This commit is contained in:
OdinaryWord 2024-04-10 15:40:30 +08:00
parent ec549d260b
commit 33e1521754
5 changed files with 6 additions and 6 deletions

View File

@ -4,7 +4,7 @@ option(USE_BANG "Support BANG MLU" OFF)
option(USE_KUNLUN "Support KUNLUN XPU" OFF)
option(USE_ASCEND "Support HUAWEI ASCEND" OFF)
option(USE_INTELCPU "Support INTELCPU" OFF)
option(USE_BACKTRACE "Print backtrace on exception and segmentation fault" OFF)
option(USE_BACKTRACE "Print backtrace on exception and segmentation fault" ON)
option(USE_PROTOBUF "Serialize and deserialize tensors" OFF)
option(BUILD_NNET "Build nnet" OFF)
option(BUILD_DIST "Build project for distributed running" OFF)

View File

@ -39,7 +39,7 @@ endif
build:
mkdir -p build/$(TYPE)
cd build/$(TYPE) && cmake $(CMAKE_OPT) ../.. && make -j
cd build/$(TYPE) && cmake $(CMAKE_OPT) ../.. && make -j8
clean:
rm -rf build

View File

@ -33,13 +33,14 @@ There are several configurable CMake options, see the [CMakeLists.txt](/CMakeLis
## Roadmap
- [RefactorGraph](https://github.com/InfiniTensor/RefactorGraph) is a newly designed AI framework that is set to replace the current main branch.
- [EinNet](https://github.com/InfiniTensor/InfiniTensor/tree/NNET_e2e) is going to be merged into the main branch.
- Integration of [PET](https://github.com/thu-pacman/PET), a tensor program optimizer supporting partially equivalent transformations.
- Supported hardware
- ✔ NVIDIA GPU
- ✔ Cambricon MLU
- ✔ Kunlunxin XPU
- ⬜ Ascend NPU
- ⬜ Kunlunxin XPU
## Contributor Guide
@ -71,4 +72,4 @@ Please cite EinNet or PET in your publications if it helps your research:
pages={37--54},
year={2021}
}
```
```

1
env.sh
View File

@ -47,7 +47,6 @@ export KUNLUN_HOME=/usr/local/xpu
# ├── tools
# ├── version
# └── XTDK
#export ASCEND_HOME=/usr/local/Ascend/ascend-toolkit/6.3
export ASCEND_HOME=/usr/local/Ascend/ascend-toolkit/latest
source /usr/local/Ascend/ascend-toolkit/set_env.sh
source /usr/local/Ascend/toolbox/set_env.sh

View File

@ -334,7 +334,7 @@ Tensor GraphHandlerObj::attentionKVCache(Tensor input_k_cache,
std::move(input_k_cache), std::move(input_v_cache),
std::move(input_q), std::move(input_k), std::move(input_v),
std::move(position_id), output_matmul);
return {output_matmul};
return output_matmul;
} else {
return g
->addOp<AttentionKVCacheObj>(