023-10-10 22:41:06 +08:00
|
|
|
|
def test_hard_sigmoid(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
hardSigmoid = make_node("HardSigmoid", ["x"], ["y"], name="hardSigmoid")
|
|
|
|
|
make_and_import_model(make_graph([hardSigmoid], "hardSigmoid", [x], [y]))
|
|
|
|
|
|
|
|
|
|
def test_hard_swish(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
hardSwish = make_node("HardSwish", ["x"], ["y"], name="hardSwish")
|
|
|
|
|
make_and_import_model(make_graph([hardSwish], "hardSwish", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
|
|
|
|
def test_softmax(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
2023-04-17 12:15:23 +08:00
|
|
|
|
softmax = make_node("Softmax", ["x"], ["y"], axis=2, name="softmax")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([softmax], "softmax", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
|
|
|
|
def test_abs(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
abs = make_node("Abs", ["x"], ["y"], name="abs")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([abs], "abs", [x], [y]))
|
2023-10-16 10:57:08 +08:00
|
|
|
|
|
2023-10-10 10:54:56 +08:00
|
|
|
|
def test_neg(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
neg = make_node("Neg", ["x"], ["y"], name="neg")
|
|
|
|
|
make_and_import_model(make_graph([neg], "neg", [x], [y]))
|
2023-02-13 13:50:07 +08:00
|
|
|
|
|
|
|
|
|
def test_identity(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
identity = make_node("Identity", ["x"], ["y"], name="identity")
|
|
|
|
|
make_and_import_model(make_graph([identity], "identity", [x], [y]))
|
|
|
|
|
|
|
|
|
|
def test_flatten(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
2023-04-18 15:10:33 +08:00
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1 * 3, 5 * 7])
|
2023-04-17 12:15:23 +08:00
|
|
|
|
flatten = make_node("Flatten", ["x"], ["y"], axis=2, name="flatten")
|
2023-08-16 21:49:43 +08:00
|
|
|
|
make_and_import_model(make_graph([flatten], "flatten", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
2023-02-14 10:14:55 +08:00
|
|
|
|
def test_reshape(self):
|
2023-02-14 13:42:35 +08:00
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 4, 5])
|
|
|
|
|
shape = make_tensor_value_info("shape", TensorProto.INT64, [3])
|
|
|
|
|
shape_data = make_tensor("shape", TensorProto.INT64, [3], [5, 3, 8])
|
2023-02-14 11:27:57 +08:00
|
|
|
|
reshaped = make_tensor_value_info(
|
|
|
|
|
"reshaped", TensorProto.FLOAT, shape_data.int64_data
|
|
|
|
|
)
|
2023-02-14 10:14:55 +08:00
|
|
|
|
reshape = make_node("Reshape", ["data", "shape"], ["reshaped"], name="reshape")
|
2023-02-14 11:27:57 +08:00
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([reshape], "reshape", [data, shape], [reshaped], [shape_data])
|
|
|
|
|
)
|
2023-02-14 09:50:32 +08:00
|
|
|
|
|
2023-12-29 13:32:56 +08:00
|
|
|
|
def test_resize(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 128, 40, 40])
|
|
|
|
|
roi = make_tensor("roi", TensorProto.FLOAT, [0], [])
|
|
|
|
|
scales = make_tensor("scales", TensorProto.FLOAT, [4], [1, 1, 2, 2])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 128, 80, 80])
|
|
|
|
|
reshape = make_node("Resize", ["x", "roi", "scales"], ["y"], name="resize")
|
|
|
|
|
make_and_import_model(make_graph([reshape], "resize", [x], [y], [roi, scales]))
|
|
|
|
|
|
2024-01-12 14:54:27 +08:00
|
|
|
|
def test_squeeze(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 1, 5])
|
|
|
|
|
axes = make_tensor_value_info("axes", TensorProto.INT64, [2])
|
|
|
|
|
axes_data = make_tensor("axes", TensorProto.INT64, [2], [0, 2])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [3, 5])
|
|
|
|
|
squeeze = make_node("Squeeze", ["input", "axes"], ["output"], name="squeeze")
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([squeeze], "squeeze", [input, axes], [output], [axes_data])
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def test_unsqueeze(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [2, 3, 4, 5])
|
|
|
|
|
axes = make_tensor_value_info("axes", TensorProto.INT64, [2])
|
|
|
|
|
axes_data = make_tensor("axes", TensorProto.INT64, [2], [0, 2])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 2, 1, 3, 4, 5])
|
|
|
|
|
unsqueeze = make_node(
|
|
|
|
|
"Unsqueeze", ["input", "axes"], ["output"], name="unsqueeze"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([unsqueeze], "unsqueeze", [input, axes], [output], [axes_data])
|
|
|
|
|
)
|
|
|
|
|
|
2023-02-14 13:42:35 +08:00
|
|
|
|
def test_concat(self):
|
|
|
|
|
input1 = make_tensor_value_info("input1", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
input2 = make_tensor_value_info("input2", TensorProto.FLOAT, [1, 3, 2, 5])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 9])
|
|
|
|
|
concat = make_node(
|
|
|
|
|
"Concat", ["input1", "input2"], ["output"], axis=3, name="concat"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([concat], "concat", [input1, input2], [output])
|
|
|
|
|
)
|
|
|
|
|
|
2023-02-14 14:16:01 +08:00
|
|
|
|
def test_gather(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [1, 3, 4, 4])
|
2023-10-12 09:18:12 +08:00
|
|
|
|
indices = make_tensor_value_info("indices", TensorProto.INT64, [2, 1, 2])
|
2023-02-14 14:16:01 +08:00
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 2, 1, 2, 4, 4])
|
|
|
|
|
gather = make_node(
|
|
|
|
|
"Gather", ["data", "indices"], ["output"], axis=1, name="gather"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([gather], "gather", [data, indices], [output]))
|
|
|
|
|
|
2023-10-12 09:18:12 +08:00
|
|
|
|
def test_gather_elements(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 2])
|
|
|
|
|
indices = make_tensor_value_info("indices", TensorProto.INT64, [2, 1, 2])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [2, 1, 2])
|
|
|
|
|
gatherElements = make_node(
|
2023-10-16 10:57:08 +08:00
|
|
|
|
"GatherElements",
|
|
|
|
|
["data", "indices"],
|
|
|
|
|
["output"],
|
|
|
|
|
axis=1,
|
|
|
|
|
name="gatherElements",
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([gatherElements], "gatherElements", [data, indices], [output])
|
2023-10-12 09:18:12 +08:00
|
|
|
|
)
|
|
|
|
|
|
2023-02-14 15:35:01 +08:00
|
|
|
|
def test_reduce_mean(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 3, 4])
|
|
|
|
|
reduced = make_tensor_value_info("reduced", TensorProto.FLOAT, [1, 1, 1, 1])
|
|
|
|
|
reduceMean = make_node(
|
|
|
|
|
"ReduceMean", ["data"], ["reduced"], keepdims=1, name="reduceMean"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([reduceMean], "reduceMean", [data], [reduced]))
|
2023-12-14 16:38:03 +08:00
|
|
|
|
|
2023-11-24 09:29:58 +08:00
|
|
|
|
def test_reduce_sum(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 3, 4])
|
|
|
|
|
reduced = make_tensor_value_info("reduced", TensorProto.FLOAT, [1, 1, 1, 1])
|
|
|
|
|
reduceSum = make_node(
|
|
|
|
|
"ReduceSum", ["data"], ["reduced"], keepdims=1, name="reduceSum"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([reduceSum], "reduceSum", [data], [reduced]))
|
2023-02-14 15:35:01 +08:00
|
|
|
|
|
2023-02-14 17:35:18 +08:00
|
|
|
|
def test_slice(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.UINT32, [10, 64, 162, 162])
|
2023-04-18 15:10:33 +08:00
|
|
|
|
output = make_tensor_value_info("output", TensorProto.UINT32, [1, 1, 99, 95])
|
|
|
|
|
starts = make_tensor("starts", TensorProto.INT64, [4], [2, 9, 1, 5])
|
|
|
|
|
ends = make_tensor("ends", TensorProto.INT64, [4], [3, 10, 100, 100])
|
2023-02-15 11:41:06 +08:00
|
|
|
|
slice = make_node("Slice", ["data", "starts", "ends"], ["output"], name="slice")
|
2023-04-18 15:10:33 +08:00
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph(
|
|
|
|
|
[slice],
|
|
|
|
|
"slice",
|
|
|
|
|
[data],
|
|
|
|
|
[output],
|
|
|
|
|
[starts, ends],
|
|
|
|
|
)
|
2023-02-14 17:35:18 +08:00
|
|
|
|
)
|
|
|
|
|
|
2023-02-15 11:41:06 +08:00
|
|
|
|
def test_pad(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.UINT32, [1, 64, 162, 162])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.UINT32, [3, 84, 164, 172])
|
|
|
|
|
pads = make_tensor_value_info("pads", TensorProto.INT64, [8])
|
|
|
|
|
pads_data = make_tensor(
|
|
|
|
|
"pads", TensorProto.INT64, [8], [2, 10, 1, 5, 0, 10, 1, 5]
|
|
|
|
|
)
|
|
|
|
|
pad = make_node("Pad", ["data", "pads"], ["output"], name="pad")
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph(
|
|
|
|
|
[pad],
|
|
|
|
|
"pad",
|
|
|
|
|
[data, pads],
|
|
|
|
|
[output],
|
|
|
|
|
[pads_data],
|
|
|
|
|
)
|
|
|
|
|
)
|
2023-09-14 14:19:45 +08:00
|
|
|
|
|
2023-09-05 09:47:35 +08:00
|
|
|
|
def test_allReduceSum(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
allReduceSum = make_node(
|
|
|
|
|
"AllReduceSum", ["input"], ["output"], name="allReduceSum"
|
|
|
|
|
)
|
|
|
|
|
graph = make_graph([allReduceSum], "allReduceSum", [input], [output])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
|
|
|
|
|
|
|
|
|
def test_allReduceProd(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
allReduceProd = make_node(
|
|
|
|
|
"AllReduceProd", ["input"], ["output"], name="allReduceProd"
|
|
|
|
|
)
|
|
|
|
|
graph = make_graph([allReduceProd], "allReduceProd", [input], [output])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
2023-09-14 14:19:45 +08:00
|
|
|
|
|
2023-09-05 09:47:35 +08:00
|
|
|
|
def test_allReduceMin(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
allReduceMin = make_node(
|
|
|
|
|
"AllReduceMin", ["input"], ["output"], name="allReduceMin"
|
|
|
|
|
)
|
|
|
|
|
graph = make_graph([allReduceMin], "allReduceMin", [input], [output])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
|
|
|
|
|
|
|
|
|
def test_allReduceMax(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
allReduceMax = make_node(
|
|
|
|
|
"AllReduceMax", ["input"], ["output"], name="allReduceMax"
|
|
|
|
|
)
|
|
|
|
|
graph = make_graph([allReduceMax], "allReduceMax", [input], [output])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
|
|
|
|
|
|
|
|
|
def test_allReduceAvg(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
allReduceAvg = make_node(
|
|
|
|
|
"AllReduceAvg", ["input"], ["output"], name="allReduceAvg"
|
|
|
|
|
)
|
|
|
|
|
graph = make_graph([allReduceAvg], "allReduceAvg", [input], [output])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
2023-09-14 14:19:45 +08:00
|
|
|
|
|
2023-09-05 09:47:35 +08:00
|
|
|
|
def test_split(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
2023-09-14 14:19:45 +08:00
|
|
|
|
split = make_node("Split", ["input"], ["output"], name="split", axis=0)
|
2024-02-01 15:02:02 +08:00
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
make_and_import_model(make_graph([split], "split", [input], [output]))
|
2023-09-14 14:19:45 +08:00
|
|
|
|
|
2023-12-28 21:39:24 +08:00
|
|
|
|
def test_split1(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
2024-02-01 15:02:02 +08:00
|
|
|
|
splitAttr = make_tensor("split", TensorProto.INT64, [2], [2, 1])
|
|
|
|
|
output1 = make_tensor_value_info("output1", TensorProto.FLOAT, [1, 2, 2, 4])
|
|
|
|
|
output2 = make_tensor_value_info("output2", TensorProto.FLOAT, [1, 1, 2, 4])
|
|
|
|
|
split = make_node(
|
|
|
|
|
"Split", ["input", "split"], ["output1", "output2"], name="split", axis=1
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([split], "split", [input], [output1, output2], [splitAttr])
|
|
|
|
|
)
|
2023-12-28 21:39:24 +08:00
|
|
|
|
|
2023-09-05 09:47:35 +08:00
|
|
|
|
def test_allBroadcast(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
broadcast = make_node(
|
|
|
|
|
"Broadcast", ["input"], ["output"], name="broadcast", root=1
|
|
|
|
|
)
|
|
|
|
|
graph = make_graph([broadcast], "broadcast", [input], [output])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
|
|
|
|
|
|
|
|
|
def test_allGather(self):
|
|
|
|
|
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
world_size = make_tensor_value_info("world_size", TensorProto.INT32, [1])
|
|
|
|
|
allGather = make_node(
|
|
|
|
|
"AllGather", ["input", "world_size"], ["output"], name="allGather"
|
|
|
|
|
)
|
|
|
|
|
graph = make_graph([allGather], "allGather", [input, world_size], [])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
2023-02-15 11:41:06 +08:00
|
|
|
|
|
2023-02-13 11:25:54 +08:00
|
|
|
|
# see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression>
|
|
|
|
|
def test_linear(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 2, 4])
|
2023-02-13 12:13:01 +08:00
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 2, 4])
|
2023-02-13 11:25:54 +08:00
|
|
|
|
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
|
|
|
|
|
add = make_node("Add", ["xa", "b"], ["y"], name="add")
|
|
|
|
|
graph = make_graph([matmul, add], "lr", [x, a, b], [y])
|
2023-02-12 08:23:49 +08:00
|
|
|
|
model = make_model(graph)
|
|
|
|
|
check_model(model)
|
2023-04-18 15:10:33 +08:00
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
2023-02-12 08:23:49 +08:00
|
|
|
|
|
|
|
|
|
def test_frontend(self):
|
2023-04-18 15:10:33 +08:00
|
|
|
|
handler = backend.GraphHandler(backend.cpu_runtime())
|
2023-02-17 17:15:15 +08:00
|
|
|
|
a = handler.tensor([1, 2, 3], 12)
|
|
|
|
|
b = handler.tensor([1, 2, 3], 12)
|
|
|
|
|
c = handler.tensor([1, 2, 3], 12)
|
|
|
|
|
d = handler.tensor([1, 2, 3], 12)
|
|
|
|
|
e = handler.tensor([1, 2, 3], 12)
|
|
|
|
|
|
2023-02-21 14:30:06 +08:00
|
|
|
|
x = handler.add(
|
|
|
|
|
handler.add(handler.add(handler.add(a, b, None), c, None), d, None), e, None
|
|
|
|
|
)
|
|
|
|
|
y = handler.tensor([3, 2, 1], 12)
|
|
|
|
|
handler.reshape(x, y, [3, 2, 1])
|
2023-02-12 08:23:49 +08:00
|
|
|
|
|
2023-08-16 21:49:43 +08:00
|
|
|
|
def test_cast(self):
|
|
|
|
|
input1 = make_tensor_value_info("input1", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT16, [1, 3, 2, 4])
|
|
|
|
|
cast = make_node(
|
|
|
|
|
"Cast", ["input1"], ["output"], to=TensorProto.FLOAT16, name="cast"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([cast], "cast", [input1], [output]))
|
|
|
|
|
|
2023-08-29 16:06:52 +08:00
|
|
|
|
def test_expand(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [3, 1])
|
|
|
|
|
dim = make_tensor_value_info("dim", TensorProto.INT64, [3])
|
|
|
|
|
dim_data = make_tensor("dim", TensorProto.INT64, [3], [2, 1, 6])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [2, 3, 6])
|
|
|
|
|
expand = make_node("Expand", ["data", "dim"], ["output"], name="expand")
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([expand], "expand", [data, dim], [output], [dim_data])
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def test_where(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
con = make_tensor_value_info("con", TensorProto.BOOL, [1, 3, 5, 7])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
where = make_node("Where", ["x", "y", "con"], ["output"], name="where")
|
|
|
|
|
make_and_import_model(make_graph([where], "where", [x, y, con], [output]))
|
|
|
|
|
|
2023-12-14 16:38:03 +08:00
|
|
|
|
def test_send(self):
|
|
|
|
|
sendInput = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
send = make_node("Send", ["input"], [], name="send", source=0, destination=1)
|
|
|
|
|
graph = make_graph([send], "send", [sendInput], [])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
|
|
|
|
|
|
|
|
|
def test_recv(self):
|
|
|
|
|
recvOutput = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
recv = make_node(
|
|
|
|
|
"Recv",
|
|
|
|
|
[],
|
|
|
|
|
["output"],
|
|
|
|
|
name="recv",
|
|
|
|
|
source=0,
|
|
|
|
|
destination=1,
|
|
|
|
|
shape=[1, 3, 5, 7],
|
|
|
|
|
dataType=1,
|
|
|
|
|
)
|
|
|
|
|
graph = make_graph([recv], "recv", [], [recvOutput])
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
from_onnx(model, backend.cpu_runtime())
|
|
|
|
|
|
2023-09-14 14:19:45 +08:00
|
|
|
|
|
2023-11-23 13:11:50 +08:00
|
|
|
|
class TestDynamicTensor(unittest.TestCase):
|
|
|
|
|
def test_dynamic_tensor(self):
|
|
|
|
|
filename = r"resnet18-v2-7.onnx"
|
|
|
|
|
current_path = os.getcwd()
|
|
|
|
|
model_file = ""
|
|
|
|
|
for root, dirs, files in os.walk(current_path):
|
|
|
|
|
if filename in files:
|
|
|
|
|
model_file = os.path.join(root, filename)
|
2023-12-14 16:38:03 +08:00
|
|
|
|
|
2023-11-23 13:11:50 +08:00
|
|
|
|
model = OnnxStub(onnx.load(model_file), backend.cpu_runtime())
|
|
|
|
|
output_key = list(model.outputs.keys())[0]
|
|
|
|
|
old_output_shape = model.getShape(output_key)
|
|
|
|
|
self.assertEqual(old_output_shape, ([1, 1000]))
|
|
|
|
|
model.set_input([[5, 3, 224, 224]])
|
|
|
|
|
new_output_shape = model.getShape(output_key)
|
|
|
|
|
self.assertEqual(new_output_shape, ([5, 1000]))
|
|
|
|
|
|
|
|
|
|
|
2023-02-12 08:23:49 +08:00
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
unittest.main()
|