forked from p35462178/gks2d-str
1445 lines
36 KiB
C++
1445 lines
36 KiB
C++
|
#include"fvm_gks2d.h"
|
||
|
|
||
|
//默认参数
|
||
|
GKS1d_type gks1dsolver = nothing; //initialization
|
||
|
Reconstruction_within_Cell cellreconstruction = Vanleer; //initialization
|
||
|
Reconstruction_forG0 g0reconstruction = Center_collision; //initialization
|
||
|
//G0_construct_type g0type = collisionn; //initialization
|
||
|
Flux_function flux_function = GKS; //initialization
|
||
|
Reconstruction_variable reconstruction_variable = conservative; //initialization
|
||
|
WENOtype wenotype = wenojs; //initialization
|
||
|
TimeMarchingCoefficient timecoe_list = S2O4; //initialization
|
||
|
bool is_reduce_order_warning = false; //initialization
|
||
|
|
||
|
|
||
|
|
||
|
void Convar_to_primvar(Fluid1d* fluids, Block1d block)
|
||
|
{
|
||
|
#pragma omp parallel for
|
||
|
for (int i = block.ghost; i < block.ghost + block.nodex; i++)
|
||
|
{
|
||
|
Convar_to_primvar_1D(fluids[i].primvar, fluids[i].convar);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void free_boundary_left(Fluid1d* fluids, Block1d block, Fluid1d bcvalue)
|
||
|
{
|
||
|
//for this case, the input variable can also use Fluid1d fluids
|
||
|
//the call is the same with the current method
|
||
|
for (int i = block.ghost - 1; i >= 0; i--)
|
||
|
{
|
||
|
fluids[i].convar[0] = fluids[i + 1].convar[0];
|
||
|
fluids[i].convar[1] = fluids[i + 1].convar[1];
|
||
|
fluids[i].convar[2] = fluids[i + 1].convar[2];
|
||
|
}
|
||
|
}
|
||
|
void free_boundary_right(Fluid1d* fluids, Block1d block, Fluid1d bcvalue)
|
||
|
{
|
||
|
for (int i = block.nx - block.ghost; i < block.nx; i++)
|
||
|
{
|
||
|
fluids[i].convar[0] = fluids[i - 1].convar[0];
|
||
|
fluids[i].convar[1] = fluids[i - 1].convar[1];
|
||
|
fluids[i].convar[2] = fluids[i - 1].convar[2];
|
||
|
}
|
||
|
}
|
||
|
void reflection_boundary_left(Fluid1d* fluids, Block1d block, Fluid1d bcvalue)
|
||
|
{
|
||
|
for (int i = block.ghost - 1; i >= 0; i--)
|
||
|
{
|
||
|
int ref = 2 * block.ghost - 1 - i;
|
||
|
fluids[i].convar[0] = fluids[ref].convar[0];
|
||
|
fluids[i].convar[1] = -fluids[ref].convar[1];
|
||
|
fluids[i].convar[2] = fluids[ref].convar[2];
|
||
|
}
|
||
|
}
|
||
|
void reflection_boundary_right(Fluid1d* fluids, Block1d block, Fluid1d bcvalue)
|
||
|
{
|
||
|
for (int i = block.nx - block.ghost; i < block.nx; i++)
|
||
|
{
|
||
|
int ref = 2 * (block.nx - block.ghost) - 1 - i;
|
||
|
fluids[i].convar[0] = fluids[ref].convar[0];
|
||
|
fluids[i].convar[1] = -fluids[ref].convar[1];
|
||
|
fluids[i].convar[2] = fluids[ref].convar[2];
|
||
|
}
|
||
|
}
|
||
|
void periodic_boundary_left(Fluid1d* fluids, Block1d block, Fluid1d bcvalue)
|
||
|
{
|
||
|
for (int i = block.nodex_begin - 1; i >= 0; i--)
|
||
|
{
|
||
|
int ref = i + block.nodex;
|
||
|
Copy_Array(fluids[i].convar, fluids[ref].convar, 3);
|
||
|
}
|
||
|
}
|
||
|
void periodic_boundary_right(Fluid1d* fluids, Block1d block, Fluid1d bcvalue)
|
||
|
{
|
||
|
for (int i = block.nodex_end + 1; i < block.nx; i++)
|
||
|
{
|
||
|
int ref = i - block.nodex;
|
||
|
Copy_Array(fluids[i].convar, fluids[ref].convar, 3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void Check_Order_Reduce(Point1d& left, Point1d& right, Fluid1d& fluid)
|
||
|
{
|
||
|
bool order_reduce[2];
|
||
|
Check_Order_Reduce_by_Lambda_1D(order_reduce[0], right.convar);
|
||
|
Check_Order_Reduce_by_Lambda_1D(order_reduce[1], left.convar);
|
||
|
//if lambda <0, then reduce to the first order
|
||
|
if (order_reduce[0] == true || order_reduce[1] == true)
|
||
|
{
|
||
|
if (is_reduce_order_warning == true)
|
||
|
cout << "reconstruction reduce order in location " << fluid.cx << endl;
|
||
|
for (int m = 0; m < 3; m++)
|
||
|
{
|
||
|
left.convar[m] = fluid.convar[m];
|
||
|
right.convar[m] = fluid.convar[m];
|
||
|
left.der1[m] = 0.0;
|
||
|
right.der1[m] = 0.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
void Check_Order_Reduce_by_Lambda_1D(bool& order_reduce, double* convar)
|
||
|
{
|
||
|
order_reduce = false;
|
||
|
double lambda;
|
||
|
lambda = Lambda(convar[0], convar[1] / convar[0], convar[2]);
|
||
|
//if lambda <0, then reduce to the first order
|
||
|
if (lambda <= 0.0 || (lambda == lambda) == false)
|
||
|
{
|
||
|
order_reduce = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void Reconstruction_within_cell(Interface1d* interfaces, Fluid1d* fluids, Block1d block)
|
||
|
{
|
||
|
#pragma omp parallel for
|
||
|
for (int i = block.ghost - 1; i < block.nx - block.ghost + 1; i++)
|
||
|
{
|
||
|
cellreconstruction(interfaces[i].right, interfaces[i + 1].left, &fluids[i]);
|
||
|
}
|
||
|
}
|
||
|
void Vanleer(Point1d& left, Point1d& right, Fluid1d* fluids)
|
||
|
{
|
||
|
//Note: function by vanleer reconstruction
|
||
|
//the final updated variables is conservative variables
|
||
|
Fluid1d wn1 = fluids[-1];
|
||
|
Fluid1d w = fluids[0];
|
||
|
Fluid1d wp1 = fluids[1];
|
||
|
double splus[3], sminus[3];
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
splus[i] = (wp1.convar[i] - w.convar[i]) / ((wp1.dx + w.dx) / 2.0);
|
||
|
sminus[i] = (w.convar[i] - wn1.convar[i]) / ((wn1.dx + w.dx) / 2.0);
|
||
|
|
||
|
if ((splus[i] * sminus[i]) > 0)
|
||
|
{
|
||
|
left.der1[i] = 2 * splus[i] * sminus[i] / (splus[i] + sminus[i]);
|
||
|
right.der1[i] = left.der1[i];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
left.der1[i] = 0.0;
|
||
|
right.der1[i] = 0.0;
|
||
|
}
|
||
|
left.convar[i] = w.convar[i] - 0.5 * w.dx * left.der1[i];
|
||
|
right.convar[i] = w.convar[i] + 0.5 * w.dx * right.der1[i];
|
||
|
}
|
||
|
|
||
|
Check_Order_Reduce(left, right, fluids[0]);
|
||
|
}
|
||
|
|
||
|
void weno_3rd_left(double& var, double& der1, double& der2,
|
||
|
double wn1, double w0, double wp1, double h)
|
||
|
{
|
||
|
//-- - parameter of WENO-- -
|
||
|
double beta[2], d[2], ww[2], alpha[2];
|
||
|
double epsilonW = 1e-6;
|
||
|
//-- - intermediate parameter-- -
|
||
|
double p[2], px[2], pxx[2], tempvar;
|
||
|
double sum_alpha;
|
||
|
|
||
|
//two small stencil
|
||
|
d[0] = 2.0 / 3.0;
|
||
|
d[1] = 1.0 / 3.0;
|
||
|
|
||
|
|
||
|
if (wenotype == linear)
|
||
|
{
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
ww[k] = d[k];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
|
||
|
beta[0] = (w0 - wn1) * (w0 - wn1);
|
||
|
beta[1] = (w0 - wp1) * (w0 - wp1);
|
||
|
|
||
|
double tau3 = (abs(beta[0] - beta[1]));
|
||
|
|
||
|
|
||
|
if (wenotype == wenojs)
|
||
|
{
|
||
|
sum_alpha = 0.0;
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
alpha[k] = d[k] / ((epsilonW + beta[k]) * (epsilonW + beta[k]));
|
||
|
sum_alpha += alpha[k];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else if (wenotype == wenoz)
|
||
|
{
|
||
|
sum_alpha = 0.0;
|
||
|
for (int i = 0; i < 2; i++)
|
||
|
{
|
||
|
double global_div = pow(tau3 / (beta[i] + epsilonW), 2);
|
||
|
alpha[i] = d[i] * (1 + global_div);
|
||
|
sum_alpha += alpha[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
ww[k] = alpha[k] / sum_alpha;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//-- - candidate polynomial-- -
|
||
|
p[0] = (w0 + wn1) / 2.0;
|
||
|
p[1] = (3 * w0 - wp1) / 2.0;
|
||
|
|
||
|
px[0] = (w0 - wn1) / h;
|
||
|
px[1] = (wp1 - w0) / h;
|
||
|
|
||
|
pxx[0] = 0.0; pxx[1] = 0.0;
|
||
|
|
||
|
//-- - combination-- -
|
||
|
var = 0.0;
|
||
|
der1 = 0.0;
|
||
|
der2 = 0.0;
|
||
|
double final_weight[2];
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
final_weight[k] = ww[k];
|
||
|
}
|
||
|
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
var += final_weight[k] * p[k];
|
||
|
der1 += final_weight[k] * px[k];
|
||
|
der2 += final_weight[k] * pxx[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void weno_3rd_right(double& var, double& der1, double& der2,
|
||
|
double wn1, double w0, double wp1,
|
||
|
double h)
|
||
|
{
|
||
|
//-- - parameter of WENO-- -
|
||
|
double beta[2], d[2], ww[2], alpha[2];
|
||
|
double epsilonW = 1e-6;
|
||
|
//-- - intermediate parameter-- -
|
||
|
double p[2], px[2], pxx[2], tempvar;
|
||
|
double sum_alpha;
|
||
|
|
||
|
//two small stencil
|
||
|
d[0] = 1.0 / 3.0;
|
||
|
d[1] = 2.0 / 3.0;
|
||
|
|
||
|
|
||
|
if (wenotype == linear)
|
||
|
{
|
||
|
for (int k = 0; k < 3; k++)
|
||
|
{
|
||
|
ww[k] = d[k];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
beta[0] = (w0 - wn1) * (w0 - wn1);
|
||
|
beta[1] = (w0 - wp1) * (w0 - wp1);
|
||
|
|
||
|
double tau3 = (abs(beta[0] - beta[1]));
|
||
|
|
||
|
|
||
|
if (wenotype == wenojs)
|
||
|
{
|
||
|
sum_alpha = 0.0;
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
alpha[k] = d[k] / ((epsilonW + beta[k]) * (epsilonW + beta[k]));
|
||
|
sum_alpha += alpha[k];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else if (wenotype == wenoz)
|
||
|
{
|
||
|
sum_alpha = 0.0;
|
||
|
for (int i = 0; i < 2; i++)
|
||
|
{
|
||
|
double global_div = tau3 / (beta[i] + epsilonW);
|
||
|
alpha[i] = d[i] * (1 + global_div * global_div);
|
||
|
sum_alpha += alpha[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
ww[k] = alpha[k] / sum_alpha;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//-- - candidate polynomial-- -
|
||
|
p[0] = (3 * w0 - wn1) / 2.0;
|
||
|
p[1] = (w0 + wp1) / 2.0;
|
||
|
|
||
|
px[0] = (w0 - wn1) / h;
|
||
|
px[1] = (wp1 - w0) / h;
|
||
|
|
||
|
pxx[0] = 0.0; pxx[1] = 0.0;
|
||
|
|
||
|
////-- - combination-- -
|
||
|
var = 0.0;
|
||
|
der1 = 0.0;
|
||
|
der2 = 0.0;
|
||
|
double final_weight[2];
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
final_weight[k] = ww[k];
|
||
|
}
|
||
|
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
var += final_weight[k] * p[k];
|
||
|
der1 += final_weight[k] * px[k];
|
||
|
der2 += final_weight[k] * pxx[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void WENO3_left(double& left, double w_back, double w, double w_forward, double h)
|
||
|
{
|
||
|
//left poistion according to the center of w.
|
||
|
//-- - parameter of WENO-- -
|
||
|
double beta[2], d[2], ww[2], alpha[2];
|
||
|
double p = 2;
|
||
|
double epsilonW = 1e-6;
|
||
|
//-- - intermediate parameter-- -
|
||
|
double h0, h1, h2, tempvar;
|
||
|
d[0] = 2.0 / 3.0;
|
||
|
d[1] = 1.0 / 3.0;
|
||
|
|
||
|
beta[0] = (w - w_back) * (w - w_back);
|
||
|
beta[1] = (w_forward - w) * (w_forward - w);
|
||
|
|
||
|
tempvar = abs(beta[0] - beta[1]);
|
||
|
h0 = 0.0;
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
alpha[k] = d[k] * (1 + tempvar / (beta[k] + epsilonW));
|
||
|
h0 = h0 + alpha[k];
|
||
|
}
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
ww[k] = alpha[k] / h0;
|
||
|
}
|
||
|
//-- - candidate polynomial-- -
|
||
|
h0 = (w_back + w) / 2.0;
|
||
|
h1 = (3.0 * w - w_forward) / 2.0;
|
||
|
//-- - combination-- -
|
||
|
left = ww[0] * h0 + ww[1] * h1;
|
||
|
}
|
||
|
|
||
|
void WENO3_right(double& right, double w_back, double w, double w_forward, double h)
|
||
|
{
|
||
|
//left poistion according to the center of w.
|
||
|
//-- - parameter of WENO-- -
|
||
|
double beta[2], d[2], ww[2], alpha[2];
|
||
|
double p = 2;
|
||
|
double epsilonW = 1e-6;
|
||
|
//-- - intermediate parameter-- -
|
||
|
double h0, h1, h2, tempvar;
|
||
|
d[0] = 1.0 / 3.0;
|
||
|
d[1] = 2.0 / 3.0;
|
||
|
|
||
|
|
||
|
beta[0] = (w - w_back) * (w - w_back);
|
||
|
beta[1] = (w_forward - w) * (w_forward - w);
|
||
|
|
||
|
|
||
|
tempvar = abs(beta[0] - beta[1]);
|
||
|
|
||
|
h0 = 0.0;
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
alpha[k] = d[k] * (1 + tempvar / (beta[k] + epsilonW));
|
||
|
h0 = h0 + alpha[k];
|
||
|
}
|
||
|
|
||
|
|
||
|
for (int k = 0; k < 2; k++)
|
||
|
{
|
||
|
ww[k] = alpha[k] / h0;
|
||
|
}
|
||
|
|
||
|
//-- - candidate polynomial-
|
||
|
h0 = (3.0 * w - w_back) / 2.0;
|
||
|
h1 = (w + w_forward) / 2.0;
|
||
|
//-- - combination-- -
|
||
|
right = ww[0] * h0 + ww[1] * h1;
|
||
|
}
|
||
|
|
||
|
void WENO5_AO(Point1d& left, Point1d& right, Fluid1d* fluids)
|
||
|
{
|
||
|
//Note: function by WENO5_AO reconstruction
|
||
|
|
||
|
double wn2[3]; Copy_Array(wn2, fluids[-2].convar, 3);
|
||
|
double wn1[3]; Copy_Array(wn1, fluids[-1].convar, 3);
|
||
|
double w0[3]; Copy_Array(w0, fluids[0].convar, 3);
|
||
|
double wp1[3]; Copy_Array(wp1, fluids[1].convar, 3);
|
||
|
double wp2[3]; Copy_Array(wp2, fluids[2].convar, 3);
|
||
|
double tmp;
|
||
|
//non-uniform grid was treated as uniform grid
|
||
|
double h = fluids[0].dx;
|
||
|
|
||
|
if (reconstruction_variable == conservative)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
weno_5th_ao_right(right.convar[i], right.der1[i], tmp, wn2[i], wn1[i], w0[i], wp1[i], wp2[i], h);
|
||
|
weno_5th_ao_left(left.convar[i], left.der1[i], tmp, wn2[i], wn1[i], w0[i], wp1[i], wp2[i], h);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (reconstruction_variable == characteristic)
|
||
|
{
|
||
|
|
||
|
double ren3[3], ren2[3], ren1[3], re0[3], rep1[3], rep2[3], rep3[3];
|
||
|
double var[3], der1[3], der2[3];
|
||
|
|
||
|
double base_left[3], base_right[3];
|
||
|
|
||
|
double wn1_primvar[3], w_primvar[3], wp1_primvar[3];
|
||
|
Convar_to_primvar_1D(wn1_primvar, wn1);
|
||
|
Convar_to_primvar_1D(w_primvar, w0);
|
||
|
Convar_to_primvar_1D(wp1_primvar, wp1);
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
base_left[i] = 0.5 * (wn1_primvar[i] + w_primvar[i]);
|
||
|
base_right[i] = 0.5 * (wp1_primvar[i] + w_primvar[i]);
|
||
|
}
|
||
|
|
||
|
Convar_to_char1D(ren2, base_left, wn2);
|
||
|
Convar_to_char1D(ren1, base_left, wn1);
|
||
|
Convar_to_char1D(re0, base_left, w0);
|
||
|
Convar_to_char1D(rep1, base_left, wp1);
|
||
|
Convar_to_char1D(rep2, base_left, wp2);
|
||
|
|
||
|
// left_reconstruction
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
weno_5th_ao_left(var[i], der1[i], der2[i], ren2[i], ren1[i], re0[i], rep1[i], rep2[i], h);
|
||
|
}
|
||
|
Char_to_convar1D(left.convar, base_left, var);
|
||
|
Char_to_convar1D(left.der1, base_left, der1);
|
||
|
|
||
|
// right reconstruction
|
||
|
|
||
|
Convar_to_char1D(ren2, base_right, wn2);
|
||
|
Convar_to_char1D(ren1, base_right, wn1);
|
||
|
Convar_to_char1D(re0, base_right, w0);
|
||
|
Convar_to_char1D(rep1, base_right, wp1);
|
||
|
Convar_to_char1D(rep2, base_right, wp2);
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
weno_5th_ao_right(var[i], der1[i], der2[i], ren2[i], ren1[i], re0[i], rep1[i], rep2[i], h);
|
||
|
}
|
||
|
Char_to_convar1D(right.convar, base_right, var);
|
||
|
Char_to_convar1D(right.der1, base_right, der1);
|
||
|
|
||
|
}
|
||
|
|
||
|
Check_Order_Reduce(left, right, fluids[0]);
|
||
|
|
||
|
}
|
||
|
|
||
|
void weno_5th_ao_left(double& var, double& der1, double& der2, double wn2, double wn1, double w0, double wp1, double wp2, double h)
|
||
|
{
|
||
|
double dhi = 0.85;
|
||
|
double dlo = 0.85;
|
||
|
//-- - parameter of WENO-- -
|
||
|
double beta[4], d[4], ww[4], alpha[4];
|
||
|
double epsilonW = 1e-8;
|
||
|
//-- - intermediate parameter-- -
|
||
|
double p[4], px[4], pxx[4], tempvar;
|
||
|
double sum_alpha;
|
||
|
|
||
|
//three small stencil
|
||
|
d[0] = (1 - dhi) * (1 - dlo) / 2.0;
|
||
|
d[1] = (1 - dhi) * dlo;
|
||
|
d[2] = (1 - dhi) * (1 - dlo) / 2.0;
|
||
|
//one big stencil
|
||
|
d[3] = dhi;
|
||
|
|
||
|
if (wenotype == linear)
|
||
|
{
|
||
|
for (int k = 0; k < 4; k++)
|
||
|
{
|
||
|
ww[k] = d[k];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//cout << "here" << endl;
|
||
|
beta[0] = 13.0 / 12.0 * pow((wn2 - 2 * wn1 + w0), 2) + 0.25 * pow((wn2 - 4 * wn1 + 3 * w0), 2);
|
||
|
beta[1] = 13.0 / 12.0 * pow((wn1 - 2 * w0 + wp1), 2) + 0.25 * pow((wn1 - wp1), 2);
|
||
|
beta[2] = 13.0 / 12.0 * pow((w0 - 2 * wp1 + wp2), 2) + 0.25 * pow((3 * w0 - 4 * wp1 + wp2), 2);
|
||
|
|
||
|
beta[3] = (1.0 / 5040.0) * (231153 * w0 * w0 + 104963 * wn1 * wn1 + 6908 * wn2 * wn2 -
|
||
|
38947 * wn2 * wp1 + 104963 * wp1 * wp1 +
|
||
|
wn1 * (-51001 * wn2 + 179098 * wp1 - 38947 * wp2) -
|
||
|
3 * w0 * (99692 * wn1 - 22641 * wn2 + 99692 * wp1 - 22641 * wp2) +
|
||
|
8209 * wn2 * wp2 - 51001 * wp1 * wp2 + 6908 * wp2 * wp2);
|
||
|
|
||
|
double tau5 = 1.0 / 3.0 * (abs(beta[3] - beta[0]) + abs(beta[3] - beta[1]) + abs(beta[3] - beta[2]));
|
||
|
|
||
|
if (wenotype == wenojs)
|
||
|
{
|
||
|
sum_alpha = 0.0;
|
||
|
for (int k = 0; k < 4; k++)
|
||
|
{
|
||
|
alpha[k] = d[k] / ((epsilonW + beta[k]) * (epsilonW + beta[k]));
|
||
|
sum_alpha += alpha[k];
|
||
|
}
|
||
|
}
|
||
|
else if (wenotype == wenoz)
|
||
|
{
|
||
|
sum_alpha = 0.0;
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
{
|
||
|
double global_div = tau5 / (beta[i] + epsilonW);
|
||
|
alpha[i] = d[i] * (1 + global_div * global_div);
|
||
|
sum_alpha += alpha[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int k = 0; k < 4; k++)
|
||
|
{
|
||
|
ww[k] = alpha[k] / sum_alpha;
|
||
|
}
|
||
|
}
|
||
|
//-- - candidate polynomial-- -
|
||
|
p[0] = -1.0 / 6.0 * wn2 + 5.0 / 6.0 * wn1 + 1.0 / 3.0 * w0;
|
||
|
p[1] = 1.0 / 3.0 * wn1 + 5.0 / 6.0 * w0 - 1.0 / 6.0 * wp1;
|
||
|
p[2] = 11.0 / 6.0 * w0 - 7.0 / 6.0 * wp1 + 1.0 / 3.0 * wp2;
|
||
|
p[3] = (1.0 / 60.0) * (47 * w0 + 27 * wn1 - 3 * wn2 - 13 * wp1 + 2 * wp2);
|
||
|
|
||
|
px[0] = (w0 - wn1) / h;
|
||
|
px[1] = (w0 - wn1) / h;
|
||
|
px[2] = -((2 * w0 - 3 * wp1 + wp2) / h);
|
||
|
px[3] = (15 * w0 - 15 * wn1 + wn2 - wp1) / (12 * h);
|
||
|
|
||
|
pxx[0] = (w0 - 2 * wn1 + wn2) / h / h;
|
||
|
pxx[1] = (-2 * w0 + wn1 + wp1) / h / h;
|
||
|
pxx[2] = (w0 - 2 * wp1 + wp2) / h / h;
|
||
|
pxx[3] = ((-8 * w0 + 2 * wn1 + wn2 + 6 * wp1 - wp2) / (4 * h * h));
|
||
|
|
||
|
//-- - combination-- -
|
||
|
var = 0.0;
|
||
|
der1 = 0.0;
|
||
|
der2 = 0.0;
|
||
|
double final_weight[4];
|
||
|
final_weight[3] = ww[3] / d[3];
|
||
|
for (int k = 0; k < 3; k++)
|
||
|
{
|
||
|
final_weight[k] = ww[k] - ww[3] / d[3] * d[k];
|
||
|
}
|
||
|
|
||
|
for (int k = 0; k < 4; k++)
|
||
|
{
|
||
|
var += final_weight[k] * p[k];
|
||
|
der1 += final_weight[k] * px[k];
|
||
|
der2 += final_weight[k] * pxx[k];
|
||
|
}
|
||
|
}
|
||
|
void weno_5th_ao_right(double& var, double& der1, double& der2, double wn2, double wn1, double w0, double wp1, double wp2, double h)
|
||
|
{
|
||
|
double dhi = 0.85;
|
||
|
double dlo = 0.85;
|
||
|
//-- - parameter of WENO-- -
|
||
|
double beta[4], d[4], ww[4], alpha[4];
|
||
|
double epsilonW = 1e-8;
|
||
|
|
||
|
//-- - intermediate parameter-- -
|
||
|
double p[4], px[4], pxx[4], tempvar;
|
||
|
double sum_alpha;
|
||
|
|
||
|
//three small stencil
|
||
|
d[0] = (1 - dhi) * (1 - dlo) / 2.0;
|
||
|
d[1] = (1 - dhi) * dlo;
|
||
|
d[2] = (1 - dhi) * (1 - dlo) / 2.0;
|
||
|
//one big stencil
|
||
|
d[3] = dhi;
|
||
|
|
||
|
if (wenotype == linear)
|
||
|
{
|
||
|
for (int k = 0; k < 4; k++)
|
||
|
{
|
||
|
ww[k] = d[k];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
|
||
|
beta[0] = 13.0 / 12.0 * pow((wn2 - 2 * wn1 + w0), 2) + 0.25 * pow((wn2 - 4 * wn1 + 3 * w0), 2);
|
||
|
beta[1] = 13.0 / 12.0 * pow((wn1 - 2 * w0 + wp1), 2) + 0.25 * pow((wn1 - wp1), 2);
|
||
|
beta[2] = 13.0 / 12.0 * pow((w0 - 2 * wp1 + wp2), 2) + 0.25 * pow((3 * w0 - 4 * wp1 + wp2), 2);
|
||
|
|
||
|
beta[3] = (1.0 / 5040.0) * (231153 * w0 * w0 + 104963 * wn1 * wn1 + 6908 * wn2 * wn2 -
|
||
|
38947 * wn2 * wp1 + 104963 * wp1 * wp1 +
|
||
|
wn1 * (-51001 * wn2 + 179098 * wp1 - 38947 * wp2) -
|
||
|
3 * w0 * (99692 * wn1 - 22641 * wn2 + 99692 * wp1 - 22641 * wp2) +
|
||
|
8209 * wn2 * wp2 - 51001 * wp1 * wp2 + 6908 * wp2 * wp2);
|
||
|
|
||
|
double tau5 = 1.0 / 3.0 * (abs(beta[3] - beta[0]) + abs(beta[3] - beta[1]) + abs(beta[3] - beta[2]));
|
||
|
|
||
|
if (wenotype == wenojs)
|
||
|
{
|
||
|
sum_alpha = 0.0;
|
||
|
for (int k = 0; k < 4; k++)
|
||
|
{
|
||
|
alpha[k] = d[k] / ((epsilonW + beta[k]) * (epsilonW + beta[k]));
|
||
|
sum_alpha += alpha[k];
|
||
|
}
|
||
|
}
|
||
|
else if (wenotype == wenoz)
|
||
|
{
|
||
|
sum_alpha = 0.0;
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
{
|
||
|
double global_div = tau5 / (beta[i] + epsilonW);
|
||
|
alpha[i] = d[i] * (1 + global_div * global_div);
|
||
|
sum_alpha += alpha[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int k = 0; k < 4; k++)
|
||
|
{
|
||
|
ww[k] = alpha[k] / sum_alpha;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
//-- - candidate polynomial-- -
|
||
|
|
||
|
p[0] = 1.0 / 3.0 * wn2 - 7.0 / 6.0 * wn1 + 11.0 / 6.0 * w0;
|
||
|
p[1] = -1.0 / 6.0 * wn1 + 5.0 / 6.0 * w0 + 1.0 / 3.0 * wp1;
|
||
|
p[2] = 1.0 / 3.0 * w0 + 5.0 / 6.0 * wp1 - 1.0 / 6.0 * wp2;
|
||
|
p[3] = (1.0 / 60.0) * (47 * w0 - 13 * wn1 + 2 * wn2 + 27 * wp1 - 3 * wp2);
|
||
|
|
||
|
px[0] = (2 * w0 - 3 * wn1 + wn2) / h;
|
||
|
px[1] = (-w0 + wp1) / h;
|
||
|
px[2] = (-w0 + wp1) / h;
|
||
|
px[3] = (-15 * w0 + wn1 + 15 * wp1 - wp2) / (12 * h);
|
||
|
|
||
|
pxx[0] = (w0 - 2 * wn1 + wn2) / h / h;
|
||
|
pxx[1] = (-2 * w0 + wn1 + wp1) / h / h;
|
||
|
pxx[2] = (w0 - 2 * wp1 + wp2) / h / h;
|
||
|
pxx[3] = (-8 * w0 + 6 * wn1 - wn2 + 2 * wp1 + wp2) / (4 * h * h);
|
||
|
|
||
|
//-- - combination-- -
|
||
|
var = 0.0;
|
||
|
der1 = 0.0;
|
||
|
der2 = 0.0;
|
||
|
double final_weight[4];
|
||
|
final_weight[3] = ww[3] / d[3];
|
||
|
for (int k = 0; k < 3; k++)
|
||
|
{
|
||
|
final_weight[k] = ww[k] - ww[3] / d[3] * d[k];
|
||
|
}
|
||
|
|
||
|
for (int k = 0; k < 4; k++)
|
||
|
{
|
||
|
var += final_weight[k] * p[k];
|
||
|
der1 += final_weight[k] * px[k];
|
||
|
der2 += final_weight[k] * pxx[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void Reconstruction_forg0(Interface1d* interfaces, Fluid1d* fluids, Block1d block)
|
||
|
{
|
||
|
#pragma omp parallel for
|
||
|
for (int i = block.ghost; i < block.nx - block.ghost + 1; ++i)
|
||
|
{
|
||
|
g0reconstruction(interfaces[i], &fluids[i - 1]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Center_2nd_collisionless(Interface1d& interfaces, Fluid1d* fluids)
|
||
|
{
|
||
|
double w[3], wp1[3];
|
||
|
|
||
|
//assume this is uniform mesh,
|
||
|
//when mesh is no uniform, accuracy decrease
|
||
|
double h = (fluids[0].dx + fluids[1].dx) / 2.0;
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
w[i] = fluids[0].convar[i];
|
||
|
wp1[i] = fluids[1].convar[i];
|
||
|
}
|
||
|
//collisionless
|
||
|
//at this time, only second order accuracy obtained
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
interfaces.center.convar[i] = (wp1[i] + w[i]) / 2.0;
|
||
|
interfaces.center.der1[i] = (wp1[i] - w[i]) / h;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Center_3rd(Interface1d& interfaces, Fluid1d* fluids)
|
||
|
{
|
||
|
double w[3], wp1[3];
|
||
|
|
||
|
//assume this is uniform mesh,
|
||
|
//when mesh is no uniform, accuracy decrease
|
||
|
double h = (fluids[0].dx + fluids[1].dx) / 2.0;
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
w[i] = fluids[0].convar[i];
|
||
|
wp1[i] = fluids[1].convar[i];
|
||
|
}
|
||
|
// to separate the reconstruction part from the flux part,
|
||
|
// here we do a collision to get g0
|
||
|
double convar_left[3], convar_right[3];
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
convar_left[i] = interfaces.left.convar[i];
|
||
|
convar_right[i] = interfaces.right.convar[i];
|
||
|
}
|
||
|
|
||
|
double prim_left[3], prim_right[3];
|
||
|
Convar_to_ULambda_1d(prim_left, convar_left);
|
||
|
Convar_to_ULambda_1d(prim_right, convar_right);
|
||
|
|
||
|
MMDF1d ml(prim_left[1], prim_left[2]);
|
||
|
MMDF1d mr(prim_right[1], prim_right[2]);
|
||
|
|
||
|
double unit[3]{ 1.0, 0.0, 0.0 };
|
||
|
|
||
|
double gl[3], gr[3];
|
||
|
GL(0, 0, gl, unit, ml);
|
||
|
GR(0, 0, gr, unit, mr);
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
interfaces.center.convar[i] = convar_left[0] * gl[i] + convar_right[0] * gr[i];
|
||
|
}
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
interfaces.center.der1[i] = (wp1[i] - w[i]) / h;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
void Center_simple_avg(Interface1d& interfaces, Fluid1d* fluids)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
interfaces.center.convar[i] = (interfaces.left.convar[i] + interfaces.right.convar[i]) / 2.0;
|
||
|
interfaces.center.der1[i] = (interfaces.left.der1[i] + interfaces.right.der1[i]) / 2.0;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Center_collision(Interface1d& interfaces, Fluid1d* fluids)
|
||
|
{
|
||
|
double convar_left[3], convar_right[3];
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
convar_left[i] = interfaces.left.convar[i];
|
||
|
convar_right[i] = interfaces.right.convar[i];
|
||
|
}
|
||
|
|
||
|
double prim_left[3], prim_right[3]; //rho, U, lambda
|
||
|
Convar_to_ULambda_1d(prim_left, convar_left);
|
||
|
Convar_to_ULambda_1d(prim_right, convar_right);
|
||
|
|
||
|
MMDF1d ml(prim_left[1], prim_left[2]);
|
||
|
MMDF1d mr(prim_right[1], prim_right[2]);
|
||
|
|
||
|
double unit[3]{ 1.0, 0.0, 0.0 };
|
||
|
|
||
|
double gl[3], gr[3];
|
||
|
GL(0, 0, gl, unit, ml); // gl, means Wl(u>0), by input uint
|
||
|
GR(0, 0, gr, unit, mr); // gr, means Wr(u<0), by input uint
|
||
|
double axl[3], axr[3];
|
||
|
Microslope(axl, interfaces.left.der1, prim_left); // axl, means a coefficient indicating slope
|
||
|
Microslope(axr, interfaces.right.der1, prim_right); // axr, means a coefficient indicating slope
|
||
|
double ax0l[3], ax0r[3];
|
||
|
GL(0, 0, ax0l, axl, ml); // ax0l, means Wlx(u>0), by input axl
|
||
|
GR(0, 0, ax0r, axr, mr); // ax0r, means Wrx(u<0), by input axr
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
interfaces.center.convar[i] = convar_left[0] * gl[i] + convar_right[0] * gr[i];
|
||
|
interfaces.center.der1[i] = convar_left[0] * ax0l[i] + convar_right[0] * ax0r[i];
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void Calculate_flux(Flux1d** fluxes, Interface1d* interfaces, Block1d& block, int stage)
|
||
|
{
|
||
|
#pragma omp parallel for
|
||
|
for (int i = block.ghost; i < block.nodex + block.ghost + 1; ++i)
|
||
|
{
|
||
|
flux_function(fluxes[i][stage], interfaces[i], block.dt);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
void GKS(Flux1d& flux, Interface1d& interface, double dt)
|
||
|
{
|
||
|
if (gks1dsolver == nothing)
|
||
|
{
|
||
|
cout << "no gks solver specify" << endl;
|
||
|
exit(0);
|
||
|
}
|
||
|
double Flux[2][3];
|
||
|
//change conservative variables to rho u lambda
|
||
|
double convar_left[3], convar_right[3], convar0[3];
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
convar_left[i] = interface.left.convar[i];
|
||
|
convar_right[i] = interface.right.convar[i];
|
||
|
convar0[i] = interface.center.convar[i];
|
||
|
}
|
||
|
|
||
|
double prim_left[3], prim_right[3], prim0[3];
|
||
|
Convar_to_ULambda_1d(prim_left, convar_left);
|
||
|
Convar_to_ULambda_1d(prim_right, convar_right);
|
||
|
Convar_to_ULambda_1d(prim0, convar0);
|
||
|
|
||
|
//then lets get the coefficient of time intergation factors
|
||
|
|
||
|
double tau;
|
||
|
double tau_num;
|
||
|
tau = Get_Tau_NS(prim0[0], prim0[2]);
|
||
|
tau_num = Get_Tau(prim_left[0], prim_right[0], prim0[0], prim_left[2], prim_right[2], prim0[2], dt);
|
||
|
double eta = exp(-dt / tau_num);
|
||
|
double t[10];
|
||
|
// non equ part time coefficient for gks_2nd algorithm (f0)
|
||
|
t[0] = tau_num * (1 - eta); // this refers glu, gru part
|
||
|
t[1] = tau_num * (eta * (dt + tau_num) - tau_num) + tau * tau_num * (eta - 1); //this refers aluu, aruu part
|
||
|
t[2] = tau * tau_num * (eta - 1); //this refers Alu, Aru part
|
||
|
// then, equ part time coefficient for gks 2nd (g0)
|
||
|
t[3] = tau_num * eta + dt - tau_num; //this refers g0u part
|
||
|
t[4] = tau_num * (tau_num - eta * (dt + tau_num) - tau * (eta - 1)) - dt * tau; //this refers a0uu part
|
||
|
t[5] = 0.5 * dt * dt - tau * tau_num * (eta - 1) - tau * dt; //this refers A0u part
|
||
|
|
||
|
if (gks1dsolver == kfvs1st)
|
||
|
{
|
||
|
t[0] = dt;
|
||
|
for (int i = 1; i < 6; i++)
|
||
|
{
|
||
|
t[i] = 0.0;
|
||
|
}
|
||
|
//do nothing, kfvs1st only use t[0]=dt part;
|
||
|
}
|
||
|
else if (gks1dsolver == kfvs2nd)
|
||
|
{
|
||
|
t[0] = dt;
|
||
|
t[1] = -dt * dt / 2.0;
|
||
|
for (int i = 2; i < 6; i++)
|
||
|
{
|
||
|
t[i] = 0.0;
|
||
|
}
|
||
|
}
|
||
|
MMDF1d ml(prim_left[1], prim_left[2]);
|
||
|
MMDF1d mr(prim_right[1], prim_right[2]);
|
||
|
|
||
|
double unit[3] = { 1, 0.0, 0.0 };
|
||
|
|
||
|
double glu[3], gru[3];
|
||
|
GL(1, 0, glu, unit, ml);
|
||
|
GR(1, 0, gru, unit, mr);
|
||
|
|
||
|
//only one part, the kfvs1st part
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
Flux[0][i] = prim_left[0] * t[0] * glu[i] + prim_right[0] * t[0] * gru[i];
|
||
|
}
|
||
|
|
||
|
if (gks1dsolver == kfvs1st)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
flux.f[i] = Flux[0][i];
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
// kfvs1st part ended
|
||
|
|
||
|
//now the equ part added, m0 term added, gks1st part begin
|
||
|
MMDF1d m0(prim0[1], prim0[2]);
|
||
|
|
||
|
double g0u[3];
|
||
|
G(1, 0, g0u, unit, m0);
|
||
|
|
||
|
//the equ g0u part, the gks1st part
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
Flux[0][i] = Flux[0][i] + prim0[0] * t[3] * g0u[i];
|
||
|
}
|
||
|
|
||
|
if (gks1dsolver == gks1st)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
flux.f[i] = Flux[0][i];
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
// gks1d solver ended
|
||
|
|
||
|
//for kfvs2nd part
|
||
|
double der1left[3], der1right[3];
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
der1left[i] = interface.left.der1[i];
|
||
|
der1right[i] = interface.right.der1[i];
|
||
|
}
|
||
|
|
||
|
double alx[3];
|
||
|
Microslope(alx, der1left, prim_left);
|
||
|
|
||
|
double alxuul[3];
|
||
|
GL(2, 0, alxuul, alx, ml);
|
||
|
|
||
|
double arx[3];
|
||
|
Microslope(arx, der1right, prim_right);
|
||
|
double arxuur[3];
|
||
|
GR(2, 0, arxuur, arx, mr);
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{ // t1 part
|
||
|
Flux[0][i] = Flux[0][i] + prim_left[0] * t[1] * (alxuul[i]) + prim_right[0] * t[1] * (arxuur[i]);
|
||
|
}
|
||
|
if (gks1dsolver == kfvs2nd)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
flux.f[i] = Flux[0][i];
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
// the kfvs2nd part ended
|
||
|
|
||
|
// then we still need t[2], t[4] t[5] part for gks 2nd
|
||
|
//for t[2] Aru,Alu part
|
||
|
double alxu[3];
|
||
|
double arxu[3];
|
||
|
|
||
|
//take <u> moment for al, ar
|
||
|
G(1, 0, alxu, alx, ml);
|
||
|
G(1, 0, arxu, arx, mr);
|
||
|
|
||
|
double Al[3], Ar[3];
|
||
|
double der_AL[3], der_AR[3];
|
||
|
|
||
|
//using compatability condition to get the time derivative
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
der_AL[i] = -prim_left[0] * (alxu[i]);
|
||
|
der_AR[i] = -prim_right[0] * (arxu[i]);
|
||
|
}
|
||
|
// solve the coefficient martix b=ma
|
||
|
Microslope(Al, der_AL, prim_left);
|
||
|
Microslope(Ar, der_AR, prim_right);
|
||
|
|
||
|
//to obtain the Alu and Aru
|
||
|
double Alul[3];
|
||
|
double Arur[3];
|
||
|
GL(1, 0, Alul, Al, ml);
|
||
|
GR(1, 0, Arur, Ar, mr);
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{ // t2 part
|
||
|
Flux[0][i] = Flux[0][i] + prim_left[0] * t[2] * (Alul[i]) + prim_right[0] * t[2] * (Arur[i]);
|
||
|
}
|
||
|
|
||
|
// for t[4] a0xuu part
|
||
|
|
||
|
double a0x[3];
|
||
|
double der1[3];
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
der1[i] = interface.center.der1[i];
|
||
|
}
|
||
|
|
||
|
//solve the microslope
|
||
|
Microslope(a0x, der1, prim0);
|
||
|
//a0x <u> moment
|
||
|
double a0xu[3];
|
||
|
G(1, 0, a0xu, a0x, m0);
|
||
|
//a0x <u^2> moment
|
||
|
double a0xuu[3];
|
||
|
G(2, 0, a0xuu, a0x, m0);
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{ // t4 part
|
||
|
Flux[0][i] = Flux[0][i] + prim0[0] * t[4] * (a0xuu[i]);
|
||
|
}
|
||
|
|
||
|
|
||
|
// for t[5] A0u part
|
||
|
double derA0[3];
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
derA0[i] = -prim0[0] * (a0xu[i]);
|
||
|
}
|
||
|
double A0[3];
|
||
|
Microslope(A0, derA0, prim0);
|
||
|
double A0u[3];
|
||
|
G(1, 0, A0u, A0, m0);
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{ // t5 part
|
||
|
Flux[0][i] = Flux[0][i] + prim0[0] * t[5] * (A0u[i]);
|
||
|
}
|
||
|
if (gks1dsolver == gks2nd && timecoe_list == S1O1)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
flux.f[i] = Flux[0][i];
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
if (gks1dsolver == gks2nd)
|
||
|
{
|
||
|
double dt2 = 0.5 * dt;
|
||
|
eta = exp(-dt2 / tau_num);
|
||
|
// non equ part time coefficient for gks_2nd algorithm
|
||
|
t[0] = tau_num * (1 - eta); // this refers glu, gru part
|
||
|
t[1] = tau_num * (eta * (dt2 + tau_num) - tau_num) + tau * tau_num * (eta - 1); //this refers aluu, aruu part
|
||
|
t[2] = tau * tau_num * (eta - 1); //this refers Alu, Aru part
|
||
|
// then, equ part time coefficient for gks 2nd
|
||
|
t[3] = tau_num * eta + dt2 - tau_num; //this refers g0u part
|
||
|
t[4] = tau_num * (tau_num - eta * (dt2 + tau_num) - tau * (eta - 1)) - dt2 * tau; //this refers a0uu part
|
||
|
t[5] = 0.5 * dt2 * dt2 - tau * tau_num * (eta - 1) - tau * dt2; //this refers A0u part
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
// t0 part
|
||
|
Flux[1][i] = prim_left[0] * t[0] * glu[i] + prim_right[0] * t[0] * gru[i];
|
||
|
// t1 part
|
||
|
Flux[1][i] = Flux[1][i] + prim_left[0] * t[1] * (alxuul[i]) + prim_right[0] * t[1] * (arxuur[i]);
|
||
|
// t2 part
|
||
|
Flux[1][i] = Flux[1][i] + prim_left[0] * t[2] * (Alul[i]) + prim_right[0] * t[2] * (Arur[i]);
|
||
|
// t3 part
|
||
|
Flux[1][i] = Flux[1][i] + prim0[0] * t[3] * g0u[i];
|
||
|
// t4 part
|
||
|
Flux[1][i] = Flux[1][i] + prim0[0] * t[4] * (a0xuu[i]);
|
||
|
// t5 part
|
||
|
Flux[1][i] = Flux[1][i] + prim0[0] * t[5] * (A0u[i]);
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
flux.f[i] = (4.0 * Flux[1][i] - Flux[0][i]);
|
||
|
flux.derf[i] = 4.0 * (Flux[0][i] - 2.0 * Flux[1][i]);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cout << "no valid solver specify" << endl;
|
||
|
exit(0);
|
||
|
}
|
||
|
}
|
||
|
void HLLC(Flux1d& flux, Interface1d& interface, double dt)
|
||
|
{
|
||
|
double pl[3], pr[3];
|
||
|
Convar_to_primvar_1D(pl, interface.left.convar);
|
||
|
Convar_to_primvar_1D(pr, interface.right.convar);
|
||
|
|
||
|
double al, ar, pvars, pstar, tmp1, tmp2, tmp3, qk, sl, sr, star;
|
||
|
al = sqrt(Gamma * pl[2] / pl[0]); //sound speed
|
||
|
ar = sqrt(Gamma * pr[2] / pr[0]);
|
||
|
tmp1 = 0.5 * (al + ar); //avg of sound and density
|
||
|
tmp2 = 0.5 * (pl[0] + pr[0]);
|
||
|
|
||
|
pvars = 0.5 * (pl[2] + pr[2]) - 0.5 * (pr[1] - pl[1]) * tmp1 * tmp2;
|
||
|
pstar = fmax(0.0, pvars);
|
||
|
|
||
|
double flxtmp[3], qstar[3];
|
||
|
|
||
|
|
||
|
ESTIME(sl, star, sr, pl[0], pl[1], pl[2], al, pr[0], pr[1], pr[2], ar);
|
||
|
|
||
|
tmp1 = pr[2] - pl[2] + pl[0] * pl[1] * (sl - pl[1]) - pr[0] * pr[1] * (sr - pr[1]);
|
||
|
tmp2 = pl[0] * (sl - pl[1]) - pr[0] * (sr - pr[1]);
|
||
|
star = tmp1 / tmp2;
|
||
|
|
||
|
if (sl >= 0.0) {
|
||
|
get_Euler_flux(pl, flux.f);
|
||
|
}
|
||
|
else if (sr <= 0.0)
|
||
|
{
|
||
|
get_Euler_flux(pr, flux.f);
|
||
|
}
|
||
|
else if ((star >= 0.0) && (sl <= 0.0))
|
||
|
{
|
||
|
get_Euler_flux(pl, flxtmp);
|
||
|
ustarforHLLC(pl[0], pl[1], pl[2], sl, star, qstar);
|
||
|
|
||
|
for (int m = 0; m < 3; m++)
|
||
|
{
|
||
|
flux.f[m] = flxtmp[m] + sl * (qstar[m] - interface.left.convar[m]);
|
||
|
}
|
||
|
}
|
||
|
else if ((star <= 0.0) && (sr >= 0.0))
|
||
|
{
|
||
|
get_Euler_flux(pr, flxtmp);
|
||
|
ustarforHLLC(pr[0], pr[1], pr[2], sr, star, qstar);
|
||
|
for (int m = 0; m < 3; m++)
|
||
|
{
|
||
|
flux.f[m] = flxtmp[m] + sr * (qstar[m] - interface.right.convar[m]);
|
||
|
}
|
||
|
}
|
||
|
for (int m = 0; m < 3; m++)
|
||
|
{
|
||
|
flux.f[m] *= dt;
|
||
|
}
|
||
|
}
|
||
|
void get_Euler_flux(double p[3], double* flux)
|
||
|
{
|
||
|
//the flux of Euler equation, density*u, density*u*u+p, (p+0.5*density*u*u+p/(r-1))*u
|
||
|
//p[0 1 2], means, density, u, p
|
||
|
flux[0] = p[0] * p[1];
|
||
|
flux[1] = p[0] * p[1] * p[1] + p[2];
|
||
|
double ENERGS = 0.5 * (p[1] * p[1]) * p[0] + p[2] / (Gamma - 1.0);
|
||
|
flux[2] = p[1] * (ENERGS + p[2]);
|
||
|
}
|
||
|
void ustarforHLLC(double d1, double u1, double p1, double s1, double star1, double* ustar)
|
||
|
{
|
||
|
double tmp1, tmp2, tmp3;
|
||
|
tmp1 = d1 * (s1 - u1) / (s1 - star1);
|
||
|
tmp2 = 0.5 * (u1 * u1) + p1 / ((Gamma - 1.0) * d1);
|
||
|
tmp3 = star1 + p1 / (d1 * (s1 - u1));
|
||
|
|
||
|
ustar[0] = tmp1;
|
||
|
ustar[1] = tmp1 * star1;
|
||
|
ustar[2] = tmp1 * (tmp2 + (star1 - u1) * tmp3);
|
||
|
}
|
||
|
void LF(Flux1d& flux, Interface1d& interface, double dt)
|
||
|
{
|
||
|
double pl[3], pr[3];
|
||
|
Convar_to_primvar_1D(pl, interface.left.convar);
|
||
|
Convar_to_primvar_1D(pr, interface.right.convar);
|
||
|
|
||
|
//Reimann invariants, u +/- 2c/(r-1)
|
||
|
//Sound speed, c = sqrt(r*p/density)
|
||
|
double k[2];
|
||
|
k[0] = abs(pl[1]) + sqrt(Gamma * pl[2] / pl[0]); //abs(u)+c, left
|
||
|
k[1] = abs(pr[1]) + sqrt(Gamma * pr[2] / pr[0]); //abs(u)+c, right
|
||
|
|
||
|
double beta = k[0]; // beta, means, abs(partialF/parialX)
|
||
|
if (k[1] > k[0]) { beta = k[1]; }
|
||
|
double flux_l[3], flux_r[3];
|
||
|
get_Euler_flux(pl, flux_l);
|
||
|
get_Euler_flux(pr, flux_r);
|
||
|
|
||
|
for (int m = 0; m < 3; m++)
|
||
|
{
|
||
|
flux.f[m] = 0.5 * ((flux_l[m] + flux_r[m]) - beta * (interface.right.convar[m] - interface.left.convar[m]));
|
||
|
flux.f[m] *= dt;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void S1O1(Block1d& block)
|
||
|
{
|
||
|
block.stages = 1;
|
||
|
block.timecoefficient[0][0][0] = 1.0;
|
||
|
block.timecoefficient[0][0][1] = 0.0;
|
||
|
}
|
||
|
void S1O2(Block1d& block)
|
||
|
{
|
||
|
block.stages = 1;
|
||
|
block.timecoefficient[0][0][0] = 1.0;
|
||
|
block.timecoefficient[0][0][1] = 0.5;
|
||
|
}
|
||
|
void S2O4(Block1d& block)
|
||
|
{
|
||
|
// two stages, so the extra stages coefficients are zero.
|
||
|
block.stages = 2;
|
||
|
block.timecoefficient[0][0][0] = 0.5;
|
||
|
block.timecoefficient[0][0][1] = 1.0 / 8.0;
|
||
|
block.timecoefficient[1][0][0] = 1.0;
|
||
|
block.timecoefficient[1][1][0] = 0.0;
|
||
|
block.timecoefficient[1][0][1] = 1.0 / 6.0;
|
||
|
block.timecoefficient[1][1][1] = 1.0 / 3.0;
|
||
|
}
|
||
|
void RK4(Block1d& block)
|
||
|
{
|
||
|
block.stages = 4;
|
||
|
block.timecoefficient[0][0][0] = 0.5;
|
||
|
block.timecoefficient[1][1][0] = 0.5;
|
||
|
block.timecoefficient[2][2][0] = 1.0;
|
||
|
block.timecoefficient[3][0][0] = 1.0 / 6.0;
|
||
|
block.timecoefficient[3][1][0] = 1.0 / 3.0;
|
||
|
block.timecoefficient[3][2][0] = 1.0 / 3.0;
|
||
|
block.timecoefficient[3][3][0] = 1.0 / 6.0;
|
||
|
}
|
||
|
|
||
|
void Initial_stages(Block1d& block)
|
||
|
{
|
||
|
// initialize five stages (5 steps) and set all them as ZERO
|
||
|
for (int i = 0; i < 5; i++) //refers the n stage
|
||
|
{
|
||
|
for (int j = 0; j < 5; j++) //refers the nth coefficient at n stage
|
||
|
{
|
||
|
for (int k = 0; k < 3; k++) //refers f, derf
|
||
|
{
|
||
|
block.timecoefficient[i][j][k] = 0.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// by timecoe_list set the correct stages (others still be ZERO)
|
||
|
timecoe_list(block);
|
||
|
}
|
||
|
|
||
|
Flux1d** Setflux_array(Block1d block)
|
||
|
{
|
||
|
Flux1d** fluxes = new Flux1d * [block.nx + 1]; // dynamic variable (since block.nx is not determined)
|
||
|
|
||
|
for (int i = 0; i <= block.nx; i++)
|
||
|
{
|
||
|
// for m th step time marching schemes, m subflux needed
|
||
|
fluxes[i] = new Flux1d[block.stages];
|
||
|
for (int j = 0; j < block.stages; j++)
|
||
|
{
|
||
|
for (int k = 0; k < 3; k++)
|
||
|
{
|
||
|
fluxes[i][j].f[k] = 0.0;
|
||
|
fluxes[i][j].derf[k] = 0.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (fluxes == 0)
|
||
|
{
|
||
|
cout << "memory allocation failed for muli-stage flux";
|
||
|
return NULL;
|
||
|
}
|
||
|
cout << "the memory for muli-stage flux has been allocated..." << endl;
|
||
|
return fluxes;
|
||
|
}
|
||
|
|
||
|
void SetUniformMesh(Block1d block, Fluid1d* fluids, Interface1d* interfaces, Flux1d** fluxes)
|
||
|
{
|
||
|
//cell avg information
|
||
|
for (int i = 0; i < block.nx; i++)
|
||
|
{
|
||
|
fluids[i].dx = block.dx; //cell size
|
||
|
fluids[i].cx = block.left + (i + 0.5 - block.ghost) * block.dx; //cell center location
|
||
|
}
|
||
|
// interface information
|
||
|
for (int i = 0; i <= block.nx; i++)
|
||
|
{
|
||
|
interfaces[i].x = block.left + (i - block.ghost) * block.dx;
|
||
|
interfaces[i].left.x = interfaces[i].x;
|
||
|
interfaces[i].right.x = interfaces[i].x;
|
||
|
interfaces[i].center.x = interfaces[i].x;
|
||
|
interfaces[i].flux = fluxes[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void CopyFluid_new_to_old(Fluid1d* fluids, Block1d block)
|
||
|
{
|
||
|
#pragma omp parallel for
|
||
|
for (int i = block.ghost; i < block.ghost + block.nodex; i++)
|
||
|
{
|
||
|
for (int j = 0; j < 3; j++)
|
||
|
{
|
||
|
fluids[i].convar_old[j] = fluids[i].convar[j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
double Get_CFL(Block1d& block, Fluid1d* fluids, double tstop)
|
||
|
{
|
||
|
double dt = block.dx;
|
||
|
for (int i = 0; i < block.nodex; i++)
|
||
|
{
|
||
|
dt = Dtx(dt, block.dx, block.CFL, fluids[i + block.ghost].convar);
|
||
|
}
|
||
|
if (block.t + dt > tstop)
|
||
|
{
|
||
|
dt = tstop - block.t + 1e-15;
|
||
|
}
|
||
|
//print time step information
|
||
|
cout << "step= " << block.step
|
||
|
<< "time size is " << dt
|
||
|
<< " time= " << block.t << endl;
|
||
|
return dt;
|
||
|
}
|
||
|
double Dtx(double dtx, double dx, double CFL, double convar[3])
|
||
|
{
|
||
|
double tmp;
|
||
|
double prim[3];
|
||
|
Convar_to_primvar_1D(prim, convar);
|
||
|
tmp = abs(prim[1]) + sqrt(Gamma * prim[2] / prim[0]);
|
||
|
if (tmp > CFL * dx / dtx) // if abs(u)+c (tmp) > abs(u)+c (old)
|
||
|
{
|
||
|
dtx = CFL * dx / tmp; // abs(u)+c determine one smaller time step
|
||
|
}
|
||
|
//consider viscous problem (tau_type == NS)
|
||
|
if (dtx > 0.25 * CFL * dx * dx / Mu && tau_type == NS && Mu > 0)
|
||
|
{
|
||
|
// Note: if dtx (above) > CFL * dx * dx / 4
|
||
|
// replace dxt by the smaller time step determined by viscous term
|
||
|
dtx = 0.25 * CFL * dx * dx / Mu;
|
||
|
}
|
||
|
return dtx;
|
||
|
}
|
||
|
|
||
|
|
||
|
void Update(Fluid1d* fluids, Flux1d** fluxes, Block1d block, int stage)
|
||
|
{
|
||
|
if (stage > block.stages)
|
||
|
{
|
||
|
cout << "wrong middle stage,pls check the time marching setting" << endl;
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
double dt = block.dt;
|
||
|
#pragma omp parallel for
|
||
|
for (int i = block.ghost; i < block.nodex + block.ghost + 1; ++i)
|
||
|
{
|
||
|
for (int j = 0; j < 3; ++j)
|
||
|
{
|
||
|
double Flux = 0.0;
|
||
|
for (int k = 0; k < stage + 1; ++k)
|
||
|
{
|
||
|
Flux = Flux
|
||
|
+ block.timecoefficient[stage][k][0] * fluxes[i][k].f[j]
|
||
|
+ block.timecoefficient[stage][k][1] * fluxes[i][k].derf[j];
|
||
|
}
|
||
|
fluxes[i][stage].F[j] = Flux;
|
||
|
}
|
||
|
}
|
||
|
#pragma omp parallel for
|
||
|
for (int i = block.ghost; i < block.nodex + block.ghost; ++i)
|
||
|
{
|
||
|
for (int j = 0; j < 3; ++j)
|
||
|
{
|
||
|
fluids[i].convar[j] = fluids[i].convar_old[j] + 1.0 / fluids[i].dx * (fluxes[i][stage].F[j] - fluxes[i + 1][stage].F[j]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void ESTIME(double& SL, double& SM, double& SR, double DL, double UL, double PL, double CL, double DR, double UR, double PR, double CR)
|
||
|
{
|
||
|
//this program is copied from toro
|
||
|
//to compute wave speed estimates for the HLLC Riemann
|
||
|
//solver usingand adaptive approximate - state Riemann
|
||
|
//solver including the PVRS, TRRSand TSRS solvers
|
||
|
double QUSER = 2.0;
|
||
|
double G1 = (Gamma - 1.0) / (2.0 * Gamma);
|
||
|
double G2 = (Gamma + 1.0) / (2.0 * Gamma);
|
||
|
double G3 = 2.0 * Gamma / (Gamma - 1.0);
|
||
|
double G4 = 2.0 / (Gamma - 1.0);
|
||
|
double G5 = 2.0 / (Gamma + 1.0);
|
||
|
double G6 = (Gamma - 1.0) / (Gamma + 1.0);
|
||
|
double G7 = (Gamma - 1.0) / 2.0;
|
||
|
double G8 = Gamma - 1.0;
|
||
|
// Compute guess pressure from PVRS Riemann solver
|
||
|
double CUP = 0.25 * (DL + DR) * (CL + CR);
|
||
|
double PPV = 0.5 * (PL + PR) + 0.5 * (UL - UR) * CUP;
|
||
|
PPV = fmax(0.0, PPV);
|
||
|
double PMIN = fmin(PL, PR);
|
||
|
double PMAX = fmax(PL, PR);
|
||
|
double QMAX = PMAX / PMIN;
|
||
|
double PM;
|
||
|
double UM;
|
||
|
|
||
|
|
||
|
double PQ = pow((PL / PR), G1);
|
||
|
UM = (PQ * UL / CL + UR / CR + G4 * (PQ - 1.0)) / (PQ / CL + 1.0 / CR);
|
||
|
double PTL = 1.0 + G7 * (UL - UM) / CL;
|
||
|
double PTR = 1.0 + G7 * (UM - UR) / CR;
|
||
|
PM = 0.5 * (PL * pow(PTL, G3) + PR * pow(PTR, G3));
|
||
|
|
||
|
|
||
|
PM = pow((CL + CR - G7 * (UR - UL)) / (CL / pow(PL, G1) + CR / pow(PR, G1)), G3);
|
||
|
//Find speeds
|
||
|
if (PM <= PL)
|
||
|
{
|
||
|
SL = UL - CL;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
SL = UL - CL * sqrt(1.0 + G2 * (PM / PL - 1.0));
|
||
|
}
|
||
|
|
||
|
SM = UM;
|
||
|
|
||
|
if (PM <= PR)
|
||
|
{
|
||
|
SR = UR + CR;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
SR = UR + CR * sqrt(1.0 + G2 * (PM / PR - 1.0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void get_flux(double p[4], double* flux)
|
||
|
{
|
||
|
flux[0] = p[0] * p[1];
|
||
|
flux[1] = p[0] * p[1] * p[1] + p[3];
|
||
|
flux[2] = p[0] * p[1] * p[2];
|
||
|
double ENERGS = 0.5 * (p[1] * p[1] + p[2] * p[2]) * p[0] + p[3] / (Gamma - 1.0);
|
||
|
flux[3] = p[1] * (ENERGS + p[3]);
|
||
|
}
|
||
|
|
||
|
void ustarforHLLC(double d1, double u1, double v1, double p1, double s1, double star1, double* ustar)
|
||
|
{
|
||
|
|
||
|
double tmp1, tmp2, tmp3;
|
||
|
|
||
|
tmp1 = d1 * (s1 - u1) / (s1 - star1);
|
||
|
tmp2 = 0.5 * (u1 * u1 + v1 * v1) + p1 / ((Gamma - 1.0) * d1);
|
||
|
tmp3 = star1 + p1 / (d1 * (s1 - u1));
|
||
|
|
||
|
ustar[0] = tmp1;
|
||
|
ustar[1] = tmp1 * star1;
|
||
|
ustar[2] = tmp1 * v1;
|
||
|
ustar[3] = tmp1 * (tmp2 + (star1 - u1) * tmp3);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|