Merge branch 'master' into update_pybind11

This commit is contained in:
Haojie Wang 2024-01-05 09:20:33 +08:00 committed by GitHub
commit 3b5dd7d28c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
49 changed files with 2044 additions and 133 deletions

View File

@ -13,7 +13,7 @@ if(USE_CUDA)
message("CMake 3.18 or higher is required for setting CUDAToolkit")
cmake_minimum_required(VERSION 3.18) # FindCUDAToolkit
else()
cmake_minimum_required(VERSION 3.12)
cmake_minimum_required(VERSION 3.17)
endif()
include(CMakeDependentOption)
@ -245,6 +245,7 @@ if(USE_BANG)
find_library(CAMBRICON_CNNL libcnnl.so "${NEUWARE_HOME}/lib64")
find_library(CAMBRICON_CNRT libcnrt.so "${NEUWARE_HOME}/lib64")
find_library(CAMBRICON_CNDRV libcndrv.so "${NEUWARE_HOME}/lib64")
find_library(CAMBRICON_CNCL libcncl.so "${NEUWARE_HOME}/lib64")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -lstdc++ -Wall -Werror")
if ((NOT DEFINED TARGET_CPU_ARCH) AND (NOT DEFINED ENV{TARGET_CPU_ARCH}))
@ -261,7 +262,13 @@ if(USE_BANG)
# BangC Kernels
################################################################################
target_link_libraries(InfiniTensor ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
target_link_libraries(InfiniTensor ${CAMBRICON_CNCL} ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
if (BUILD_DIST)
message(STATUS "Add BUILD_DIST, use CNCL with BANG")
add_compile_definitions(INFINI_USE_CNCL=1)
endif()
endif()
if(USE_KUNLUN)
@ -324,6 +331,7 @@ if(BUILD_TEST)
endif()
if (USE_BANG)
build_test(test/kernels/bang/*.cc)
build_test(test/bang/*.cc)
endif()
if (USE_KUNLUN)
build_test(test/kernels/kunlun/*.cc)

View File

@ -29,6 +29,7 @@ CMAKE_OPT += -DUSE_BANG=$(BANG)
CMAKE_OPT += -DUSE_KUNLUN=$(KUNLUN)
CMAKE_OPT += -DUSE_BACKTRACE=$(BACKTRACE)
CMAKE_OPT += -DBUILD_TEST=$(TEST)
CMAKE_OPT += -DBUILD_DIST=ON
CMAKE_OPT += -DBUILD_NNET=$(NNET)
ifeq ($(INTELCPU), ON)

76
cmake/FindCNCL.cmake Normal file
View File

@ -0,0 +1,76 @@
SET(CNCL_LIB_SEARCH_PATHS $ENV{NEUWARE_HOME}/lib64)
SET(CNCL_INCLUDE_SEARCH_PATHS $ENV{NEUWARE_HOME}/include)
set(CNCL_INCLUDE_DIR $ENV{NEUWARE_HOME}/include)
set(CNCL_LIB_DIR $ENV{NEUWARE_HOME}/lib64)
set(CNCL_VERSION $ENV{CNCL_VERSION} CACHE STRING "Version of CNCL to build with")
if ($ENV{CNCL_ROOT_DIR})
message(WARNING "CNCL_ROOT_DIR is deprecated. Please set CNCL_ROOT instead.")
endif()
list(APPEND CNCL_ROOT $ENV{CNCL_ROOT_DIR} ${MLU_TOOLKIT_ROOT_DIR})
# Compatible layer for CMake <3.12. CNCL_ROOT will be accounted in for searching paths and libraries for CMake >=3.12.
list(APPEND CMAKE_PREFIX_PATH ${CNCL_ROOT})
find_path(CNCL_INCLUDE_DIRS
NAMES cncl.h
HINTS ${CNCL_INCLUDE_DIR})
if (USE_STATIC_CNCL)
MESSAGE(STATUS "USE_STATIC_CNCL is set. Linking with static CNCL library.")
SET(CNCL_LIBNAME "CNCL_static")
if (CNCL_VERSION) # Prefer the versioned library if a specific CNCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".a.${CNCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
else()
SET(CNCL_LIBNAME "cncl")
if (CNCL_VERSION) # Prefer the versioned library if a specific CNCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".so.${CNCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
endif()
find_library(CNCL_LIBRARIES
NAMES ${CNCL_LIBNAME}
HINTS ${CNCL_LIB_DIR})
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(CNCL DEFAULT_MSG CNCL_INCLUDE_DIRS CNCL_LIBRARIES)
if(CNCL_FOUND) # obtaining CNCL version and some sanity checks
set (CNCL_HEADER_FILE "${CNCL_INCLUDE_DIRS}/cncl.h")
message (STATUS "Determining CNCL version from ${CNCL_HEADER_FILE}...")
set (OLD_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
list (APPEND CMAKE_REQUIRED_INCLUDES ${CNCL_INCLUDE_DIRS})
include(CheckCXXSymbolExists)
check_cxx_symbol_exists(CNCL_VERSION_CODE CNCL.h CNCL_VERSION_DEFINED)
if (CNCL_VERSION_DEFINED)
set(file "${PROJECT_BINARY_DIR}/detect_cncl_version.cc")
file(WRITE ${file} "
#include <iostream>
#include <cncl.h>
int main()
{
std::cout << CNCL_MAJOR << '.' << CNCL_MINOR << '.' << CNCL_PATCH << std::endl;
int x;
CNCLGetVersion(&x);
return x == CNCL_VERSION_CODE;
}
")
try_run(CNCL_VERSION_MATCHED compile_result ${PROJECT_BINARY_DIR} ${file}
RUN_OUTPUT_VARIABLE CNCL_VERSION_FROM_HEADER
CMAKE_FLAGS "-DINCLUDE_DIRECTORIES=${CNCL_INCLUDE_DIRS}"
LINK_LIBRARIES ${CNCL_LIBRARIES})
if (NOT CNCL_VERSION_MATCHED)
message(FATAL_ERROR "Found CNCL header version and library version do not match! \
(include: ${CNCL_INCLUDE_DIRS}, library: ${CNCL_LIBRARIES}) Please set CNCL_INCLUDE_DIR and CNCL_LIB_DIR manually.")
endif()
message(STATUS "CNCL version: ${CNCL_VERSION_FROM_HEADER}")
else()
# message(STATUS "CNCL version < 2.3.5-5")
endif ()
set (CMAKE_REQUIRED_INCLUDES ${OLD_CMAKE_REQUIRED_INCLUDES})
message(STATUS "Found CNCL (include: ${CNCL_INCLUDE_DIRS}, library: ${CNCL_LIBRARIES})")
mark_as_advanced(CNCL_ROOT_DIR CNCL_INCLUDE_DIRS CNCL_LIBRARIES)
endif()

@ -1 +1 @@
Subproject commit 51d3105277f3774ed31c02ed4cd11fa92925af77
Subproject commit b896cec2dba5b8522b141ac4f89eb43074ee1b98

View File

@ -0,0 +1,196 @@
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=2, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, default="test", help="name of this instance."
)
parser.add_argument(
"--model", type=str, default="/data/onnx_models/llama2/llama_bs1_seq1024.onnx",
help="path to the ONNX model file."
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--gen_std",
default=False,
action="store_true",
help="whether to generate the standard results.",
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.batch_size,
args.length,
args.gen_std,
)
def run_model(model, runtime, world_size=1, rank=0, n=10):
stub = OnnxStub(model, runtime)
load_inputs(stub, world_size, rank)
# stub.tune()
stub.run()
# get outputs
time.sleep(0.01)
outputs = next(stub.outputs.values().__iter__()).copyout_numpy()
# bench
begin = time.time()
for _ in range(n):
stub.run()
end = time.time()
avg_time = (end - begin) / n
print(f"average time: {avg_time}")
return outputs
def run_and_compare(name, model, runtime, world_size=1, rank = 0):
results = np.load(f"./data/output.npy")
outputs = run_model(model, runtime, world_size, rank)
print("answer argmax:", np.argmax(results))
print("output argmax:", np.argmax(outputs))
#np.testing.assert_allclose(outputs, results, rtol=1e-3, atol=1e-3)
getDiff(results, outputs)
def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto
):
dist_name = name + "_dist"
model = parallel_model(model, world_size, rank)
extern_path = f"./{dist_name}_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
onnx.save_model(
model,
f"./{dist_name}_rank{rank}.onnx",
save_as_external_data=True,
location=extern_path,
)
infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
runtime = backend.BangRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_and_compare(name, model, runtime, world_size, rank)
def start_single(name, model):
runtime = backend.BangRuntime(0)
run_and_compare(name, model, runtime)
def generate_input_output(model):
os.makedirs(os.path.dirname("./data/"), exist_ok=True)
runtime = backend.BangRuntime(0)
stub = OnnxStub(model, runtime)
position_id = 0
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = tensor.copyout_numpy()
if np.issubdtype(input.dtype, np.integer):
if input.size == 1:
# input = np.array([position_id])
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
else:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
elif input.dtype == np.bool_:
input = np.random.randint(0,2,size=input.shape) > 0
else:
if i == 0:
input = np.ones(input.shape).astype(input.dtype)
position_id = input.shape[-1] - 1
else:
input = np.random.rand(*input.shape).astype(input.dtype)
tensor.copyin_numpy(input)
np.save(f"./data/input_{i}", input)
stub.run()
time.sleep(0.01)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
if np.isnan(output).any():
print("Nan in output")
np.save(f"./data/output", output)
def load_inputs(stub, world_size=1, rank=0):
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = np.load(f"./data/input_{i}.npy")
if all(x == y for x,y in zip(input.shape,tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
def getDiff(base, test):
absolute_diff = np.abs(np.subtract(base, test))
max_absolute_diff = np.max(absolute_diff)
baseCopy = base.astype(np.float64).ravel()
testCopy = test.astype(np.float64).ravel()
upValue = np.sum(np.abs(baseCopy - testCopy))
downValue = np.sum(np.abs(baseCopy)) + np.float64(1e-9)
max_relative_diff = upValue / downValue
print(f"Max absolute difference: {max_absolute_diff}\n"
f"Max relative difference: {max_relative_diff}")
return max_absolute_diff, max_relative_diff
def main():
nnodes, nproc_per_node, name, model_path, bs, length, gen_std = parse_args()
model = onnx.load(model_path)
# generate standart output
if gen_std:
print("Generate inputs and outputs.")
p = mp.Process(target=generate_input_output, args=[model])
p.start()
p.join()
return
# run single process.
# use standalone process to isolate cuda.
print("run model by single MLU.")
p = mp.Process(target=start_single, args=(name, model))
p.start()
p.join()
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"run model by {world_size} MLUs in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -115,7 +115,7 @@ def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
assert out_dims[s_dim] % tp_world_size == 0, out_dims
out_dims[s_dim] //= tp_world_size
# if ONNX uses the same tensor for multiple Reshape Nodes, then rename it to distingush from others.
# node.input[1] = node.output[0] + "_shape"
node.input[1] = node.output[0] + "_shape"
data[node.input[1]] = numpy_helper.from_array(out_dims, name=node.input[1])
place[node.output[0]] = Shard(s_dim)

View File

@ -7,17 +7,19 @@ namespace infini {
class BangRuntimeObj : public RuntimeObj {
private:
cnnlHandle_t cnnl;
cnrtQueue_t queue;
std::unique_ptr<CommunicatorObj> comm;
BangPtr workspace;
size_t workspaceSize;
mutable size_t cursor;
public:
BangRuntimeObj() : RuntimeObj(Device::BANG) {
explicit BangRuntimeObj(int deviceId = 0)
: RuntimeObj(Device::BANG, deviceId) {
cnInit(0);
CNdev dev;
cnDeviceGet(&dev, 0);
cnDeviceGet(&dev, deviceId);
checkBangError(cnrtSetDevice(dev));
cnrtQueue_t queue;
checkBangError(cnrtQueueCreate(&queue));
checkCnnlError(cnnlCreate(&cnnl));
@ -30,6 +32,7 @@ class BangRuntimeObj : public RuntimeObj {
}
virtual ~BangRuntimeObj() {
dealloc(workspace);
checkBangError(cnrtQueueDestroy(queue));
checkCnnlError(cnnlDestroy(cnnl));
}
string toString() const override;
@ -73,10 +76,9 @@ class BangRuntimeObj : public RuntimeObj {
checkBangError(cnrtMemcpy(dst, const_cast<void *>(src), bytes,
CNRT_MEM_TRANS_DIR_PEER2PEER));
}
void initComm(const string &, int, int) override { IT_TODO_HALT(); }
CommunicatorObj &getCommunicator() const override { IT_TODO_HALT(); }
void initComm(const string &name, int worldSize, int rank) final;
CommunicatorObj &getCommunicator() const override { return *comm; }
cnrtQueue_t getBangQueue() const { return queue; }
private:
void runWithoutSync(const Graph &graph, bool tune, bool profiling) const;

View File

@ -0,0 +1,79 @@
#pragma once
#include "bang_common.h"
#include "core/communicator.h"
#include <chrono>
#include <cncl.h>
#include <cnrt.h>
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <mutex>
#include <thread>
namespace infini {
class CnclCommunicatorObj final : public CommunicatorObj {
private:
cnclComm_t *comms;
public:
CnclCommunicatorObj(const string &name, int worldSize, int rank)
: CommunicatorObj(worldSize, rank) {
const std::string filePath("./" + name + "_cncl_id.bin");
cnclCliqueId clique_id;
if (rank == 0) {
CNCL_CHECK(cnclGetCliqueId(&clique_id));
std::ofstream ofs(filePath, std::ios::binary);
ofs.write((char *)&clique_id, sizeof(cnclCliqueId));
} else {
auto begin = std::chrono::steady_clock::now();
while (!std::filesystem::exists(filePath)) {
auto now = std::chrono::steady_clock::now();
_IT_ASSERT_2(now < begin + std::chrono::seconds(10),
"time limit (10s) exceeded.");
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::ifstream ifs(filePath, std::ios::binary);
ifs.read((char *)&clique_id, sizeof(cnclCliqueId));
}
int num_comms = 1;
int *dev_list = new int[num_comms];
int *rank_list = new int[num_comms];
comms = new cnclComm_t[num_comms];
uint32_t num_dev = 0;
checkBangError(cnrtGetDeviceCount(&num_dev));
for (int i = 0; i < num_comms; i++) {
rank_list[i] = rank;
dev_list[i] = rank_list[i] % num_dev;
}
CNCL_CHECK(cnclInitComms(comms, num_comms, dev_list, rank_list,
worldSize, &clique_id));
if (rank == 0) {
std::filesystem::remove(filePath);
}
delete[] dev_list;
delete[] rank_list;
}
~CnclCommunicatorObj() {
CNCL_CHECK(cnclDestroyComms(comms, 1));
delete[] comms;
}
// Get the actual cnclComm_t
cnclComm_t getCnclComm() { return comms[0]; }
virtual string toString() const final {
std::ostringstream oss;
oss << "CNCL communicator";
return oss.str();
}
};
} // namespace infini

View File

@ -65,12 +65,18 @@ class GraphHandlerObj {
std::optional<float> max);
Tensor transpose(Tensor data, Tensor transposed, Shape perm);
Tensor reshape(Tensor data, Tensor reshaped, Shape shape);
Tensor resize(Tensor input, Tensor output,
const std::optional<vector<int>> &axes, Tensor sizes,
Tensor scales, Tensor roi, vector<uint32_t> sizes_,
vector<float> scales_, vector<float> roi_, string mode,
string ratioPolicy, string nearestMode,
string coordTransMode);
Tensor concat(TensorVec inputs, Tensor output, int dim);
Tensor attentionKVCache(Tensor input_k_cache, Tensor input_v_cache,
Tensor input_q, Tensor input_k, Tensor input_v,
Tensor position_id, Tensor output_matmul);
TensorVec split(Tensor input, std::optional<TensorVec> outputs, int axis,
int num_outputs);
std::variant<int, vector<int>> numOrRatio);
Tensor gather(Tensor data, Tensor indices, Tensor output, int axis);
Tensor gatherElements(Tensor data, Tensor indices, Tensor output, int axis);
Tensor reduceMean(Tensor data, Tensor reduced,
@ -99,6 +105,8 @@ class GraphHandlerObj {
int outputType, Tensor input);
Tensor depthToSpace(Tensor input, Tensor output, int blocksize,
std::string mode);
Tensor lrn(Tensor input, Tensor output, float alpha, float beta, float bias,
int size);
//------ modifiers

View File

@ -2,6 +2,7 @@
#include "core/common.h"
#include "core/operator.h"
#include "core/tensor.h"
#include "utils/operator_utils.h"
#include <functional>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
@ -102,11 +103,9 @@ class KernelRegistry {
}
Kernel *getKernel(const KernelAttrs &kernelAttrs) const {
auto it = kernels.find(kernelAttrs);
IT_ASSERT(it != kernels.end(),
"Kernel not found for key {" +
to_string(enum_to_underlying(std::get<0>(kernelAttrs))) +
", " + std::to_string(std::get<1>(kernelAttrs)) + ", " +
std::get<2>(kernelAttrs).toString() + "}");
IT_ASSERT(it != kernels.end(), "Kernel not found for key {" +
get_kernel_attrs_str(kernelAttrs) +
"}");
return std::get<0>(it->second);
}
const KernelRecord &getKernelItem(const KernelAttrs &kernelAttrs) const {

View File

@ -8,7 +8,9 @@
#if USE_CUDA
#include "cuda/cuda_runtime.h"
#endif
#if USE_BANG
#include "bang/bang_runtime.h"
#endif
namespace infini {
// TODO: how to deal with this

29
include/operators/lrn.h Normal file
View File

@ -0,0 +1,29 @@
#pragma once
#include "core/operator.h"
namespace infini {
class LRNObj : public OperatorObj {
public:
LRNObj(GraphObj *graph, Tensor inputX, Tensor inputY, float alpha,
float beta, float bias, int size);
OP_CLONE(LRNObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
std::string toString() const override;
int numInputs() const override { return inputs.size(); }
int numOutputs() const override { return 1; }
auto getAlphaBetaBias() const {
return tuple(alpha_value, beta_value, bias_value);
}
auto getSize() const { return size_value; }
private:
float alpha_value, beta_value, bias_value;
int size_value;
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
};
} // namespace infini

View File

@ -27,6 +27,60 @@ class ResizeObj : public OperatorObj {
enum class EKeepAspectRatioPolicy { stretch, notLarger, notSmaller, none };
enum class ECoeffMode { nearest, linear, cubic };
static ECoordinateTransMode fromECoordinateTransModeStr(string mode) {
if (mode == "half_pixel") {
return ECoordinateTransMode::halfPixel;
} else if (mode == "asymmetric") {
return ECoordinateTransMode::asymmetric;
} else if (mode == "align_corners") {
return ECoordinateTransMode::alignCorners;
} else if (mode == "pytorch_half_pixel") {
return ECoordinateTransMode::pytorchHalfPixel;
} else if (mode == "tf_crop_and_resize") {
return ECoordinateTransMode::tfCropAndResize;
} else {
IT_TODO_HALT();
}
}
static ENearestMode fromENearestModeStr(string mode) {
if (mode == "round_prefer_floor") {
return ENearestMode::roundPreferFloor;
} else if (mode == "round_prefer_ceil") {
return ENearestMode::roundPreferCeil;
} else if (mode == "floor") {
return ENearestMode::floor;
} else if (mode == "ceil") {
return ENearestMode::ceil;
} else {
return ENearestMode::none;
}
}
static EKeepAspectRatioPolicy fromRatioPolicyStr(string ratioPolicyStr) {
if (ratioPolicyStr == "stretch") {
return EKeepAspectRatioPolicy::stretch;
} else if (ratioPolicyStr == "not_larger") {
return EKeepAspectRatioPolicy::notLarger;
} else if (ratioPolicyStr == "not_smaller") {
return EKeepAspectRatioPolicy::notSmaller;
} else {
return EKeepAspectRatioPolicy::none;
}
}
static ECoeffMode fromECoeffModeStr(string mode) {
if (mode == "nearest") {
return ECoeffMode::nearest;
} else if (mode == "linear") {
return ECoeffMode::linear;
} else if (mode == "cubic") {
return ECoeffMode::cubic;
} else {
IT_TODO_HALT();
}
}
private:
vector<int> axes;
vector<float> scales;

View File

@ -2,6 +2,7 @@
#ifndef OPERATOR_UTIL_H
#define OPERATOR_UTIL_H
#include "core/operator.h"
#include "core/tensor.h"
namespace infini {
@ -10,8 +11,15 @@ namespace infini {
Shape infer_broadcast(const Shape &A, const Shape &B);
// Launch the real axis based on rank and current axis
int get_real_axis(const int &axis, const int &rank);
// check if tensor B is unidirectional broadcastable to tensor A
// Check if tensor B is unidirectional broadcastable to tensor A
bool is_unidirectional_broadcasting(const Shape &A, const Shape &B);
// Locate the index with size from Shape
Shape locate_index(size_t inputN, const Shape &shape);
// Delocate the ShapeIndex from Shape with broadcast
size_t delocate_index(const Shape &shapeIndex, const Shape &shape,
const Shape &stride);
// Convert KernelAttrs to a string representation
std::string get_kernel_attrs_str(const KernelAttrs &kernelAttrs);
} // namespace infini
#endif

View File

@ -535,6 +535,65 @@ class OnnxStub:
tensors.get(node.output[0]),
shape,
)
elif node.op_type == "Resize":
output = tensors.get(node.output[0])
attributes = _parse_attribute(
node,
{
"antialias": 0,
"axes": None,
"coordinate_transformation_mode": "half_pixel",
"cubic_coeff_a": -0.75,
"exclude_outside": 0,
"extrapolation_value": 0.0,
"keep_aspect_ratio_policy": "none",
"mode": "nearest",
"nearest_mode": "none",
},
)
(
axes,
keep_aspect_ratio_policy,
coordinate_transformation_mode,
mode,
nearest_mode,
) = (
attributes[name]
for name in [
"axes",
"keep_aspect_ratio_policy",
"coordinate_transformation_mode",
"mode",
"nearest_mode",
]
)
if len(node.input) > 1:
roiVal = _parse_data(data[node.input[1]])
else:
roiVal = []
if len(node.input) > 2:
scalesVal = _parse_data(data[node.input[2]])
else:
scalesVal = []
if len(node.input) > 3:
sizesVal = _parse_data(data[node.input[3]])
else:
sizesVal = []
tensors[node.output[0]] = self.handler.resize(
tensors[node.input[0]],
output,
axes,
tensors[node.input[3]] if len(node.input) > 3 else None,
tensors[node.input[2]] if len(node.input) > 2 else None,
tensors[node.input[1]] if len(node.input) > 1 else None,
sizesVal,
scalesVal,
roiVal,
mode,
keep_aspect_ratio_policy,
nearest_mode,
coordinate_transformation_mode,
)
elif node.op_type == "Squeeze":
input_shape = _search_shape(model, node.input[0])
axes = set(
@ -585,6 +644,20 @@ class OnnxStub:
tensors.get(node.output[0]),
)
elif node.op_type == "Split":
split = (
_parse_data(data[node.input[1]])
if (len(node.input) > 1)
else None
)
if split is None:
split = next(
(
attr.ints
for attr in node.attribute
if attr.name == "split"
),
None,
)
for name, tensor in zip(
node.output,
self.handler.split(
@ -598,7 +671,7 @@ class OnnxStub:
),
0,
),
len(node.output),
split if split is not None else len(node.output),
),
):
tensors[name] = tensor
@ -857,6 +930,22 @@ class OnnxStub:
tensors[output_name] = self.handler.tensor(dims, tensor.data_type)
data[output_name] = tensor
tensors[output_name].set_weight()
elif node.op_type == "LRN":
attributes = _parse_attribute(
node, {"alpha": 0.0001, "beta": 0.75, "bias": 1.0, "size": 1}
)
(alpha, beta, bias, size) = (
attributes[name]
for name in ["alpha", "beta", "bias", "size"]
)
tensors[node.output[0]] = self.handler.lrn(
tensors[node.input[0]],
tensors.get(node.output[0]),
alpha,
beta,
bias,
size,
)
else:
raise Exception('Unsupported operator "{}"'.format(node.op_type))
new_node_name.append(node.name)
@ -1195,6 +1284,20 @@ class OnnxStub:
elif ty == backend.OpTypeId.Expand:
shape = backend.expand_shape_of(op)
ctx.push_node(make_node(ty.name, inputs, outputs, name, shape=shape))
elif ty == backend.OpTypeId.LRN:
alpha, beta, bias, size = backend.lrn_attrs_of(op)
ctx.push_node(
make_node(
ty.name,
inputs,
outputs,
name,
alpha,
beta,
bias,
size,
)
)
else:
raise Exception("Unsupported OpType", ty)

View File

@ -295,6 +295,14 @@ class TestStringMethods(unittest.TestCase):
make_graph([reshape], "reshape", [data, shape], [reshaped], [shape_data])
)
def test_resize(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 128, 40, 40])
roi = make_tensor("roi", TensorProto.FLOAT, [0], [])
scales = make_tensor("scales", TensorProto.FLOAT, [4], [1, 1, 2, 2])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 128, 80, 80])
reshape = make_node("Resize", ["x", "roi", "scales"], ["y"], name="resize")
make_and_import_model(make_graph([reshape], "resize", [x], [y], [roi, scales]))
def test_concat(self):
input1 = make_tensor_value_info("input1", TensorProto.FLOAT, [1, 3, 2, 4])
input2 = make_tensor_value_info("input2", TensorProto.FLOAT, [1, 3, 2, 5])
@ -435,6 +443,12 @@ class TestStringMethods(unittest.TestCase):
split = make_node("Split", ["input"], ["output"], name="split", axis=0)
make_and_import_model(make_graph([split], "split", [input], []))
def test_split1(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
splitAttr = make_tensor_value_info("split", TensorProto.INT64, [2, 1])
split = make_node("Split", ["input", "split"], ["output"], name="split", axis=1)
make_and_import_model(make_graph([split], "split", [input, splitAttr], []))
def test_allBroadcast(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])

View File

@ -1,6 +1,9 @@
#include "bang/bang_runtime.h"
#include "core/kernel.h"
#include "core/perf_engine.h"
#ifdef INFINI_USE_CNCL
#include "bang/cncl_communicator.h"
#endif
namespace infini {
@ -59,4 +62,15 @@ void BangRuntimeObj::sync() const { cnrtSyncDevice(); }
string BangRuntimeObj::toString() const { return "BANG Runtime"; }
void BangRuntimeObj::initComm(const string &name, int worldSize, int rank) {
IT_ASSERT(worldSize > 0);
IT_ASSERT(rank >= 0);
IT_ASSERT(rank < worldSize);
IT_ASSERT(!comm) << "communicator is already initialized.";
#ifdef INFINI_USE_CNCL
comm = std::make_unique<CnclCommunicatorObj>(name, worldSize, rank);
#else
IT_TODO_HALT_MSG("Not compiled with CNCL.");
#endif
}
} // namespace infini

View File

@ -10,12 +10,14 @@
#include "operators/expand.h"
#include "operators/gather.h"
#include "operators/layer_norm.h"
#include "operators/lrn.h"
#include "operators/matmul.h"
#include "operators/pad.h"
#include "operators/pooling.h"
#include "operators/recv.h"
#include "operators/reduce.h"
#include "operators/reshape.h"
#include "operators/resize.h"
#include "operators/send.h"
#include "operators/slice.h"
#include "operators/softmax.h"
@ -24,6 +26,7 @@
#include "operators/unary.h"
#include "operators/where.h"
#include <numeric>
#include <variant>
namespace infini {
@ -252,6 +255,64 @@ Tensor GraphHandlerObj::reshape(Tensor data, Tensor reshaped, Shape shape) {
}
}
Tensor GraphHandlerObj::resize(Tensor input, Tensor output,
const std::optional<vector<int>> &axes,
Tensor sizes, Tensor scales, Tensor roi,
vector<uint32_t> sizes_, vector<float> scales_,
vector<float> roi_, string mode,
string ratioPolicy, string nearestMode,
string coordTransMode) {
if (sizes_.size() > 0) {
sizes->dataMalloc();
sizes->copyin<uint32_t>(sizes_);
}
if (scales_.size() > 0) {
scales->dataMalloc();
scales->copyin<float>(scales_);
}
if (roi_.size() > 0) {
roi->dataMalloc();
roi->copyin<float>(roi_);
}
ResizeObj::EKeepAspectRatioPolicy ratioPolicy_ =
ResizeObj::fromRatioPolicyStr(ratioPolicy);
ResizeObj::ENearestMode nearestMode_ =
ResizeObj::fromENearestModeStr(nearestMode);
ResizeObj::ECoordinateTransMode coordTransMode_ =
ResizeObj::fromECoordinateTransModeStr(coordTransMode);
ResizeObj::ECoeffMode mode_ = ResizeObj::fromECoeffModeStr(mode);
if (output) {
if (mode == "nearest") {
g->addOpWithOutputs<ResizeObj>(
std::move(input), output, std::move(axes), std::move(sizes),
std::move(scales), std::move(roi), ratioPolicy_, nearestMode_,
coordTransMode_);
} else {
g->addOpWithOutputs<ResizeObj>(
std::move(input), output, std::move(axes), std::move(sizes),
std::move(scales), std::move(roi), mode_, ratioPolicy_,
coordTransMode_);
}
return output;
} else {
if (mode == "nearest") {
return g
->addOp<ResizeObj>(std::move(input), output, std::move(axes),
std::move(sizes), std::move(scales),
std::move(roi), ratioPolicy_, nearestMode_,
coordTransMode_)
->getOutput();
} else {
return g
->addOp<ResizeObj>(std::move(input), output, std::move(axes),
std::move(sizes), std::move(scales),
std::move(roi), mode_, ratioPolicy_,
coordTransMode_)
->getOutput();
}
}
}
Tensor GraphHandlerObj::concat(TensorVec inputs, Tensor output, int dim) {
if (output) {
g->addOpWithOutputs<ConcatObj>(std::move(inputs), output, dim);
@ -283,14 +344,29 @@ Tensor GraphHandlerObj::attentionKVCache(Tensor input_k_cache,
}
TensorVec GraphHandlerObj::split(Tensor input, std::optional<TensorVec> outputs,
int axis, int num_outputs) {
int axis,
std::variant<int, vector<int>> numOrRatio) {
if (outputs) {
g->addOpWithOutputs<SplitObj>(std::move(input), outputs, axis,
num_outputs);
if (std::holds_alternative<int>(numOrRatio)) {
g->addOpWithOutputs<SplitObj>(std::move(input), outputs, axis,
std::get<int>(numOrRatio));
} else {
g->addOpWithOutputs<SplitObj>(std::move(input), outputs, axis,
std::get<vector<int>>(numOrRatio));
}
return *outputs;
} else {
return g->addOp<SplitObj>(std::move(input), outputs, axis, num_outputs)
->getOutputs();
if (std::holds_alternative<int>(numOrRatio)) {
return g
->addOp<SplitObj>(std::move(input), outputs, axis,
std::get<int>(numOrRatio))
->getOutputs();
} else {
return g
->addOp<SplitObj>(std::move(input), outputs, axis,
std::get<vector<int>>(numOrRatio))
->getOutputs();
}
}
}
@ -519,6 +595,19 @@ Tensor GraphHandlerObj::depthToSpace(Tensor input, Tensor output, int blocksize,
}
}
Tensor GraphHandlerObj::lrn(Tensor input, Tensor output, float alpha,
float beta, float bias, int size) {
if (output) {
g->addOpWithOutputs<LRNObj>(std::move(input), output, alpha, beta, bias,
size);
return output;
} else {
return g
->addOp<LRNObj>(std::move(input), output, alpha, beta, bias, size)
->getOutput();
}
}
static CastType inferCastType(Tensor input, int to) {
auto iType = input->getDType();
auto oType = DataType(to);

View File

@ -5,6 +5,7 @@
#include "operators/conv.h"
#include "operators/expand.h"
#include "operators/gather.h"
#include "operators/lrn.h"
#include "operators/matmul.h"
#include "operators/pad.h"
#include "operators/pooling.h"
@ -113,6 +114,7 @@ void export_values(py::module &m) {
.VALUE(OpType, Erf)
.VALUE(OpType, Where)
.VALUE(OpType, DepthToSpace)
.VALUE(OpType, LRN)
.export_values();
#undef VALUE
@ -296,6 +298,14 @@ static std::tuple<int, std::string> depth_to_space_attrs_of(Operator op) {
depth_to_space->getModeString());
}
static std::tuple<float, float, float, int> lrn_attrs_of(Operator op) {
IT_ASSERT(op->getOpType() == OpType::LRN);
auto lrn = dynamic_cast<const LRNObj *>(op.get());
auto [alpha, beta, bias] = lrn->getAlphaBetaBias();
auto size = lrn->getSize();
return std::make_tuple(alpha, beta, bias, size);
}
void export_functions(py::module &m) {
#define FUNCTION(NAME) def(#NAME, &NAME)
m.def("cpu_runtime", &NativeCpuRuntimeObj::getInstance)
@ -332,7 +342,8 @@ void export_functions(py::module &m) {
.FUNCTION(gather_axis_of)
.FUNCTION(flatten_axis_of)
.FUNCTION(cast_to_of)
.FUNCTION(depth_to_space_attrs_of);
.FUNCTION(depth_to_space_attrs_of)
.FUNCTION(lrn_attrs_of);
#undef FUNCTION
}
@ -388,7 +399,9 @@ void init_graph_builder(py::module &m) {
#endif
#ifdef USE_BANG
py::class_<BangRuntimeObj, std::shared_ptr<BangRuntimeObj>, RuntimeObj>(
m, "BangRuntime");
m, "BangRuntime")
.def(py::init<int>(), py::arg("device") = 0)
.def("init_comm", &BangRuntimeObj::initComm);
#endif
#ifdef USE_KUNLUN
py::class_<KUNLUNRuntimeObj, std::shared_ptr<KUNLUNRuntimeObj>, RuntimeObj>(
@ -495,6 +508,7 @@ void init_graph_builder(py::module &m) {
.def("transpose", &Handler::transpose, policy::move)
.def("depthToSpace", &Handler::depthToSpace, policy::move)
.def("reshape", &Handler::reshape, policy::move)
.def("resize", &Handler::resize, policy::move)
.def("concat", &Handler::concat, policy::move)
.def("attentionKVCache", &Handler::attentionKVCache, policy::move)
.def("split", &Handler::split, policy::move)
@ -517,6 +531,7 @@ void init_graph_builder(py::module &m) {
.def("expand", &Handler::expand, policy::move)
.def("erf", &Handler::erf, policy::move)
.def("where", &Handler::where, policy::move)
.def("lrn", &Handler::lrn, policy::move)
.def("topo_sort", &Handler::topo_sort, policy::automatic)
.def("optimize", &Handler::optimize, policy::automatic)
.def("operators", &Handler::operators, policy::move)

View File

@ -30,8 +30,9 @@ class UnaryCnnl : public BangKernelWithoutConfig {
cDim.data()));
cnnlActivationDescriptor_t opDesc;
checkCnnlError(cnnlCreateActivationDescriptor(&opDesc));
checkCnnlError(cnnlSetActivationDescriptor(
opDesc, getOpType(), CNNL_NOT_PROPAGATE_NAN, getCoef()));
checkCnnlError(cnnlSetActivationDescriptor_v2(
opDesc, getOpType(), CNNL_ACTIVATION_HIGH_PRECISION,
CNNL_NOT_PROPAGATE_NAN, getCoef()));
auto [alpha, beta] = getAlphBeta();
cnnlStatus_t stat =
@ -131,31 +132,51 @@ class SoftmaxCnnl : public BangKernelWithoutConfig {
std::vector<int> inDim = {1, 1, 1};
std::vector<int> outDim = inDim;
if (axis == 0) {
mode = CNNL_SOFTMAX_MODE_HIGH_DIMENSION;
inDim[0] = aDim[0];
inDim[1] = aDim[1];
for (size_t i = 2; i < aDim.size(); ++i) {
inDim[2] *= aDim[i];
if (aDim.size() >= 3) {
if (axis == 0) {
mode = CNNL_SOFTMAX_MODE_HIGH_DIMENSION;
inDim[0] = aDim[0];
inDim[1] = aDim[1];
for (size_t i = 2; i < aDim.size(); ++i) {
inDim[2] *= aDim[i];
}
outDim = inDim;
} else if (axis == aDim.size() - 1) {
mode = CNNL_SOFTMAX_MODE_LOW_DIMENSION;
inDim[0] = aDim[0];
for (size_t i = 1; i < axis; ++i) {
inDim[1] *= aDim[i];
}
inDim[2] = aDim[axis];
outDim = inDim;
} else {
mode = CNNL_SOFTMAX_MODE_MEDIUM_DIMENSION;
for (size_t i = 0; i < axis; ++i) {
inDim[0] *= aDim[i];
}
inDim[1] = aDim[axis];
for (size_t i = axis + 1; i < aDim.size(); ++i) {
inDim[2] *= aDim[i];
}
outDim = inDim;
}
outDim = inDim;
} else if (axis == aDim.size() - 1) {
mode = CNNL_SOFTMAX_MODE_LOW_DIMENSION;
inDim[0] = aDim[0];
for (size_t i = 1; i < axis; ++i) {
inDim[1] *= aDim[i];
} else if (aDim.size() == 2) {
if (axis == 0) {
mode = CNNL_SOFTMAX_MODE_HIGH_DIMENSION;
inDim = aDim;
inDim.push_back(1);
outDim = inDim;
} else {
mode = CNNL_SOFTMAX_MODE_LOW_DIMENSION;
inDim = aDim;
inDim.insert(inDim.begin(), 1);
outDim = inDim;
}
inDim[2] = aDim[axis];
outDim = inDim;
} else {
mode = CNNL_SOFTMAX_MODE_MEDIUM_DIMENSION;
for (size_t i = 0; i < axis; ++i) {
inDim[0] *= aDim[i];
}
inDim[1] = aDim[axis];
for (size_t i = axis + 1; i < aDim.size(); ++i) {
inDim[2] *= aDim[i];
}
mode = CNNL_SOFTMAX_MODE_HIGH_DIMENSION;
inDim = aDim;
inDim.push_back(1);
inDim.push_back(1);
outDim = inDim;
}
@ -171,8 +192,8 @@ class SoftmaxCnnl : public BangKernelWithoutConfig {
float beta = 0.0;
cnnlStatus_t stat =
cnnlSoftmaxForward_v2(context->cnnlHandle(), CNNL_SOFTMAX_ACCURATE,
mode, CNNL_COMPUTATION_HIGH_PRECISION, &alpha,
aDesc, aData, &beta, cDesc, cData);
mode, CNNL_COMPUTATION_ULTRAHIGH_PRECISION,
&alpha, aDesc, aData, &beta, cDesc, cData);
if (stat != CNNL_STATUS_SUCCESS)
return;
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));

View File

@ -0,0 +1,49 @@
#ifdef INFINI_USE_CNCL
#include "operators/all_gather.h"
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
#include "bang/cncl_communicator.h"
#include <thread>
namespace infini {
class AllGatherCNCL : public BangKernelWithoutConfig {
public:
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<AllGatherObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
int world_size = op->getWorldSize();
// Check if world size info in operator matches runtime
IT_ASSERT(world_size == context->getCommunicator().getWorldSize());
void *input = op->getInputs(0)->getRawDataPtr<void *>();
BangPtr output_temp =
context->getWorkspace(op->getInputs(0)->getBytes() * world_size);
// void *output = op->getOutput()->getRawDataPtr<void *>();
// IT_ASSERT(op->getDType() == DataType::Float32);
checkBangError(cnrtMalloc(&output_temp,
op->getInputs(0)->getBytes() * world_size));
size_t bytes = op->getInputs(0)->getBytes();
size_t count = bytes / op->getDType().getSize();
cnclComm_t comm =
dynamic_cast<CnclCommunicatorObj &>(context->getCommunicator())
.getCnclComm();
cnrtQueue_t queue = context->getBangQueue();
CNCL_CHECK(
cnclAllGather(input, output_temp, count, cnclFloat32, comm, queue));
checkBangError(cnrtQueueSync(queue));
for (int i = 0; i < world_size; ++i) {
Tensor output = op->getOutput(i);
context->copyBlobInsideRuntime(
output->getRawDataPtr<float *>(),
static_cast<float *>(output_temp) + i * count, bytes);
}
checkBangError(cnrtFree(output_temp));
}
};
REGISTER_KERNEL(Device::BANG, OpType::AllGather, DataType::Float32,
AllGatherCNCL, "AllGather_CNCL_BANG_Float32");
} // namespace infini
#endif

View File

@ -0,0 +1,53 @@
#ifdef INFINI_USE_CNCL
#include "operators/all_reduce.h"
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
#include "bang/cncl_communicator.h"
#include <thread>
namespace infini {
class AllReduceCNCL : public BangKernelWithoutConfig {
public:
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<AllReduceBaseObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
void *input = op->getInputs(0)->getRawDataPtr<void *>();
void *output = op->getOutput()->getRawDataPtr<void *>();
IT_ASSERT(op->getDType() == DataType::Float32);
size_t count = op->getInputs(0)->size();
cnclComm_t comm =
dynamic_cast<CnclCommunicatorObj &>(context->getCommunicator())
.getCnclComm();
cnrtQueue_t queue = context->getBangQueue();
// checkBangError(cnrtQueueSync(queue));
CNCL_CHECK(cnclAllReduce(input, output, count, cnclFloat, getRedOp(),
comm, queue));
checkBangError(cnrtQueueSync(queue));
}
virtual cnclReduceOp_t getRedOp() const = 0;
};
class AllReduceSumCNCL : public AllReduceCNCL {
cnclReduceOp_t getRedOp() const override { return cnclSum; }
};
class AllReduceProdCNCL : public AllReduceCNCL {
cnclReduceOp_t getRedOp() const override { return cnclProd; }
};
class AllReduceMinCNCL : public AllReduceCNCL {
cnclReduceOp_t getRedOp() const override { return cnclMin; }
};
class AllReduceMaxCNCL : public AllReduceCNCL {
cnclReduceOp_t getRedOp() const override { return cnclMax; }
};
REGISTER_KERNEL(Device::BANG, OpType::AllReduceSum, DataType::Float32,
AllReduceSumCNCL, "AllReduce_Sum_CNCL_BANG_Float32");
REGISTER_KERNEL(Device::BANG, OpType::AllReduceProd, DataType::Float32,
AllReduceProdCNCL, "AllReduce_Prod_CNCL_BANG_Float32");
REGISTER_KERNEL(Device::BANG, OpType::AllReduceMin, DataType::Float32,
AllReduceMinCNCL, "AllReduce_Min_CNCL_BANG_Float32");
REGISTER_KERNEL(Device::BANG, OpType::AllReduceMax, DataType::Float32,
AllReduceMaxCNCL, "AllReduce_Max_CNCL_BANG_Float32");
} // namespace infini
#endif

View File

@ -17,51 +17,87 @@ class BatchNormCnnl : public BangKernelWithoutConfig {
void *const output = (op->getOutput()->getRawDataPtr<void *>());
auto dims = op->getInputs(0)->getDims();
auto outDims = op->getOutput()->getDims();
if (dims.size() != 4)
IT_TODO_HALT();
int dimArray[4], strideArray[4], dimPArray[1], stridePArray[1];
int dimsTrans[4] = {dims[0], dims[2], dims[3], dims[1]};
int dimsOutTrans[4] = {outDims[0], outDims[2], outDims[3], outDims[1]};
int permute[4] = {0, 2, 3, 1};
int permuteOut[4] = {0, 3, 1, 2};
for (size_t i = 0; i < dims.size(); ++i) {
dimArray[i] = dims[i];
strideArray[i] = op->getInputs(0)->getStride()[i];
}
int w = dimArray[3];
dimArray[3] = dimArray[1];
int h = dimArray[2];
dimArray[1] = h;
dimArray[2] = w;
dimPArray[0] = op->getInputs(1)->getDims()[0];
stridePArray[0] = op->getInputs(1)->getDims()[0];
// get inputs
cnnlTensorDescriptor_t inDesc;
cnnlTensorDescriptor_t inDesc, intransDesc, outDesc, outtransDesc;
checkCnnlError(cnnlCreateTensorDescriptor(&inDesc));
checkCnnlError(cnnlSetTensorDescriptorEx(inDesc, CNNL_LAYOUT_NHWC,
CNNL_DTYPE_FLOAT, dims.size(),
dimArray, strideArray));
checkCnnlError(cnnlCreateTensorDescriptor(&intransDesc));
checkCnnlError(cnnlCreateTensorDescriptor(&outDesc));
checkCnnlError(cnnlCreateTensorDescriptor(&outtransDesc));
checkCnnlError(cnnlSetTensorDescriptor(inDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, dims.size(),
dims.data()));
checkCnnlError(cnnlSetTensorDescriptor(intransDesc, CNNL_LAYOUT_NHWC,
CNNL_DTYPE_FLOAT, dims.size(),
dimsTrans));
checkCnnlError(cnnlSetTensorDescriptor(outDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, outDims.size(),
outDims.data()));
checkCnnlError(cnnlSetTensorDescriptor(outtransDesc, CNNL_LAYOUT_NHWC,
CNNL_DTYPE_FLOAT, outDims.size(),
dimsOutTrans));
cnnlTransposeDescriptor_t opDesc;
checkCnnlError(cnnlCreateTransposeDescriptor(&opDesc));
checkCnnlError(cnnlSetTransposeDescriptor(opDesc, 4, permute));
size_t wsSize;
cnnlGetTransposeWorkspaceSize(context->cnnlHandle(), inDesc, opDesc,
&wsSize);
BangPtr wsData = context->getWorkspace(wsSize);
BangPtr inputTrans = context->getWorkspace(
cnnlGetTensorElementNum(inDesc) * sizeof(float));
BangPtr outputTrans = context->getWorkspace(
cnnlGetTensorElementNum(inDesc) * sizeof(float));
cnnlStatus_t stat =
cnnlTranspose_v2(context->cnnlHandle(), opDesc, inDesc, input,
intransDesc, inputTrans, wsData, wsSize);
if (stat != CNNL_STATUS_SUCCESS)
return;
// get bnScaleBiasMeanVarDesc
auto dimsScaleBiasMeanVar = op->getInputs(1)->getDims();
cnnlTensorDescriptor_t paraDesc;
checkCnnlError(cnnlCreateTensorDescriptor(&paraDesc));
checkCnnlError(cnnlSetTensorDescriptorEx(paraDesc, CNNL_LAYOUT_ARRAY,
CNNL_DTYPE_FLOAT, 1, dimPArray,
stridePArray));
checkCnnlError(cnnlSetTensorDescriptor(
paraDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT,
dimsScaleBiasMeanVar.size(), dimsScaleBiasMeanVar.data()));
float alpha = 1.f, beta = 0.f;
// This mode is intended for use after convolutional layers
cnnlStatus_t stat = cnnlBatchNormForwardInference(
context->cnnlHandle(), &alpha, &beta, inDesc, input, paraDesc,
scale, bias, mean, var, op->getEps(), inDesc, output);
stat = cnnlBatchNormForwardInference(
context->cnnlHandle(), &alpha, &beta, intransDesc, inputTrans,
paraDesc, scale, bias, mean, var, op->getEps(), outtransDesc,
outputTrans);
if (stat != CNNL_STATUS_SUCCESS)
return;
cnnlTransposeDescriptor_t op2Desc;
checkCnnlError(cnnlCreateTransposeDescriptor(&op2Desc));
checkCnnlError(cnnlSetTransposeDescriptor(op2Desc, 4, permuteOut));
cnnlGetTransposeWorkspaceSize(context->cnnlHandle(), intransDesc,
op2Desc, &wsSize);
BangPtr ws2Data = context->getWorkspace(wsSize);
stat = cnnlTranspose_v2(context->cnnlHandle(), op2Desc, outtransDesc,
outputTrans, outDesc, output, ws2Data, wsSize);
if (stat != CNNL_STATUS_SUCCESS)
return;
// Destories in BANG does not require sync. But cnnl does not state
// whether sync is required before destories.
checkCnnlError(cnnlDestroyTensorDescriptor(inDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(outDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(intransDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(outtransDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(paraDesc));
checkCnnlError(cnnlDestroyTransposeDescriptor(opDesc));
checkCnnlError(cnnlDestroyTransposeDescriptor(op2Desc));
}
};

View File

@ -0,0 +1,34 @@
#ifdef INFINI_USE_CNCL
#include "operators/broadcast.h"
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
#include "bang/cncl_communicator.h"
#include <thread>
namespace infini {
class BroadcastCNCL : public BangKernelWithoutConfig {
public:
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<BroadcastObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
void *input = op->getInputs(0)->getRawDataPtr<void *>();
void *output = op->getOutput()->getRawDataPtr<void *>();
IT_ASSERT(op->getDType() == DataType::Float32);
size_t count = op->getInputs(0)->getBytes() / op->getDType().getSize();
cnclComm_t comm =
dynamic_cast<CnclCommunicatorObj &>(context->getCommunicator())
.getCnclComm();
cnrtQueue_t queue = context->getBangQueue();
// TODO: Using default stream 0 for now.
CNCL_CHECK(cnclBroadcast(input, output, count, cnclFloat32,
op->getRoot(), comm, queue));
checkBangError(cnrtQueueSync(queue));
}
};
REGISTER_KERNEL(Device::BANG, OpType::Broadcast, DataType::Float32,
BroadcastCNCL, "Broadcast_CNCL_BANG_Float32");
} // namespace infini
#endif

View File

@ -23,6 +23,8 @@ class GatherCnnl : public BangKernelWithoutConfig {
CNNL_DTYPE_FLOAT, aDim.size(),
aDim.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
checkCnnlError(
cnnlSetTensorDescriptorPointerMode(bDesc, CNNL_POINTER_MODE_HOST));
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_ARRAY,
CNNL_DTYPE_INT32, bDim.size(),
bDim.data()));

View File

@ -0,0 +1,64 @@
#include "operators/layer_norm.h"
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
namespace infini {
class LayerNormCnnl : public BangKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<LayerNormObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
void *const inputData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const scaleData = (op->getInputs(1)->getRawDataPtr<void *>());
void *biasData = NULL;
if (op->numInputs() == 3) {
biasData = (op->getInputs(2)->getRawDataPtr<void *>());
}
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
auto inDims = op->getInputs(0)->getDims();
auto outDims = op->getOutput()->getDims();
auto fiterDims = op->getOutput(1)->getDims();
float eps = op->getEps();
const int axis = op->getAxis();
cnnlTensorDescriptor_t inDesc, fiterDesc, outDesc;
checkCnnlError(cnnlCreateTensorDescriptor(&inDesc));
checkCnnlError(cnnlSetTensorDescriptor(inDesc, CNNL_LAYOUT_ARRAY,
CNNL_DTYPE_FLOAT, inDims.size(),
inDims.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&fiterDesc));
checkCnnlError(cnnlSetTensorDescriptor(
fiterDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, fiterDims.size(),
fiterDims.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&outDesc));
checkCnnlError(cnnlSetTensorDescriptor(outDesc, CNNL_LAYOUT_ARRAY,
CNNL_DTYPE_FLOAT, outDims.size(),
outDims.data()));
size_t wsSize;
cnnlGetLayerNormOpWorkspaceSize(context->cnnlHandle(), axis, inDesc,
&wsSize);
BangPtr wsData = context->getWorkspace(wsSize);
cnnlStatus_t stat = cnnlLayerNormForward(
context->cnnlHandle(), inDesc, inputData, axis, fiterDesc,
scaleData, biasData, eps, wsData, wsSize, outDesc, outputData,
inDesc, NULL, NULL);
if (stat != CNNL_STATUS_SUCCESS)
return;
checkCnnlError(cnnlDestroyTensorDescriptor(inDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(fiterDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(outDesc));
}
};
REGISTER_KERNEL(Device::BANG, OpType::LayerNormalization, DataType::Float32,
LayerNormCnnl, "LayerNorm_BANG_Float32");
}; // namespace infini

62
src/kernels/bang/lrn.cc Normal file
View File

@ -0,0 +1,62 @@
#include "operators/lrn.h"
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
namespace infini {
class LRNCnnl : public BangKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<LRNObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
cnnlTensorDescriptor_t aDesc, cDesc;
auto aDim = op->getInputs(0)->getDims();
auto cDim = op->getOutput()->getDims();
auto [alpha, beta, bias] = op->getAlphaBetaBias();
auto size = op->getSize();
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, aDim.size(),
aDim.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, cDim.size(),
cDim.data()));
size_t extra_size;
cnnlGetLrnExtraInputSize_v2(context->cnnlHandle(), cDesc,
CNNL_LRN_LOCAL_SIZE, size, &extra_size);
void *extra_cpu = NULL;
extra_cpu = malloc(extra_size);
BangPtr extra_mlu = context->getWorkspace(extra_size);
cnnlInitLrnExtraInput(context->cnnlHandle(), CNNL_LRN_LOCAL_SIZE, size,
(double)alpha, (double)beta, (double)bias, aDesc,
cDesc, extra_cpu);
cnrtMemcpy(extra_mlu, extra_cpu, extra_size,
CNRT_MEM_TRANS_DIR_HOST2DEV);
size_t wsSize;
cnnlGetLrnWorkspaceSize_v2(context->cnnlHandle(), aDesc, cDesc,
CNNL_LRN_LOCAL_SIZE, size, &wsSize);
BangPtr wsData = context->getWorkspace(wsSize);
cnnlStatus_t stat = cnnlLrn_v2(
context->cnnlHandle(), CNNL_LRN_LOCAL_SIZE, size, (double)alpha,
(double)beta, (double)bias, wsData, wsSize, aDesc, aData, extra_mlu,
extra_size, cDesc, cData);
if (stat != CNNL_STATUS_SUCCESS)
return;
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
}
};
REGISTER_KERNEL(Device::BANG, OpType::LRN, DataType::Float32, LRNCnnl,
"LRN_cnnl_BANG_Float32");
}; // namespace infini

View File

@ -10,15 +10,29 @@ class MatmulCnnl : public BangKernelWithoutConfig {
auto op = as<MatmulObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
auto input_num = op->numInputs();
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
void *biasData = NULL;
if (input_num > 2) {
biasData = (op->getInputs(2)->getRawDataPtr<void *>());
}
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
cnnlTensorDescriptor_t aDesc, bDesc, cDesc, biasDesc;
auto dimInputs0 = op->getInputs(0)->getDims();
auto dimInputs1 = op->getInputs(1)->getDims();
std::vector<int> dimBias;
if (input_num > 2) {
dimBias = op->getInputs(2)->getDims();
}
auto dimOutput = op->getOutput()->getDims();
float alpha = 1.0;
float beta = 0.0;
int32_t transA = op->getTransA();
int32_t transB = op->getTransB();
@ -37,6 +51,13 @@ class MatmulCnnl : public BangKernelWithoutConfig {
cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT,
dimOutput.size(), dimOutput.data()));
if (input_num > 2) {
checkCnnlError(cnnlCreateTensorDescriptor(&biasDesc));
checkCnnlError(cnnlSetTensorDescriptor(
biasDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, dimBias.size(),
dimBias.data()));
}
cnnlMatMulDescriptor_t bmm_desc;
cnnlMatMulDescCreate(&bmm_desc);
cnnlSetMatMulDescAttr(bmm_desc, CNNL_MATMUL_DESC_TRANSA, &transA,
@ -47,8 +68,6 @@ class MatmulCnnl : public BangKernelWithoutConfig {
cnnlMatMulAlgo_t bmm_algo;
cnnlMatMulAlgoCreate(&bmm_algo);
float alpha = 1.0;
float beta = 0.0;
int count = 0;
cnnlMatMulHeuristicResult_t desc;
@ -66,9 +85,22 @@ class MatmulCnnl : public BangKernelWithoutConfig {
if (stat != CNNL_STATUS_SUCCESS)
return;
wsData = NULL;
if (input_num > 2) {
cnnlGetBiasAddWorkspaceSize(context->cnnlHandle(), biasDesc, cDesc,
&wsSize);
stat = cnnlBiasAdd(context->cnnlHandle(), &alpha, biasDesc,
biasData, wsData, wsSize, &alpha, cDesc, cData);
if (stat != CNNL_STATUS_SUCCESS)
return;
}
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
if (input_num > 2) {
checkCnnlError(cnnlDestroyTensorDescriptor(biasDesc));
}
checkCnnlError(cnnlMatMulDescDestroy(bmm_desc));
checkCnnlError(cnnlMatMulAlgoDestroy(bmm_algo));
checkCnnlError(cnnlDestroyMatMulHeuristicResult(desc));

View File

@ -13,14 +13,14 @@ class PadCnnl : public BangKernelWithoutConfig {
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
cnnlTensorDescriptor_t aDesc, cDesc;
auto dim = op->getOutput()->getDims();
int dim_size = dim.size();
int dim_array[dim_size];
for (int i = 0; i < dim_size; ++i) {
dim_array[i] = dim[i];
}
auto dimIn = op->getInputs(0)->getDims();
auto dimOut = op->getOutput()->getDims();
int dim_size = dimIn.size();
int paddings[dim_size * 2];
std::vector<int> pads = op->getPads();
if (pads.size() == 2 && dim_size != 1) {
for (int i = 0; i < dim_size * 2; i += 2) {
paddings[i] = pads[0];
@ -32,20 +32,18 @@ class PadCnnl : public BangKernelWithoutConfig {
paddings[i + 1] = pads[i / 2 + dim_size];
}
}
int dimout_array[dim_size];
for (int i = 0; i < dim_size; ++i) {
dimout_array[i] = dim[i] + paddings[2 * i] + paddings[2 * i + 1];
}
float paddingValue = 0.0;
// input
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
checkCnnlError(cnnlSetTensorDescriptor(
aDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, dim_size, dim_array));
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_ARRAY,
CNNL_DTYPE_FLOAT, dimIn.size(),
dimIn.data()));
// output
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_ARRAY,
CNNL_DTYPE_FLOAT, dim_size,
dimout_array));
CNNL_DTYPE_FLOAT, dimOut.size(),
dimOut.data()));
cnnlStatus_t stat = cnnlPad(context->cnnlHandle(), aDesc, aData,
paddings, &paddingValue, cDesc, cData);

View File

@ -21,13 +21,14 @@ class PoolingCnnl : public BangKernelWithoutConfig {
checkCnnlError(cnnlCreateTensorDescriptor(&inDesc));
checkCnnlError(cnnlSetTensorDescriptor(inDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, 4, inArray));
bool mode = op->getCeilMode();
// get maxpool descriptor
cnnlPoolingDescriptor_t poolingDesc;
checkCnnlError(cnnlCreatePoolingDescriptor(&poolingDesc));
checkCnnlError(cnnlSetPooling2dDescriptor_v2(
poolingDesc, getPoolingMode(), CNNL_NOT_PROPAGATE_NAN, kh, kw, ph,
ph, pw, pw, sh, sw, dh, dw, false));
ph, pw, pw, sh, sw, dh, dw, mode));
// get outputs
// TODO: verify ceiling mode

View File

@ -1,12 +1,14 @@
#include "operators/reduce.h"
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
#include "operators/reduce.h"
namespace infini {
class ReduceMeanCnnl : public BangKernelWithoutConfig {
class ReduceCnnlBase : public BangKernelWithoutConfig {
virtual cnnlReduceOp_t getReduceOp() const = 0;
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<ReduceMeanObj>(_op);
auto op = as<ReduceBaseObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
@ -34,7 +36,7 @@ class ReduceMeanCnnl : public BangKernelWithoutConfig {
cnnlReduceDescriptor_t reduceDesc;
checkCnnlError(cnnlCreateReduceDescriptor(&reduceDesc));
checkCnnlError(cnnlSetReduceDescriptor_v2(
reduceDesc, axes.data(), axes.size(), CNNL_REDUCE_AVG,
reduceDesc, axes.data(), axes.size(), getReduceOp(),
CNNL_DTYPE_FLOAT, CNNL_NOT_PROPAGATE_NAN, CNNL_REDUCE_NO_INDICES,
CNNL_32BIT_INDICES, 0.0));
@ -63,7 +65,17 @@ class ReduceMeanCnnl : public BangKernelWithoutConfig {
}
};
class ReduceMeanCnnl : public ReduceCnnlBase {
cnnlReduceOp_t getReduceOp() const override { return CNNL_REDUCE_AVG; }
};
class ReduceSumCnnl : public ReduceCnnlBase {
cnnlReduceOp_t getReduceOp() const override { return CNNL_REDUCE_ADD; }
};
REGISTER_KERNEL(Device::BANG, OpType::ReduceMean, DataType::Float32,
ReduceMeanCnnl, "ReduceMean_cnnl_BANG_Float32");
REGISTER_KERNEL(Device::BANG, OpType::ReduceSum, DataType::Float32,
ReduceSumCnnl, "ReduceSum_cnnl_BANG_Float32");
}; // namespace infini

View File

@ -27,6 +27,8 @@ class CopyBang : public BangKernelWithoutConfig {
// reshape/flatten/identity all act as copying from input to output.
REGISTER_KERNEL(Device::BANG, OpType::Reshape, DataType::Float32, CopyBang,
"Reshape_BANG_Float32");
REGISTER_KERNEL(Device::BANG, OpType::Reshape, DataType::Int64, CopyBang,
"Reshape_BANG_Int64");
REGISTER_KERNEL(Device::BANG, OpType::Flatten, DataType::Float32, CopyBang,
"Flatten_BANG_Float32");
REGISTER_KERNEL(Device::BANG, OpType::Identity, DataType::Float32, CopyBang,

64
src/kernels/bang/slice.cc Normal file
View File

@ -0,0 +1,64 @@
#include "operators/slice.h"
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
namespace infini {
class SliceCnnl : public BangKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<SliceObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
auto starts = op->getStarts();
auto ends = op->getEnds();
auto steps = op->getSteps();
int32_t starts_array[starts.size()];
int32_t ends_array[ends.size()];
int32_t steps_array[steps.size()];
for (size_t i = 0; i < starts.size(); i++) {
starts_array[i] = starts[i];
ends_array[i] = ends[i];
steps_array[i] = steps[i];
}
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
auto aDim = op->getInputs(0)->getDims();
int aDim_size = aDim.size();
int aDim_array[aDim_size];
for (int i = 0; i < aDim_size; ++i) {
aDim_array[i] = aDim[i];
}
auto cDim = op->getOutput()->getDims();
int cDim_size = cDim.size();
int cDim_array[cDim_size];
for (int i = 0; i < cDim_size; ++i) {
cDim_array[i] = cDim[i];
}
cnnlTensorDescriptor_t aDesc, cDesc;
// input
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
checkCnnlError(cnnlSetTensorDescriptor(
aDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, aDim_size, aDim_array));
// output
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
checkCnnlError(cnnlSetTensorDescriptor(
cDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, cDim_size, cDim_array));
cnnlStatus_t stat =
cnnlStridedSlice(context->cnnlHandle(), aDesc, aData, starts_array,
ends_array, steps_array, cDesc, cData);
if (stat != CNNL_STATUS_SUCCESS)
return;
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
}
};
REGISTER_KERNEL(Device::BANG, OpType::Slice, DataType::Float32, SliceCnnl,
"Slice_cnnl_BANG_Float32");
}; // namespace infini

View File

@ -1,5 +1,6 @@
#include "operators/element_wise.h"
#include "core/kernel.h"
#include "utils/operator_utils.h"
namespace infini {
template <typename T> class NativeElementWise : public CpuKernelWithoutConfig {
@ -11,37 +12,34 @@ template <typename T> class NativeElementWise : public CpuKernelWithoutConfig {
T *inptr1 = op->getInputs(1)->getRawDataPtr<T *>();
T *outptr = op->getOutput()->getRawDataPtr<T *>();
int a[4] = {1, 1, 1, 1};
int b[4] = {1, 1, 1, 1};
int c[4] = {1, 1, 1, 1};
auto a_input = op->getInputs(0)->getDims();
auto b_input = op->getInputs(1)->getDims();
auto c_output = op->getOutput()->getDims();
std::copy(a_input.begin(), a_input.end(), a + (4 - a_input.size()));
std::copy(b_input.begin(), b_input.end(), b + (4 - b_input.size()));
std::copy(c_output.begin(), c_output.end(), c + (4 - c_output.size()));
auto shapeA = op->getInputs(0)->getDims();
auto shapeB = op->getInputs(1)->getDims();
auto shapeC = op->getOutput()->getDims();
auto rank = op->getOutput()->getRank();
Shape a(rank, 1);
Shape b(rank, 1);
std::copy(shapeA.begin(), shapeA.end(),
a.begin() + (rank - shapeA.size()));
std::copy(shapeB.begin(), shapeB.end(),
b.begin() + (rank - shapeB.size()));
auto getStride = [&](const Shape &shape) {
int p = 1;
Shape stride(rank);
for (auto i = rank; i > 0; --i) {
stride[i - 1] = p;
p = p * shape[i - 1];
}
return stride;
};
Shape strideA = getStride(a);
Shape strideB = getStride(b);
auto n = op->getOutput()->size();
for (size_t i = 0; i < n; ++i) {
int c0_index = i / (c[1] * c[2] * c[3]);
int c1_index = (i % (c[1] * c[2] * c[3])) / (c[2] * c[3]);
int c2_index = ((i % (c[1] * c[2] * c[3])) % (c[2] * c[3])) / c[3];
int c3_index = ((i % (c[1] * c[2] * c[3])) % (c[2] * c[3])) % c[3];
int a0_index = c0_index % a[0];
int a1_index = c1_index % a[1];
int a2_index = c2_index % a[2];
int a3_index = c3_index % a[3];
int b0_index = c0_index % b[0];
int b1_index = c1_index % b[1];
int b2_index = c2_index % b[2];
int b3_index = c3_index % b[3];
outptr[i] = doCompute(
inptr0[a0_index * a[1] * a[2] * a[3] + a1_index * a[2] * a[3] +
a2_index * a[3] + a3_index],
inptr1[b0_index * b[1] * b[2] * b[3] + b1_index * b[2] * b[3] +
b2_index * b[3] + b3_index]);
auto shapeIndexC = locate_index(i, shapeC);
auto indexA = delocate_index(shapeIndexC, a, strideA);
auto indexB = delocate_index(shapeIndexC, b, strideB);
outptr[i] = doCompute(inptr0[indexA], inptr1[indexB]);
}
}
};

View File

@ -35,7 +35,7 @@ __global__ void _pad_slice_kernel(T *part, T *whole, TransMetaData metaData,
whole[tid] = 0;
else
whole[tid] = part[offset];
else
else if (offset >= 0)
part[offset] = whole[tid];
tid += stride;
}

36
src/operators/lrn.cc Normal file
View File

@ -0,0 +1,36 @@
#include "operators/lrn.h"
#include "utils/operator_utils.h"
namespace infini {
LRNObj::LRNObj(GraphObj *graph, Tensor input, Tensor output, float alpha,
float beta, float bias, int size)
: OperatorObj(OpType::LRN, TensorVec{input}, {output}), alpha_value(alpha),
beta_value(beta), bias_value(bias), size_value(size) {
IT_ASSERT(checkValid(graph));
}
optional<vector<Shape>> LRNObj::inferShape(const TensorVec &inputs) {
const auto A = inputs[0];
return {{A->getDims()}};
}
std::string LRNObj::toString() const {
std::ostringstream os;
os << "LRN[" << getGuid() << "]";
os << "(";
os << vecToString(inputs[0]->getDims()) << ",";
os << "input=" << inputs[0]->getGuid() << ",";
os << "output=" << outputs[0]->getGuid() << ")";
return os.str();
}
vector<int> LRNObj::getWorkloadVector() const {
vector<int> ret = getOutput()->getDims();
ret.emplace(ret.begin(), type.underlying());
return ret;
}
vector<int> LRNObj::getOpAttrVector() const { return {type.underlying()}; }
} // namespace infini

View File

@ -1,4 +1,5 @@
#include "utils/operator_utils.h"
#include "core/runtime.h"
namespace infini {
@ -64,4 +65,54 @@ bool is_unidirectional_broadcasting(const Shape &A, const Shape &B) {
}
return true;
}
Shape locate_index(size_t inputN, const Shape &shape) {
Shape ans(shape.size());
auto i = ans.rbegin();
auto j = shape.rbegin(), ej = shape.rend();
while (j != ej) {
auto div = std::div(inputN, *j++);
*i++ = div.rem;
inputN = div.quot;
}
return ans;
}
size_t delocate_index(const Shape &shapeIndex, const Shape &shape,
const Shape &stride) {
size_t ans = 0;
Shape index(shapeIndex.size());
IT_ASSERT(shapeIndex.size() == shape.size());
IT_ASSERT(shape.size() == stride.size());
for (size_t i = 0; i < shape.size(); ++i) {
index[i] = shapeIndex[i] % shape[i];
ans += index[i] * stride[i];
}
return ans;
}
std::string device_to_str(Device device) {
std::string deviceStr;
switch (device) {
case Device::CPU:
return "CPU";
case Device::CUDA:
return "CUDA";
case Device::BANG:
return "BANG";
case Device::INTELCPU:
return "INTELCPU";
case Device::KUNLUN:
return "KUNLUN";
default:
IT_TODO_HALT();
}
}
std::string get_kernel_attrs_str(const KernelAttrs &kernelAttrs) {
std::string deviceStr = device_to_str(std::get<0>(kernelAttrs));
std::string opStr = OpType(std::get<1>(kernelAttrs)).toString();
std::string datatypeStr = std::get<2>(kernelAttrs).toString();
return deviceStr + ", " + opStr + ", " + datatypeStr;
}
} // namespace infini

View File

@ -0,0 +1,58 @@
#ifdef INFINI_USE_CNCL
#include "bang/bang_runtime.h"
#include "bang/cncl_communicator.h"
#include "test.h"
static int WORLD_SIZE = 2;
namespace infini {
void allReduceSum(float *data, int deviceId) {
// Create Runtime and setup communication
BangRuntimeObj *bang_runtime = new BangRuntimeObj(deviceId);
int rank = deviceId;
bang_runtime->initComm("test_cncl_comm", WORLD_SIZE, rank);
cnclComm_t comm =
dynamic_cast<CnclCommunicatorObj &>(bang_runtime->getCommunicator())
.getCnclComm();
cnrtQueue_t queue = bang_runtime->getBangQueue();
// Copy data
float *data_mlu;
checkBangError(cnrtMalloc((void **)&data_mlu, sizeof(float)));
checkBangError(
cnrtMemcpy(data_mlu, data, sizeof(float), cnrtMemcpyHostToDev));
// Do AllReduce
CNCL_CHECK(
cnclAllReduce(data_mlu, data_mlu, 1, cnclFloat, cnclSum, comm, queue));
checkBangError(cnrtQueueSync(queue));
// Copy data back and sync device
checkBangError(
cnrtMemcpy(data, data_mlu, sizeof(float), cnrtMemcpyDevToHost));
ASSERT_EQ(*data, 5.0f);
}
// Setup communication between 2 threads, each controlling 1 MLU.
// Do AllReduce Sum on {1.0, 4.0}. Results should be {5.0, 5.0}.
TEST(CNCL, multi_mlu_communication) {
float data[] = {1.0, 4.0};
for (int i = 0; i < WORLD_SIZE; ++i) {
pid_t pid = fork();
if (pid == 0) {
// Child process
allReduceSum(&data[i], i);
exit(0); // Ensure child process exits to avoid unnecessary
// repetition in parent
} else if (pid < 0) {
std::cerr << "Error creating process" << std::endl;
}
}
// Wait for all child processes to finish
for (int i = 0; i < WORLD_SIZE; ++i) {
wait(NULL);
}
}
} // namespace infini
#endif

View File

@ -0,0 +1,60 @@
#ifdef INFINI_USE_CNCL
#include "bang/bang_runtime.h"
#include "bang/cncl_communicator.h"
#include "core/graph.h"
#include "core/runtime.h"
#include "operators/all_gather.h"
#include "test.h"
#include <cncl.h>
#include <thread>
static int WORLD_SIZE = 2;
namespace infini {
void allGather(const string taskName, int deviceID, vector<float> data,
vector<vector<float>> ans) {
// Create Runtimes and initiate communication
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
Runtime bangRuntime = make_ref<BangRuntimeObj>(deviceID);
bangRuntime->initComm(taskName, WORLD_SIZE, deviceID);
// Create Graph and insert allReduce operation
Graph g = make_ref<GraphObj>(bangRuntime);
auto input =
g->addTensor(Shape{static_cast<int>(data.size())}, DataType::Float32);
auto op = g->addOp<AllGatherObj>(input, std::nullopt, WORLD_SIZE);
// Copy data from CPU to MLU
g->dataMalloc();
input->copyin(data);
// Run operation
bangRuntime->run(g);
// Copy output from MLU to CPU
for (int i = 0; i < WORLD_SIZE; ++i) {
auto result = op->getOutputs()[i]->clone(cpuRuntime);
EXPECT_TRUE(result->equalData(ans[i]));
}
}
TEST(BANG_AllGather, run) {
vector<float> data[2] = {{2., 3.}, {5., 6.}};
vector<vector<float>> ans = {{2., 3.}, {5., 6.}};
for (int i = 0; i < WORLD_SIZE; ++i) {
pid_t pid = fork();
if (pid == 0) {
// Child process
allGather("test_all_gather", i, data[i], ans);
exit(0); // Ensure child process exits to avoid unnecessary
// repetition in parent
} else if (pid < 0) {
std::cerr << "Error creating process" << std::endl;
}
}
// Wait for all child processes to finish
for (int i = 0; i < WORLD_SIZE; ++i) {
wait(NULL);
}
}
} // namespace infini
#endif

View File

@ -0,0 +1,124 @@
#ifdef INFINI_USE_CNCL
#include "bang/bang_runtime.h"
#include "bang/cncl_communicator.h"
#include "core/graph.h"
#include "core/runtime.h"
#include "operators/all_reduce.h"
#include "test.h"
#include <cncl.h>
#include <future>
#include <thread>
static int WORLD_SIZE = 2;
namespace infini {
template <typename OperatorObj>
void allReduce(const string taskName, int deviceID, vector<float> data,
vector<float> ans) {
// Create Runtimes and initiate communication
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
Runtime bangRuntime = make_ref<BangRuntimeObj>(deviceID);
bangRuntime->initComm(taskName, WORLD_SIZE, deviceID);
// Create Graph and insert allReduce operation
Graph g = make_ref<GraphObj>(bangRuntime);
auto input =
g->addTensor(Shape{static_cast<int>(data.size())}, DataType::Float32);
auto op = g->addOp<OperatorObj>(input, nullptr);
// Copy data from CPU to MLU
g->dataMalloc();
input->copyin(data);
// Run operation
bangRuntime->run(g);
// Copy output from MLU to CPU
auto result = op->getOutput()->clone(cpuRuntime);
EXPECT_TRUE(result->equalData(ans));
}
TEST(BANG_AllReduce, sum) {
vector<float> data[2] = {{2., 3.}, {5., 6.}};
vector<float> ans = {7., 9.};
for (int i = 0; i < WORLD_SIZE; ++i) {
pid_t pid = fork();
if (pid == 0) {
// Child process
allReduce<AllReduceSumObj>("test_allreduce_sum", i, data[i], ans);
exit(0); // Ensure child process exits to avoid unnecessary
// repetition in parent
} else if (pid < 0) {
std::cerr << "Error creating process" << std::endl;
}
}
// Wait for all child processes to finish
for (int i = 0; i < WORLD_SIZE; ++i) {
wait(NULL);
}
}
TEST(BANG_AllReduce, prod) {
vector<float> data[2] = {{2., 3.}, {5., 6.}};
vector<float> ans = {10., 18.};
for (int i = 0; i < WORLD_SIZE; ++i) {
pid_t pid = fork();
if (pid == 0) {
// Child process
allReduce<AllReduceProdObj>("test_allreduce_prod", i, data[i], ans);
exit(0); // Ensure child process exits to avoid unnecessary
// repetition in parent
} else if (pid < 0) {
std::cerr << "Error creating process" << std::endl;
}
}
// Wait for all child processes to finish
for (int i = 0; i < WORLD_SIZE; ++i) {
wait(NULL);
}
}
TEST(BANG_AllReduce, min) {
vector<float> data[2] = {{2., 3.}, {5., 6.}};
vector<float> ans = {2., 3.};
for (int i = 0; i < WORLD_SIZE; ++i) {
pid_t pid = fork();
if (pid == 0) {
// Child process
allReduce<AllReduceMinObj>("test_allreduce_min", i, data[i], ans);
exit(0); // Ensure child process exits to avoid unnecessary
// repetition in parent
} else if (pid < 0) {
std::cerr << "Error creating process" << std::endl;
}
}
// Wait for all child processes to finish
for (int i = 0; i < WORLD_SIZE; ++i) {
wait(NULL);
}
}
TEST(BANG_AllReduce, max) {
vector<float> data[2] = {{2., 3.}, {5., 6.}};
vector<float> ans = {5., 6.};
for (int i = 0; i < WORLD_SIZE; ++i) {
pid_t pid = fork();
if (pid == 0) {
// Child process
allReduce<AllReduceMaxObj>("test_allreduce_max", i, data[i], ans);
exit(0); // Ensure child process exits to avoid unnecessary
// repetition in parent
} else if (pid < 0) {
std::cerr << "Error creating process" << std::endl;
}
}
// Wait for all child processes to finish
for (int i = 0; i < WORLD_SIZE; ++i) {
wait(NULL);
}
}
} // namespace infini
#endif

View File

@ -0,0 +1,57 @@
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
#include "core/graph.h"
#include "core/runtime.h"
#include "operators/batch_norm.h"
#include "test.h"
namespace infini {
TEST(BANG_BatchNorm, run) {
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build cpu graph
Graph gCpu = make_ref<GraphObj>(cpuRuntime);
auto iCpu = gCpu->addTensor(Shape{1, 3, 2, 2}, DataType::Float32);
auto meanCpu = gCpu->addTensor(Shape{3}, DataType::Float32);
auto varCpu = gCpu->addTensor(Shape{3}, DataType::Float32);
auto scaleCpu = gCpu->addTensor(Shape{3}, DataType::Float32);
auto biasCpu = gCpu->addTensor(Shape{3}, DataType::Float32);
// Build input data on CPU
gCpu->dataMalloc();
iCpu->setData(IncrementalGenerator());
meanCpu->copyin(vector<float>{1, 6, 9});
varCpu->copyin(vector<float>{4, 1, 9});
scaleCpu->setData(OneGenerator());
biasCpu->setData(ZeroGenerator());
Graph g = make_ref<GraphObj>(bangRuntime);
auto i = g->cloneTensor(iCpu);
auto mean = g->cloneTensor(meanCpu);
auto var = g->cloneTensor(varCpu);
auto scale = g->cloneTensor(scaleCpu);
auto bias = g->cloneTensor(biasCpu);
auto op =
g->addOp<BatchNormObj>(i, nullptr, mean, var, scale, bias, 0.9, 0);
g->dataMalloc();
i->setData(IncrementalGenerator());
mean->copyin(vector<float>{1, 6, 9});
var->copyin(vector<float>{4, 1, 9});
scale->setData(OneGenerator());
bias->setData(ZeroGenerator());
bangRuntime->run(g);
auto o = op->getOutput();
auto ocpu = o->clone(cpuRuntime);
// check results on CPU
EXPECT_EQ(op->getOutput()->getDims(), (Shape{1, 3, 2, 2}));
EXPECT_TRUE(ocpu->equalData(vector<float>{
-0.5, 0, 0.5, 1, -2, -1, 0, 1, -0.333333, 0, 0.3333333, 0.6666667}));
}
} // namespace infini

View File

@ -0,0 +1,65 @@
#ifdef INFINI_USE_CNCL
#include "bang/bang_runtime.h"
#include "bang/cncl_communicator.h"
#include "core/graph.h"
#include "core/runtime.h"
#include "operators/broadcast.h"
#include "test.h"
#include <cncl.h>
#include <thread>
static int WORLD_SIZE = 2;
static int root = 0;
namespace infini {
void broadcast(const string taskName, int deviceID, vector<float> data,
vector<float> ans) {
// Create Runtimes and initiate communication
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
Runtime bangRuntime = make_ref<BangRuntimeObj>(deviceID);
bangRuntime->initComm(taskName, WORLD_SIZE, deviceID);
// Create Graph and insert allReduce operation
Graph g = make_ref<GraphObj>(bangRuntime);
auto input =
g->addTensor(Shape{static_cast<int>(data.size())}, DataType::Float32);
auto op = g->addOp<BroadcastObj>(input, nullptr, root);
// Copy data from CPU to GPU
g->dataMalloc();
// Only rank 0 has the data
if (deviceID == root) {
input->copyin(data);
}
// Run broadcast operation
bangRuntime->run(g);
// Copy output from GPU to CPU
auto result = op->getOutput()->clone(cpuRuntime);
EXPECT_TRUE(result->equalData(ans));
}
TEST(BANG_Broadcast, run) {
// Only 1 device gets data. Every rank should have the same data after
// broadcast.
vector<float> data = {2., 3., 5., 6.};
vector<float> ans = {2., 3., 5., 6.};
for (int i = 0; i < WORLD_SIZE; ++i) {
pid_t pid = fork();
if (pid == 0) {
// Child process
broadcast("test_broadcast", i, data, ans);
exit(0); // Ensure child process exits to avoid unnecessary
// repetition in parent
} else if (pid < 0) {
std::cerr << "Error creating process" << std::endl;
}
}
// Wait for all child processes to finish
for (int i = 0; i < WORLD_SIZE; ++i) {
wait(NULL);
}
}
} // namespace infini
#endif

View File

@ -32,6 +32,8 @@ void testConcat(const std::function<void(void *, size_t, DataType)> &generator,
auto gpuOp =
bangGraph->addOp<T>(TensorVec{inputGpu1, inputGpu2}, nullptr, 2);
bangGraph->dataMalloc();
inputGpu1->setData(generator);
inputGpu2->setData(generator);
bangRuntime->run(bangGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);

View File

@ -18,8 +18,14 @@ void testPooling(const std::function<void(void *, size_t, DataType)> &generator,
// Build input data on CPU
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
inputCpu->dataMalloc();
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
auto cpuOp =
cpuGraph->addOp<T>(inputCpu, nullptr, 3, 3, 1, 1, 1, 1, 2, 2, 0);
cpuGraph->addTensor(inputCpu);
cpuGraph->dataMalloc();
inputCpu->setData(generator);
cpuRuntime->run(cpuGraph);
auto outputCpu = cpuOp->getOutput();
// GPU
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
@ -27,17 +33,16 @@ void testPooling(const std::function<void(void *, size_t, DataType)> &generator,
auto gpuOp =
bangGraph->addOp<T>(inputGpu, nullptr, 3, 3, 1, 1, 1, 1, 2, 2, 0);
bangGraph->dataMalloc();
inputGpu->setData(generator);
bangRuntime->run(bangGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
inputCpu->printData();
outputGpu2Cpu->printData();
EXPECT_TRUE(1);
}
TEST(cnnl_Pooling, run) {
testPooling<MaxPoolObj>(IncrementalGenerator(), Shape{1, 1, 5, 5});
testPooling<AvgPoolObj>(IncrementalGenerator(), Shape{1, 1, 5, 5});
testPooling<MaxPoolObj>(IncrementalGenerator(), Shape{1, 3, 5, 5});
testPooling<AvgPoolObj>(IncrementalGenerator(), Shape{1, 3, 5, 5});
}
} // namespace infini

View File

@ -0,0 +1,82 @@
#include "bang/bang_runtime.h"
#include "core/graph.h"
#include "core/kernel.h"
#include "core/runtime.h"
#include "operators/reduce.h"
#include "test.h"
namespace infini {
template <typename ReduceObjT>
void test_reduce(const Shape &shape, const vector<float> &data,
const optional<const vector<int>> &axis, bool keepDims,
const vector<float> &ExpectData) {
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build input data on CPU
Tensor icpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
// Build BANG graph
Graph g = make_ref<GraphObj>(bangRuntime);
auto i = g->cloneTensor(icpu);
auto op = g->addOp<ReduceObjT>(i, nullptr, axis, keepDims);
// allocate BANG memory
g->dataMalloc();
i->copyin(data);
// Execute on BANG
bangRuntime->run(g);
// clone BANG output to CPU
auto o = op->getOutput();
auto ocpu = o->clone(cpuRuntime);
// check results on CPU
EXPECT_TRUE(ocpu->equalData(ExpectData));
}
TEST(BANG_ReduceMean, run) {
test_reduce<ReduceMeanObj>(
Shape{3, 2, 2}, vector<float>{5, 1, 20, 2, 30, 1, 40, 2, 55, 1, 60, 2},
std::nullopt, true, vector<float>{18.25});
test_reduce<ReduceMeanObj>(
Shape{1, 3, 2, 2, 1},
vector<float>{5, 1, 20, 2, 30, 1, 40, 2, 55, 1, 60, 2}, std::nullopt,
false, vector<float>{18.25});
test_reduce<ReduceMeanObj>(
Shape{2, 3, 2, 2},
vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
vector<int>{1, 2}, false, vector<float>{5, 6, 17, 18});
test_reduce<ReduceMeanObj>(
Shape{2, 3, 2, 2, 1},
vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
vector<int>{1, 2}, true, vector<float>{5, 6, 17, 18});
}
TEST(BANG_ReduceSum, run) {
test_reduce<ReduceSumObj>(Shape{3, 2, 2},
vector<float>{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
std::nullopt, true, vector<float>{12});
test_reduce<ReduceSumObj>(Shape{1, 3, 2, 2, 1},
vector<float>{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
std::nullopt, false, vector<float>{12});
test_reduce<ReduceSumObj>(
Shape{2, 3, 2, 2},
vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
vector<int>{1, 2}, false, vector<float>{30, 36, 102, 108});
test_reduce<ReduceSumObj>(
Shape{2, 3, 2, 2, 1},
vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
vector<int>{1, 2}, true, vector<float>{30, 36, 102, 108});
}
} // namespace infini

View File

@ -0,0 +1,39 @@
#include "bang/bang_runtime.h"
#include "core/graph.h"
#include "core/runtime.h"
#include "operators/slice.h"
#include "test.h"
namespace infini {
TEST(BANG_Slice, run) {
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build input data on CPU
Tensor icpu =
make_ref<TensorObj>(Shape{3, 2, 1, 5}, DataType::Float32, cpuRuntime);
icpu->dataMalloc();
icpu->setData(IncrementalGenerator());
// Build CUDA graph;
Graph g = make_ref<GraphObj>(bangRuntime);
auto i = g->cloneTensor(icpu);
auto op =
g->addOp<SliceObj>(i, nullptr, vector<int>{1, 1}, vector<int>{2, 5},
vector<int>{0, 3}, std::nullopt);
// allocate CUDA memory
g->dataMalloc();
i->setData(IncrementalGenerator());
// Execute on CUDA
bangRuntime->run(g);
// clone CUDA output to CPU
auto o = op->getOutput();
auto cpuo = o->clone(cpuRuntime);
// bangPrintTensor(o);
// check results on CPU
EXPECT_TRUE(cpuo->equalData(vector<float>{11, 12, 13, 14, 16, 17, 18, 19}));
}
} // namespace infini

View File

@ -0,0 +1,131 @@
#include "bang/bang_runtime.h"
#include "core/graph.h"
#include "core/kernel.h"
#include "core/runtime.h"
#include "operators/softmax.h"
#include "test.h"
#include <cmath>
namespace infini {
TEST(cuDNN_Softmax, run_axis1) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build input data on CPU
Tensor inputCpu =
make_ref<TensorObj>(Shape{2, 4}, DataType::Float32, cpuRuntime);
// GPU
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
auto inputGpu = bangGraph->cloneTensor(inputCpu);
auto gpuOp = bangGraph->addOp<SoftmaxObj>(inputGpu, nullptr, 1);
bangGraph->dataMalloc();
inputGpu->copyin(vector<float>{0, 1, 2, 3, 10000, 10001, 10002, 10003});
bangRuntime->run(bangGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// Check
EXPECT_TRUE(outputGpu2Cpu->equalData(
vector<float>{0.032058604, 0.08714432, 0.23688284, 0.6439143,
0.032058604, 0.08714432, 0.23688284, 0.6439143}));
}
TEST(cuDNN_Softmax, run_axis0) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build input data on CPU
Tensor inputCpu =
make_ref<TensorObj>(Shape{2, 4}, DataType::Float32, cpuRuntime);
// GPU
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
auto inputGpu = bangGraph->cloneTensor(inputCpu);
auto gpuOp = bangGraph->addOp<SoftmaxObj>(inputGpu, nullptr, 0);
bangGraph->dataMalloc();
inputGpu->copyin(vector<float>{0, 1, 2, 3, 10000, 10001, 10002, 10003});
bangRuntime->run(bangGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// Check
EXPECT_TRUE(
outputGpu2Cpu->equalData(vector<float>{0., 0., 0., 0., 1, 1, 1, 1}));
}
TEST(cuDNN_Softmax2, run_axis1) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build input data on CPU
Tensor inputCpu =
make_ref<TensorObj>(Shape{2, 2, 2, 2}, DataType::Float32, cpuRuntime);
// GPU
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
auto inputGpu = bangGraph->cloneTensor(inputCpu);
auto gpuOp = bangGraph->addOp<SoftmaxObj>(inputGpu, nullptr, 1);
bangGraph->dataMalloc();
inputGpu->setData(IncrementalGenerator());
bangRuntime->run(bangGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// Check
EXPECT_TRUE(outputGpu2Cpu->equalData(vector<float>{
0.0179862, 0.0179862, 0.0179862, 0.0179862, 0.9820138, 0.9820138,
0.9820138, 0.9820138, 0.0179862, 0.0179862, 0.0179862, 0.0179862,
0.9820138, 0.9820138, 0.9820138, 0.9820138}));
}
TEST(cuDNN_Softmax2, run_axis2) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build input data on CPU
Tensor inputCpu =
make_ref<TensorObj>(Shape{2, 2, 2, 2}, DataType::Float32, cpuRuntime);
// GPU
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
auto inputGpu = bangGraph->cloneTensor(inputCpu);
auto gpuOp = bangGraph->addOp<SoftmaxObj>(inputGpu, nullptr, 2);
bangGraph->dataMalloc();
inputGpu->setData(IncrementalGenerator());
bangRuntime->run(bangGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// Check
EXPECT_TRUE(outputGpu2Cpu->equalData(vector<float>{
0.1192029, 0.1192029, 0.8807971, 0.8807971, 0.1192029, 0.1192029,
0.8807971, 0.8807971, 0.1192029, 0.1192029, 0.8807971, 0.8807971,
0.1192029, 0.1192029, 0.8807971, 0.8807971}));
}
TEST(cuDNN_Softmax2, run_axis3) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build input data on CPU
Tensor inputCpu =
make_ref<TensorObj>(Shape{2, 2, 2, 2}, DataType::Float32, cpuRuntime);
// GPU
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
auto inputGpu = bangGraph->cloneTensor(inputCpu);
auto gpuOp = bangGraph->addOp<SoftmaxObj>(inputGpu, nullptr, 3);
bangGraph->dataMalloc();
inputGpu->setData(IncrementalGenerator());
bangRuntime->run(bangGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// Check
EXPECT_TRUE(outputGpu2Cpu->equalData(vector<float>{
0.2689414, 0.7310586, 0.2689414, 0.7310586, 0.2689414, 0.7310586,
0.2689414, 0.7310586, 0.2689414, 0.7310586, 0.2689414, 0.7310586,
0.2689414, 0.7310586, 0.2689414, 0.7310586}));
}
} // namespace infini

View File

@ -73,6 +73,38 @@ TEST(Split, CudaHigh) {
44., 45., 46., 47.}));
}
TEST(Split, SplitWithRatio) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph gCpu = make_ref<GraphObj>(runtime);
auto input = gCpu->addTensor({2, 6, 2, 1, 2}, DataType::Float32);
gCpu->dataMalloc();
input->setData(IncrementalGenerator());
auto cudaRuntime = make_ref<CudaRuntimeObj>();
Graph gCuda = make_ref<GraphObj>(cudaRuntime);
auto inputGpu = gCuda->cloneTensor(input);
vector<int> split = {2, 4};
auto op = gCuda->addOp<SplitObj>(inputGpu, std::nullopt, 1, split);
gCuda->dataMalloc();
inputGpu->setData(IncrementalGenerator());
cudaRuntime->run(gCuda);
// copy output from CUDA to CPU
EXPECT_EQ(op->getOutputs().size(), (size_t)2);
auto o0Cpu = gCpu->cloneTensor(op->getOutput(0));
auto o1Cpu = gCpu->cloneTensor(op->getOutput(1));
EXPECT_TRUE(
o0Cpu->equalData(vector<float>{0., 1., 2., 3., 4., 5., 6., 7., 24., 25.,
26., 27., 28., 29., 30., 31.}));
EXPECT_TRUE(o1Cpu->equalData(
vector<float>{8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18.,
19., 20., 21., 22., 23., 32., 33., 34., 35., 36., 37.,
38., 39., 40., 41., 42., 43., 44., 45., 46., 47.}));
}
TEST(Split, Cuda_dim0) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph gCpu = make_ref<GraphObj>(runtime);

View File

@ -0,0 +1,44 @@
#include "core/graph.h"
#include "core/runtime.h"
#include "operators/element_wise.h"
#include "test.h"
namespace infini {
using ExpectOutput = vector<float>;
template <class T>
void testElementWiseNativeCpu(
const std::function<void(void *, size_t, DataType)> &generator1,
const std::function<void(void *, size_t, DataType)> &generator2,
const Shape &shape1, const Shape &shape2, const ExpectOutput &ansVec) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph g = make_ref<GraphObj>(runtime);
auto t1 = g->addTensor(shape1, DataType::Float32);
auto t2 = g->addTensor(shape2, DataType::Float32);
auto op = g->addOp<T>(t1, t2, nullptr);
g->dataMalloc();
t1->setData(generator1);
t2->setData(generator2);
runtime->run(g);
EXPECT_TRUE(op->getOutput()->equalData(ansVec));
}
TEST(ElementWise, NativeCpu) {
testElementWiseNativeCpu<AddObj>(
IncrementalGenerator(), IncrementalGenerator(), Shape{1, 2, 2, 3, 1},
Shape{2, 1, 1}, ExpectOutput{0, 1, 2, 4, 5, 6, 6, 7, 8, 10, 11, 12});
testElementWiseNativeCpu<MulObj>(
IncrementalGenerator(), IncrementalGenerator(), Shape{1, 2, 2, 3, 1},
Shape{2, 1, 1}, ExpectOutput{0, 0, 0, 3, 4, 5, 0, 0, 0, 9, 10, 11});
testElementWiseNativeCpu<SubObj>(
IncrementalGenerator(), IncrementalGenerator(), Shape{1, 2, 2, 3, 1},
Shape{2, 1, 1}, ExpectOutput{0, 1, 2, 2, 3, 4, 6, 7, 8, 8, 9, 10});
testElementWiseNativeCpu<DivObj>(
IncrementalGenerator(), OneGenerator(), Shape{1, 2, 2, 3, 1},
Shape{2, 1, 1}, ExpectOutput{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11});
}
} // namespace infini