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1 Introduction

Kinetic Flux Vector Splitting (KFVS) scheme is a well-known scheme, having
significant influence in many aspects of fluid mechanics. Gas Kinetic Scheme
(GKS) proposed by Kun Xu [1] avoids the intrinsic drawback of the KFVS
scheme but maintains good robustness, thus is broadly accepted as the basement
of many modern schemes. In this note, we will present the derivation of one-
dimensional 1st/2nd-order KFVS and 1st-order GKS and how to implement
these algorithms. The extended references include the paper on the detailed
construction of KFVS and GKS [2], the connection of the GKS solver with the
exact Riemann solver and artificial viscosity [3], and the book on the direct
modeling of CFD method (especially for rarefied flow) [4].

2 1st-order KFVS scheme

2.1 Derivation

The KFVS scheme is based on the collisionless Boltzmann equation, its one-
dimensional form can be written as

ft + ufx = 0 (1)

from (1) we can use the distribution function at t = 0 to replace the original
one

f(x, t) = f(x− ut, 0) (2)

for the one-dimensional Riemann problem, at the moment t = 0 we have a
dramatic change of conservative variables (denoting by W, as it is a vector
consisting of density ρ momentum ρU and energy ρE) in the interface between
two cells in the following form

W =

{
Wl, x ≤ 0

Wr, x > 0
(3)
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this macroscopic value can be obtained by integrate the Maxwell distribution
function on the velocity space

Wl =

∫ ∞
−∞

(∫ ∞
0

Ψαg
ldu

)
dξ

Wr =

∫ ∞
−∞

(∫ 0

−∞
Ψαg

rdu

)
dξ

(4)

In which Ψα = (1, U, 0.5(U2 + ε2))T represents three macroscopic variables. To
recover the macroscopic distribution in (4), the microscopic distribution function
needs to have a form of

f0 =

{
gl, x ≤ 0

gr, x ≥ 0
(5)

where g represents Maxwell-Boltzmann distribution function. Because the Maxwell
distribution has a form of

g = ρ

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2) (6)

In which for one-dimensional problem,

K = N + 2 =
3− γ
γ − 1

λ =
K + 1

4

1

ρE/ρ− U2/2

(7)

where K is the degree of freedom, N is the internal degree of freedom, and γ is
the specific heat ratio. N=0 for monatomic gas, such as He(helium), and N=2
for diatomic gas, such as air, O2(oxygen). And from (1) we know

Wt = −Fx (8)

Therefore, by introducing the following notation whose explicit form is given in
Appendix A

< · · · >=
1

ρ

∫ ∫
(· · · )gdudξ (9)

The final macroscopic variable update formula can thus be obtained by the
following expressions

Wn+1
j = Wn

j +
1

∆x
·
∫ ∆t

0

(
Fj−1/2 − Fj+1/2

)
dt (10)

F =

∫ ∞
−∞

dξ

∫ ∞
0

uΨαg
ldu+

∫ ∞
−∞

dξ

∫ 0

−∞
uΨαg

rdu

= ρl < u1Ψα >
l
u>0 +ρr < u1Ψα >

r
u<0

(11)

2.2 Algorithm

From the derivation above, the complete process of 1st-order KFVS scheme can
be obtained.
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Step 1. Initialization Setting the boundary conditions and initial condi-
tions. In this step, the value of macroscopic variables in every cell will be
initialized.

Step 2. Reconstruction For 1st-order schemes, The macroscopic variable
keeps the same inside a cell. Therefore, the value of flow variable at the interface
is reconstructed as the mean value of the belonging cell, which means at the
interface

Wl
α,j+1/2 = (Wα,j+1/2)− = Wα,j

Wr
α,j+1/2 = (Wα,j+1/2)− = Wα,j+1

Step 3. Flux calculation The flux at every interface is

F =

∫ ∞
∞

dξ

∫ ∞
0

uΨαg
l(1− alut)du+

∫ ∞
−∞

dξ

∫ 0

−∞
uΨαg

r(1− arut)du

= ρl < u1Ψα >
l
u>0 +ρr < u1Ψα >

r
u<0

The intergral< up >and< ξp > can be decided by recursion correlations which
are given in Appendix A.

Step 4. Variable Update According to the calculation above, the macro-
scopic variables can be updated by

Wn+1
j = Wn

j +
1

∆x
·
∫ ∆t

0

(
Fj−1/2 − Fj+1/2

)
dt (12)

3 2nd-order KFVS scheme

3.1 Derivation

To reach higher-order accuracy, on the basement of the 1st-order KFVS scheme
the variable reconstruction technique is used to build a 2nd-order KFVS scheme.
We construct the flow variable distribution along the both sides of a cell interface

W =

{
Wl(1 + ∂Wl

∂x x), x ≤ 0

Wr(1 + ∂Wr

∂x x), x > 0
(13)

in such way, every conservative variable has a constant slope inside each cell.
To recover the macroscopic distribution in (13), the microscopic distribution
function needs to have a form of

f0 =

{
gl(1 + alx), x ≤ 0

gr(1 + arx), x ≥ 0
(14)

where a = gx/g. Because the Maxwell distribution has the form of

g = ρ

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2) (15)
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the derivative can thus be obtained by

a =
∂g/∂x

g
=
∂(ln g)

∂x
=

∂

∂x

(
ln ρ+

K + 1

2
ln
λ

π
− λ

(
(u− U)2 + ξ2

))
=

1

ρ

∂ρ

∂x
+
K + 1

2λ

∂λ

∂x
− ∂λ

∂x

(
(u− U)2 + ξ2

)
− λ

(
2(U − u)

∂U

∂x

)
=

1

ρ

∂ρ

∂x
− 2λU

∂U

∂x
+

(
K + 1

2
− U2

)
∂λ

∂x

+ 2

(
λ
∂U

∂x
+ U

∂λ

∂x

)
· u− 2

∂λ

∂x
·
(
u2 + ξ2

2

)
= a1 + a2u+ a3

u2 + ξ2

2

(16)

In which

∂U

∂x
=

1

ρ

(
∂(ρU)

∂x
− U ∂ρ

∂x

)
∂λ

∂x
=

∂

∂x

(
K + 1

4

(
1

ρE
ρ − U2/2

))

=
K + 1

4

1(
ρE
ρ2 − U2/2

)2

(
−1

ρ

∂(ρE)

∂x
+
ρE

ρ2

∂ρ

∂x
+ U

∂U

∂x

) (17)

Therefore coefficients a1,a2 and a3 can be obtained by combining derivatives of
conservative variables. After acquiring the expression of a, (14) can be trans-
ferred to be

Wl =

∫ ∞
−∞

(∫ ∞
0

Ψαg
laldu

)
dξ

Wr =

∫ ∞
−∞

(∫ 0

−∞
Ψαg

rardu

)
dξ

(18)

Besides this, there exists other approaches to obtain the coefficient a. For
example, introducing the following notation whose form is given in Appendix A

< · · · >=
1

ρ

∫ ∫
(· · · )gdudξ (19)

And by applying (16), (18) can be adopted to

∂W

∂x
=

 ∂(ρ)/∂x
∂(ρU)/∂x
∂(ρE)/∂x


=

 < u0 > < u1 > < u2+ξ2

2 >

< u1 > < u2 > < u3+u1ξ2

2 >

< u2+ξ2

2 > < u3+u1ξ2

2 > < u4+2u2ξ2+ξ4

4 >

 ·
 a1

a2

a3

 (20)

In the derivative calculation, slope limiters are frequently used to maintain the
stability and accuracy of the calculation. The van Leer limiter is a typical one
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of them. For a macroscopic variable W , it has the form of

∂Wj

∂x
= L(s, r) = (sign(s) + sign(r))

sr

|s|+ |r|
(21)

where s and r can be denoted by

s =
Wj+1 −Wj

xj+1 − xj

r =
Wj −Wj−1

xj − xj−1

(22)

After attaining the explicit expressions for these coefficients, at the interface,
by combining (2) and (13), we have

f(x = j + 1/2, t) = f(x− ut, 0)|x=0 =

{
gl(1− alut), u ≥ 0

gr(1− arut), u < 0
(23)

And from (1) we know
Wt = −Fx (24)

Therefore, the final macroscopic variable update formula can thus be obtained
by the following expressions

Wn+1
j = Wn

j +
1

∆x
·
∫ ∆t

0

(
Fj−1/2 − Fj+1/2

)
dt (25)

F =

∫ ∞
−∞

dξ

∫ ∞
0

uΨαg
l(1− alut)du+

∫ ∞
−∞

dξ

∫ 0

−∞
uΨαg

r(1− arut)du

= ρl < u1Ψα >
l
u>0 +ρr < u1Ψα >

r
u<0

− ρlt < u2alΨα >
l
u>0 −ρrt < u2arΨα >

r
u<0

(26)

3.2 Algorithm

From the derivation above, the complete process of 2nd-order KFVS scheme
can be obtained.

Step 1. Initialization Setting the boundary conditions and initial condi-
tions. In this step, the value of macroscopic variables in every cell will be
initialized.

Step 2. Reconstruction Decide the derivatives of macroscopic variable
{∂ρ/∂x, ∂ρU/∂x, ∂ρE/∂x}T . Limiters might be used in this step, like the van
Leer limiter

∂Wj

∂x
= L(s, r) = (sign(s) + sign(r))

sr

|s|+ |r|
where s and r can be denoted by

s =
Wj+1 −Wj

xj+1 − xj

r =
Wj −Wj−1

xj − xj−1

5



After obtaining the derivatives, the macroscopic value of every cell can be re-
constructed, and the value at the interface is

Wl
α,j+1/2 = (Wα,j+1/2)− = Wα,j +

∂Wα,j

∂x

∆x

2

Wl
α,j+1/2 = (Wα,j+1/2)+ = Wα,j+1 −

∂Wα,j+1

∂x

∆x

2

Step 3. Coefficients calculation The slope of macroscopic variables can be
decided by (16). The exact form is

al = al1 + al2 · u+ al3 ·
u2 + ξ2

2

ar = ar1 + ar2 · u+ ar3 ·
u2 + ξ2

2

a1 =
1

ρ

∂ρ

∂x
− 2λU

∂U

∂x
+

(
K + 1

2
− U2

)
∂λ

∂x

a2 = 2

(
λ
∂U

∂x
+ U

∂λ

∂x

)
a3 = −2

∂λ

∂x

In which

∂U

∂x
=

1

ρ

(
∂(ρU)

∂x
− U ∂ρ

∂x

)
∂λ

∂x
=

∂

∂x

(
K + 1

4

(
1

ρE
ρ − U2/2

))

=
K + 1

4

1(
ρE
ρ2 − U2/2

)2

(
−1

ρ

∂(ρE)

∂x
+
ρE

ρ2

∂ρ

∂x
+ U

∂U

∂x

) (27)

Step 4. Flux calculation The flux at every interface is

F =

∫ ∞
∞

dξ

∫ ∞
0

uΨαg
l(1− alut)du+

∫ ∞
−∞

dξ

∫ 0

−∞
uΨαg

r(1− arut)du

= ρl < u1Ψα >
l
u>0 +ρr < u1Ψα >

r
u<0

− ρlt < u2alΨα >
l
u>0 −ρrt < u2arΨα >

r
u<0

note that the ρ here has been reconstructed. The intergral< up >and< ξp >
can be decided by the recursion correlations presented in Appendix A.

Step 5. Variable Update According to the calculation above, the macro-
scopic variables can be updated by

Wn+1
j = Wn

j +
1

∆x
·
∫ ∆t

0

(
Fj−1/2 − Fj+1/2

)
dt (28)
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4 1st-order Gas Kinetic Scheme

4.1 Derivation

Using the Bhatnagar-Gross-Krook (BGK) model, the Boltzmann equation with
collision term becomes

ft + ufx = −f − g
τ

(29)

The zeroth-order integral form of it is

f(x, t) =
(

1− e−
t−t0
τ

)
gc + e−

t−t0
τ gl,r (30)

where ∫ ∞
−∞

dξ

∫ ∞
−∞

Ψαg
cdu

=

∫ ∞
−∞

dξ

∫ ∞
0

Ψαg
ldu+

∫ ∞
−∞

dξ

∫ 0

−∞
Ψαg

rdu

(31)

In this way, the total flux will be divided into two parts, the first one is the
same with 1st-order KFVS

F0,j+1/2 =

∫ ∞
−∞

dξ

∫ ∞
0

Ψαg
ludu+

∫ ∞
−∞

dξ

∫ 0

−∞
Ψαg

rudu

= ρl ·

 < u1 >lu>0

< u2 >lu>0

< 1
2 (u3 + u1ξ2) >lu>0


+ ρr ·

 < u1 >ru<0

< u2 >ru<0

< 1
2 (u3 + u1ξ2) >ru<0


(32)

To obtain the second part of flux, we need to get the macroscopic variables at
the interfaces first ρc

ρcU c

ρcEc

 = ρl ·

 < u0 >lu>0

< u1 >lu>0

< 1
2 (u2 + ξ2) >lu>0


+ ρr ·

 < u0 >ru<0

< u1 >ru<0

< 1
2 (u2 + ξ2) >ru<0

 (33)

then from (33) we can obtain

U c =
ρcU c

ρc

λc =
K + 1

4

ρc

ρcEc − 1
2ρc (ρcU c)

2

(34)
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Then we can calculate the second part of flux according to the interface macro-
scopic variables, U c and λc obtained from (33) and (34)

F1,j+1/2 =

∫ ∞
−∞

dξ

∫ ∞
−∞

Ψαg0udu

= ρc ·

 < u1 >c

< u2 >c

< 1
2 (u3 + u1ξ2) >c

 (35)

then with the notation η = e−t/τ , we can finally get the 1st order GKS flux

Fj+1/2 = (1− η)F1,j+1/2 + ηF0,j+1/2 (36)

then macroscopic variables can be updated by

Wn+1
j −Wn

j =
1

∆x
·
∫ ∆t

0

(
Fj−1/2 − Fj+1/2

)
dt (37)

Through derivation we can obtain the explicit form of Fj−1/2 and Fj+1/2. Due
to its enormous length, the exact form will be provided as attachment.

4.2 Algorithm

From the derivation above, the complete process of 1st-order GKS scheme can
be obtained.

Step 1. Initialization Setting the boundary conditions and initial condi-
tions. In this step, the value of macroscopic variables in every cell will be
initialized.

Step 2. Reconstruction For 1st-order schemes, The macroscopic variable
keeps the same inside a cell. Therefore, the value of flow variable at the interface
is reconstructed as the mean value of the belonging cell, which means at the
interface

Wl
α,j+1/2 = (Wα,j+1/2)− = Wα,j

Wr
α,j+1/2 = (Wα,j+1/2)+ = Wα,j+1

Step 3. Equilibrium state calculation From the initial macroscopic vari-
able distribution, after reconstruction, the equilibrium state in (33) becomes ρcj+1/2

ρcj+1/2U
c
j+1/2

ρcj+1/2E
c
j+1/2

 = ρlj+1/2 ·

 < u0 >lu>0

< u1 >lu>0

< 1
2 (u2 + ξ2) >lu>0


+ ρrj+1/2 ·

 < u0 >ru<0

< u1 >ru<0

< 1
2 (u2 + ξ2) >ru<0


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thus the primary variables in (34) become

U cj+1/2 =
ρcj+1/2U

c
j+1/2

ρcj+1/2

λcj+1/2 =
K + 1

4

ρcj+1/2

ρcj+1/2E
c
j+1/2 −

1
2ρc
j+1/2

(ρcj+1/2U
c
j+1/2)2

Step 4. Flux calculation With the notation η = e−t/τ , the flux at every
interface is consisted of two parts

Fj+1/2 = (1− η)F1,j+1/2 + ηF0,j+1/2

the form of the first part is the same as 1st-order KFVS scheme

F0,j+1/2 =

∫
dξ

∫
u>0

Ψαg
ludu+

∫
dξ

∫
u<0

Ψαg
rudu

= ρlj+1/2 ·

 < u1 >lu>0

< u2 >lu>0

< 1
2 (u3 + u1ξ2) >lu>0


+ ρrj+1/2 ·

 < u1 >ru<0

< u2 >ru<0

< 1
2 (u3 + u1ξ2) >ru<0


where the intergral< up >and< ξp > can be decided by recursion correlations.
The second part needs to be calculated from equilibrium state variables

F1,j+1/2 =

∫
dξ

∫
Ψαg0udu

= ρcj+1/2 ·

 < u1 >c

< u2 >c

< 1
2 (u3 + u1ξ2) >c


Step 5. Variable update According to the calculation above, the macro-
scopic variables can be updated by

Wn+1
j −Wn

j =
1

∆x
·
∫ ∆t

0

(
Fj−1/2 − Fj+1/2

)
dt

=
1

∆x
·
∫ ∆t

0

[
(1− η)F1,j−1/2 + ηF0,j−1/2

]
dt

− 1

∆x
·
∫ ∆t

0

[
(1− η)F1,j+1/2 + ηF0,j+1/2

]
dt

=
1

∆x
·
[
(∆t− τ(1− η))F1,j−1/2 + (τ(1− η)F0,j−1/2)

]
− 1

∆x
·
[
(∆t− τ(1− η))F1,j+1/2 + (τ(1− η)F0,j+1/2)

]
In practice, the collision time τ is modified to the numerical collision time τn

to simulate the invicid flow with discontinuity. Usually η = τn/p can be chosen
as a constant, e.g., 0.3, and the 1st-order GKS will be essentially positive-
preserving as proven in [5].
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Appendix A: Recursive Correlations for the Mo-
ments Calculation

To deal with the integral of Maxwellian distribution function, we use a unified
form of it

< · · · > =
1

ρ

∫
dξ

∫ +∞

−∞
(· · · )gdu

< · · · >u>0 =
1

ρ

∫
dξ

∫ +∞

0

(· · · )gdu

< · · · >u<0 =
1

ρ

∫
dξ

∫ 0

−∞
(· · · )gdu

During the calculation, we have

< unξl >=< un >< ξl >

where n is an integer starting from 0 and l is an even integer starting from 0
due to the symmetrical property of Xi. For the moments of < ξl >, the limits
will always be −∞ and +∞, so

< ξ2 > =
K

2λ

< ξ4 > =
K2 + 2K

4λ2

For u, the full scope integral has the form

< u0 > = 1

< u1 > = U

· · ·

< un+2 > = U < un+1 > +
n+ 1

2λ
< un >

and the half scope integral has the form

< u0 >>0 =
1

2
erfc

(
−
√
λU
)

< u1 >>0 = U < u0 >>0 +
1

2

e−λU
2

√
πλ

· · ·

< un+2 >>0 = U < un+1 >>0 +
n+ 1

2λ
< un >>0

and

< u0 ><0 =
1

2
erfc

(√
λU
)

< u1 ><0 = U < u0 ><0 −
1

2

e−λU
2

√
πλ

· · ·

< un+2 ><0 = U < un+1 ><0 +
n+ 1

2λ
< un ><0
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where erfc is the error function which can be written as

erfc(x) =
2√
π

∫ ∞
x

e−η
2

dη

by the recursive correlation above, the moments of Maxwellian distribution func-
tion can thus be obtained.
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