forked from jiuyuan/InfiniTensor
modified format
This commit is contained in:
parent
9384cec7de
commit
5747eb8f7d
|
@ -1,7 +1,7 @@
|
|||
#include "operators/pad.h"
|
||||
#include "aclnnop/level2/aclnn_reflection_pad2d.h"
|
||||
#include "ascend/ascend_kernel_without_config.h"
|
||||
#include "ascend/ascend_runtime.h"
|
||||
#include "operators/pad.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
|
@ -12,19 +12,18 @@ class PadAclnn : public ASCENDKernelWithoutConfig {
|
|||
auto op = as<PadObj>(_op);
|
||||
auto context = dynamic_cast<const ASCENDRuntimeObj *>(_context);
|
||||
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
auto inputD = op->getInputs(0)->getDims();
|
||||
auto inputS = op->getInputs(0)->getStride();
|
||||
|
||||
|
||||
auto outD = op->getOutput()->getDims();
|
||||
auto outS = op->getOutput()->getStride();
|
||||
|
||||
std::vector<int64_t> inputDim = castTo64(inputD);
|
||||
std::vector<int64_t> inputStride = castTo64(inputS);
|
||||
|
||||
|
||||
std::vector<int64_t> outputDim = castTo64(outD);
|
||||
std::vector<int64_t> outputStride = castTo64(outS);
|
||||
|
||||
|
@ -32,7 +31,7 @@ class PadAclnn : public ASCENDKernelWithoutConfig {
|
|||
aclCreateTensor(inputDim.data(), inputDim.size(), ACL_FLOAT,
|
||||
inputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
inputDim.data(), inputDim.size(), aData);
|
||||
|
||||
|
||||
auto outputTensor =
|
||||
aclCreateTensor(outputDim.data(), outputDim.size(), ACL_FLOAT,
|
||||
outputStride.data(), 0, aclFormat::ACL_FORMAT_NCHW,
|
||||
|
@ -40,41 +39,38 @@ class PadAclnn : public ASCENDKernelWithoutConfig {
|
|||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
|
||||
std::vector<int> intPads = op->getPads();
|
||||
|
||||
std::size_t length = intPads.size();
|
||||
std::vector<int64_t> pads(4);
|
||||
if(length == 8){
|
||||
|
||||
std::vector<int> intPads = op->getPads();
|
||||
|
||||
std::size_t length = intPads.size();
|
||||
std::vector<int64_t> pads(4);
|
||||
if (length == 8) {
|
||||
std::size_t halfLen = intPads.size() / 2;
|
||||
bool condition = true;
|
||||
//std::cout << "Length of intPads: " << length << std::endl;
|
||||
|
||||
|
||||
for (std::size_t i = 0; i < halfLen; ++i) {
|
||||
// std::cout << "Length of intPads: " << length << std::endl;
|
||||
|
||||
for (std::size_t i = 0; i < halfLen; ++i) {
|
||||
condition = (intPads[i] == intPads[i + 4]);
|
||||
|
||||
//std::cout << "intPads[" << i << "]: " << intPads[i] << std::endl;
|
||||
}
|
||||
|
||||
// std::cout << "intPads[" << i << "]: " << intPads[i] <<
|
||||
// std::endl;
|
||||
}
|
||||
assert(condition);
|
||||
|
||||
|
||||
pads[0] = intPads[2];
|
||||
pads[1] = intPads[3];
|
||||
pads[2] = intPads[6];
|
||||
pads[3] = intPads[7];
|
||||
}
|
||||
else if (length == 4){
|
||||
for (std::size_t i = 0; i < 4; ++i) {
|
||||
|
||||
} else if (length == 4) {
|
||||
for (std::size_t i = 0; i < 4; ++i) {
|
||||
|
||||
pads[i] = intPads[i];
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
aclIntArray *padding = aclCreateIntArray(pads.data(), 4);
|
||||
auto ret = aclnnReflectionPad2dGetWorkspaceSize(
|
||||
inputTensor, padding , outputTensor,
|
||||
&workspaceSize, &executor);
|
||||
inputTensor, padding, outputTensor, &workspaceSize, &executor);
|
||||
void *workspaceAddr = nullptr;
|
||||
if (workspaceSize > 0) {
|
||||
workspaceAddr = context->getWorkspace(workspaceSize);
|
||||
|
@ -85,7 +81,7 @@ class PadAclnn : public ASCENDKernelWithoutConfig {
|
|||
}
|
||||
assert(ret == ACL_SUCCESS);
|
||||
ret = aclnnReflectionPad2d(workspaceAddr, workspaceSize, executor,
|
||||
context->ASCENDHandle());
|
||||
context->ASCENDHandle());
|
||||
assert(ret == ACL_SUCCESS);
|
||||
|
||||
ret = aclrtSynchronizeStream(context->ASCENDHandle());
|
||||
|
|
Loading…
Reference in New Issue