# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Dataloaders and dataset utils """ import glob import hashlib import json import logging import os import random import shutil import time from itertools import repeat from multiprocessing.pool import ThreadPool, Pool from pathlib import Path from threading import Thread from zipfile import ZipFile import cv2 import numpy as np import torch import torch.nn.functional as F import yaml from PIL import Image, ExifTags from torch.utils.data import Dataset from tqdm import tqdm from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective from utils.general import check_dataset, check_requirements, check_yaml, clean_str, segments2boxes, \ xywh2xyxy, xywhn2xyxy, xyxy2xywhn, xyn2xy from utils.torch_utils import torch_distributed_zero_first # Parameters HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes NUM_THREADS = min(8, os.cpu_count()) # number of multiprocessing threads # Get orientation exif tag for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation] == 'Orientation': break def get_hash(paths): # Returns a single hash value of a list of paths (files or dirs) size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes h = hashlib.md5(str(size).encode()) # hash sizes h.update(''.join(paths).encode()) # hash paths return h.hexdigest() # return hash def exif_size(img): # Returns exif-corrected PIL size s = img.size # (width, height) try: rotation = dict(img._getexif().items())[orientation] if rotation == 6: # rotation 270 s = (s[1], s[0]) elif rotation == 8: # rotation 90 s = (s[1], s[0]) except: pass return s def exif_transpose(image): """ Transpose a PIL image accordingly if it has an EXIF Orientation tag. From https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py :param image: The image to transpose. :return: An image. """ exif = image.getexif() orientation = exif.get(0x0112, 1) # default 1 if orientation > 1: method = {2: Image.FLIP_LEFT_RIGHT, 3: Image.ROTATE_180, 4: Image.FLIP_TOP_BOTTOM, 5: Image.TRANSPOSE, 6: Image.ROTATE_270, 7: Image.TRANSVERSE, 8: Image.ROTATE_90, }.get(orientation) if method is not None: image = image.transpose(method) del exif[0x0112] image.info["exif"] = exif.tobytes() return image def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0, rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix=''): # Make sure only the first process in DDP process the dataset first, and the following others can use the cache with torch_distributed_zero_first(rank): dataset = LoadImagesAndLabels(path, imgsz, batch_size, augment=augment, # augment images hyp=hyp, # augmentation hyperparameters rect=rect, # rectangular training cache_images=cache, single_cls=single_cls, stride=int(stride), pad=pad, image_weights=image_weights, prefix=prefix) batch_size = min(batch_size, len(dataset)) nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, workers]) # number of workers sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader() dataloader = loader(dataset, batch_size=batch_size, num_workers=nw, sampler=sampler, pin_memory=True, collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn) return dataloader, dataset class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): """ Dataloader that reuses workers Uses same syntax as vanilla DataLoader """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) self.iterator = super().__iter__() def __len__(self): return len(self.batch_sampler.sampler) def __iter__(self): for i in range(len(self)): yield next(self.iterator) class _RepeatSampler(object): """ Sampler that repeats forever Args: sampler (Sampler) """ def __init__(self, sampler): self.sampler = sampler def __iter__(self): while True: yield from iter(self.sampler) class LoadImages: # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4` def __init__(self, path, img_size=640, stride=32, auto=True): p = str(Path(path).resolve()) # os-agnostic absolute path if '*' in p: files = sorted(glob.glob(p, recursive=True)) # glob elif os.path.isdir(p): files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir elif os.path.isfile(p): files = [p] # files else: raise Exception(f'ERROR: {p} does not exist') images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] ni, nv = len(images), len(videos) self.img_size = img_size self.stride = stride self.files = images + videos self.nf = ni + nv # number of files self.video_flag = [False] * ni + [True] * nv self.mode = 'image' self.auto = auto if any(videos): self.new_video(videos[0]) # new video else: self.cap = None assert self.nf > 0, f'No images or videos found in {p}. ' \ f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}' def __iter__(self): self.count = 0 return self def __next__(self): if self.count == self.nf: raise StopIteration path = self.files[self.count] if self.video_flag[self.count]: # Read video self.mode = 'video' ret_val, img0 = self.cap.read() if not ret_val: self.count += 1 self.cap.release() if self.count == self.nf: # last video raise StopIteration else: path = self.files[self.count] self.new_video(path) ret_val, img0 = self.cap.read() self.frame += 1 print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='') else: # Read image self.count += 1 img0 = cv2.imread(path) # BGR assert img0 is not None, 'Image Not Found ' + path print(f'image {self.count}/{self.nf} {path}: ', end='') # Padded resize img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0] # Convert img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB img = np.ascontiguousarray(img) return path, img, img0, self.cap def new_video(self, path): self.frame = 0 self.cap = cv2.VideoCapture(path) self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) def __len__(self): return self.nf # number of files class LoadWebcam: # for inference # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0` def __init__(self, pipe='0', img_size=640, stride=32): self.img_size = img_size self.stride = stride self.pipe = eval(pipe) if pipe.isnumeric() else pipe self.cap = cv2.VideoCapture(self.pipe) # video capture object self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 if cv2.waitKey(1) == ord('q'): # q to quit self.cap.release() cv2.destroyAllWindows() raise StopIteration # Read frame ret_val, img0 = self.cap.read() img0 = cv2.flip(img0, 1) # flip left-right # Print assert ret_val, f'Camera Error {self.pipe}' img_path = 'webcam.jpg' print(f'webcam {self.count}: ', end='') # Padded resize img = letterbox(img0, self.img_size, stride=self.stride)[0] # Convert img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB img = np.ascontiguousarray(img) return img_path, img, img0, None def __len__(self): return 0 class LoadStreams: # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams` def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True): self.mode = 'stream' self.img_size = img_size self.stride = stride if os.path.isfile(sources): with open(sources, 'r') as f: sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] else: sources = [sources] n = len(sources) self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n self.sources = [clean_str(x) for x in sources] # clean source names for later self.auto = auto for i, s in enumerate(sources): # index, source # Start thread to read frames from video stream print(f'{i + 1}/{n}: {s}... ', end='') if 'youtube.com/' in s or 'youtu.be/' in s: # if source is YouTube video check_requirements(('pafy', 'youtube_dl')) import pafy s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam cap = cv2.VideoCapture(s) assert cap.isOpened(), f'Failed to open {s}' w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0 # 30 FPS fallback self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback _, self.imgs[i] = cap.read() # guarantee first frame self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True) print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)") self.threads[i].start() print('') # newline # check for common shapes s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs]) self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal if not self.rect: print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') def update(self, i, cap, stream): # Read stream `i` frames in daemon thread n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame while cap.isOpened() and n < f: n += 1 # _, self.imgs[index] = cap.read() cap.grab() if n % read == 0: success, im = cap.retrieve() if success: self.imgs[i] = im else: print('WARNING: Video stream unresponsive, please check your IP camera connection.') self.imgs[i] *= 0 cap.open(stream) # re-open stream if signal was lost time.sleep(1 / self.fps[i]) # wait time def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit cv2.destroyAllWindows() raise StopIteration # Letterbox img0 = self.imgs.copy() img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0] # Stack img = np.stack(img, 0) # Convert img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW img = np.ascontiguousarray(img) return self.sources, img, img0, None def __len__(self): return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years def img2label_paths(img_paths): # Define label paths as a function of image paths sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths] class LoadImagesAndLabels(Dataset): # YOLOv5 train_loader/val_loader, loads images and labels for training and validation cache_version = 0.6 # dataset labels *.cache version def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): self.img_size = img_size self.augment = augment self.hyp = hyp self.image_weights = image_weights self.rect = False if image_weights else rect self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) self.mosaic_border = [-img_size // 2, -img_size // 2] self.stride = stride self.path = path self.albumentations = Albumentations() if augment else None try: f = [] # image files for p in path if isinstance(path, list) else [path]: p = Path(p) # os-agnostic if p.is_dir(): # dir f += glob.glob(str(p / '**' / '*.*'), recursive=True) # f = list(p.rglob('**/*.*')) # pathlib elif p.is_file(): # file with open(p, 'r') as t: t = t.read().strip().splitlines() parent = str(p.parent) + os.sep f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) else: raise Exception(f'{prefix}{p} does not exist') self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS]) # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib assert self.img_files, f'{prefix}No images found' except Exception as e: raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}') # Check cache self.label_files = img2label_paths(self.img_files) # labels cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') try: cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict assert cache['version'] == self.cache_version # same version assert cache['hash'] == get_hash(self.label_files + self.img_files) # same hash except: cache, exists = self.cache_labels(cache_path, prefix), False # cache # Display cache nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total if exists: d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results if cache['msgs']: logging.info('\n'.join(cache['msgs'])) # display warnings assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}' # Read cache [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items labels, shapes, self.segments = zip(*cache.values()) self.labels = list(labels) self.shapes = np.array(shapes, dtype=np.float64) self.img_files = list(cache.keys()) # update self.label_files = img2label_paths(cache.keys()) # update n = len(shapes) # number of images bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index nb = bi[-1] + 1 # number of batches self.batch = bi # batch index of image self.n = n self.indices = range(n) # Update labels include_class = [] # filter labels to include only these classes (optional) include_class_array = np.array(include_class).reshape(1, -1) for i, (label, segment) in enumerate(zip(self.labels, self.segments)): if include_class: j = (label[:, 0:1] == include_class_array).any(1) self.labels[i] = label[j] if segment: self.segments[i] = segment[j] if single_cls: # single-class training, merge all classes into 0 self.labels[i][:, 0] = 0 if segment: self.segments[i][:, 0] = 0 # Rectangular Training if self.rect: # Sort by aspect ratio s = self.shapes # wh ar = s[:, 1] / s[:, 0] # aspect ratio irect = ar.argsort() self.img_files = [self.img_files[i] for i in irect] self.label_files = [self.label_files[i] for i in irect] self.labels = [self.labels[i] for i in irect] self.shapes = s[irect] # wh ar = ar[irect] # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): ari = ar[bi == i] mini, maxi = ari.min(), ari.max() if maxi < 1: shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) self.imgs, self.img_npy = [None] * n, [None] * n if cache_images: if cache_images == 'disk': self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy') self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files] self.im_cache_dir.mkdir(parents=True, exist_ok=True) gb = 0 # Gigabytes of cached images self.img_hw0, self.img_hw = [None] * n, [None] * n results = ThreadPool(NUM_THREADS).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) pbar = tqdm(enumerate(results), total=n) for i, x in pbar: if cache_images == 'disk': if not self.img_npy[i].exists(): np.save(self.img_npy[i].as_posix(), x[0]) gb += self.img_npy[i].stat().st_size else: self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) gb += self.imgs[i].nbytes pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})' pbar.close() def cache_labels(self, path=Path('./labels.cache'), prefix=''): # Cache dataset labels, check images and read shapes x = {} # dict nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..." with Pool(NUM_THREADS) as pool: pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))), desc=desc, total=len(self.img_files)) for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: nm += nm_f nf += nf_f ne += ne_f nc += nc_f if im_file: x[im_file] = [l, shape, segments] if msg: msgs.append(msg) pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted" pbar.close() if msgs: logging.info('\n'.join(msgs)) if nf == 0: logging.info(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}') x['hash'] = get_hash(self.label_files + self.img_files) x['results'] = nf, nm, ne, nc, len(self.img_files) x['msgs'] = msgs # warnings x['version'] = self.cache_version # cache version try: np.save(path, x) # save cache for next time path.with_suffix('.cache.npy').rename(path) # remove .npy suffix logging.info(f'{prefix}New cache created: {path}') except Exception as e: logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # path not writeable return x def __len__(self): return len(self.img_files) # def __iter__(self): # self.count = -1 # print('ran dataset iter') # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) # return self def __getitem__(self, index): index = self.indices[index] # linear, shuffled, or image_weights hyp = self.hyp mosaic = self.mosaic and random.random() < hyp['mosaic'] if mosaic: # Load mosaic img, labels = load_mosaic(self, index) shapes = None # MixUp augmentation if random.random() < hyp['mixup']: img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1))) else: # Load image img, (h0, w0), (h, w) = load_image(self, index) # Letterbox shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling labels = self.labels[index].copy() if labels.size: # normalized xywh to pixel xyxy format labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) if self.augment: img, labels = random_perspective(img, labels, degrees=hyp['degrees'], translate=hyp['translate'], scale=hyp['scale'], shear=hyp['shear'], perspective=hyp['perspective']) nl = len(labels) # number of labels if nl: labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3) if self.augment: # Albumentations img, labels = self.albumentations(img, labels) nl = len(labels) # update after albumentations # HSV color-space augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) # Flip up-down if random.random() < hyp['flipud']: img = np.flipud(img) if nl: labels[:, 2] = 1 - labels[:, 2] # Flip left-right if random.random() < hyp['fliplr']: img = np.fliplr(img) if nl: labels[:, 1] = 1 - labels[:, 1] # Cutouts # labels = cutout(img, labels, p=0.5) labels_out = torch.zeros((nl, 6)) if nl: labels_out[:, 1:] = torch.from_numpy(labels) # Convert img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB img = np.ascontiguousarray(img) return torch.from_numpy(img), labels_out, self.img_files[index], shapes @staticmethod def collate_fn(batch): img, label, path, shapes = zip(*batch) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, shapes @staticmethod def collate_fn4(batch): img, label, path, shapes = zip(*batch) # transposed n = len(shapes) // 4 img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] ho = torch.tensor([[0., 0, 0, 1, 0, 0]]) wo = torch.tensor([[0., 0, 1, 0, 0, 0]]) s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW i *= 4 if random.random() < 0.5: im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[ 0].type(img[i].type()) l = label[i] else: im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s img4.append(im) label4.append(l) for i, l in enumerate(label4): l[:, 0] = i # add target image index for build_targets() return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 # Ancillary functions -------------------------------------------------------------------------------------------------- def load_image(self, i): # loads 1 image from dataset index 'i', returns im, original hw, resized hw im = self.imgs[i] if im is None: # not cached in ram npy = self.img_npy[i] if npy and npy.exists(): # load npy im = np.load(npy) else: # read image path = self.img_files[i] im = cv2.imread(path) # BGR assert im is not None, 'Image Not Found ' + path h0, w0 = im.shape[:2] # orig hw r = self.img_size / max(h0, w0) # ratio if r != 1: # if sizes are not equal im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR) return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized else: return self.imgs[i], self.img_hw0[i], self.img_hw[i] # im, hw_original, hw_resized def load_mosaic(self, index): # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic labels4, segments4 = [], [] s = self.img_size yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices random.shuffle(indices) for i, index in enumerate(indices): # Load image img, _, (h, w) = load_image(self, index) # place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b # Labels labels, segments = self.labels[index].copy(), self.segments[index].copy() if labels.size: labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format segments = [xyn2xy(x, w, h, padw, padh) for x in segments] labels4.append(labels) segments4.extend(segments) # Concat/clip labels labels4 = np.concatenate(labels4, 0) for x in (labels4[:, 1:], *segments4): np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() # img4, labels4 = replicate(img4, labels4) # replicate # Augment img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste']) img4, labels4 = random_perspective(img4, labels4, segments4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) # border to remove return img4, labels4 def load_mosaic9(self, index): # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic labels9, segments9 = [], [] s = self.img_size indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices random.shuffle(indices) for i, index in enumerate(indices): # Load image img, _, (h, w) = load_image(self, index) # place img in img9 if i == 0: # center img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles h0, w0 = h, w c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates elif i == 1: # top c = s, s - h, s + w, s elif i == 2: # top right c = s + wp, s - h, s + wp + w, s elif i == 3: # right c = s + w0, s, s + w0 + w, s + h elif i == 4: # bottom right c = s + w0, s + hp, s + w0 + w, s + hp + h elif i == 5: # bottom c = s + w0 - w, s + h0, s + w0, s + h0 + h elif i == 6: # bottom left c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h elif i == 7: # left c = s - w, s + h0 - h, s, s + h0 elif i == 8: # top left c = s - w, s + h0 - hp - h, s, s + h0 - hp padx, pady = c[:2] x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords # Labels labels, segments = self.labels[index].copy(), self.segments[index].copy() if labels.size: labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format segments = [xyn2xy(x, w, h, padx, pady) for x in segments] labels9.append(labels) segments9.extend(segments) # Image img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] hp, wp = h, w # height, width previous # Offset yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] # Concat/clip labels labels9 = np.concatenate(labels9, 0) labels9[:, [1, 3]] -= xc labels9[:, [2, 4]] -= yc c = np.array([xc, yc]) # centers segments9 = [x - c for x in segments9] for x in (labels9[:, 1:], *segments9): np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() # img9, labels9 = replicate(img9, labels9) # replicate # Augment img9, labels9 = random_perspective(img9, labels9, segments9, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) # border to remove return img9, labels9 def create_folder(path='./new'): # Create folder if os.path.exists(path): shutil.rmtree(path) # delete output folder os.makedirs(path) # make new output folder def flatten_recursive(path='../datasets/coco128'): # Flatten a recursive directory by bringing all files to top level new_path = Path(path + '_flat') create_folder(new_path) for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): shutil.copyfile(file, new_path / Path(file).name) def extract_boxes(path='../datasets/coco128'): # from utils.datasets import *; extract_boxes() # Convert detection dataset into classification dataset, with one directory per class path = Path(path) # images dir shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing files = list(path.rglob('*.*')) n = len(files) # number of files for im_file in tqdm(files, total=n): if im_file.suffix[1:] in IMG_FORMATS: # image im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB h, w = im.shape[:2] # labels lb_file = Path(img2label_paths([str(im_file)])[0]) if Path(lb_file).exists(): with open(lb_file, 'r') as f: lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels for j, x in enumerate(lb): c = int(x[0]) # class f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename if not f.parent.is_dir(): f.parent.mkdir(parents=True) b = x[1:] * [w, h, w, h] # box # b[2:] = b[2:].max() # rectangle to square b[2:] = b[2:] * 1.2 + 3 # pad b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image b[[1, 3]] = np.clip(b[[1, 3]], 0, h) assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' def autosplit(path='../datasets/coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False): """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files Usage: from utils.datasets import *; autosplit() Arguments path: Path to images directory weights: Train, val, test weights (list, tuple) annotated_only: Only use images with an annotated txt file """ path = Path(path) # images dir files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in IMG_FORMATS], []) # image files only n = len(files) # number of files random.seed(0) # for reproducibility indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files [(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) for i, img in tqdm(zip(indices, files), total=n): if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label with open(path.parent / txt[i], 'a') as f: f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file def verify_image_label(args): # Verify one image-label pair im_file, lb_file, prefix = args nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments try: # verify images im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' if im.format.lower() in ('jpg', 'jpeg'): with open(im_file, 'rb') as f: f.seek(-2, 2) if f.read() != b'\xff\xd9': # corrupt JPEG Image.open(im_file).save(im_file, format='JPEG', subsampling=0, quality=100) # re-save image msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved' # verify labels if os.path.isfile(lb_file): nf = 1 # label found with open(lb_file, 'r') as f: l = [x.split() for x in f.read().strip().splitlines() if len(x)] if any([len(x) > 8 for x in l]): # is segment classes = np.array([x[0] for x in l], dtype=np.float32) segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...) l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) l = np.array(l, dtype=np.float32) nl = len(l) if nl: assert l.shape[1] == 5, f'labels require 5 columns, {l.shape[1]} columns detected' assert (l >= 0).all(), f'negative label values {l[l < 0]}' assert (l[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {l[:, 1:][l[:, 1:] > 1]}' l = np.unique(l, axis=0) # remove duplicate rows if len(l) < nl: segments = np.unique(segments, axis=0) msg = f'{prefix}WARNING: {im_file}: {nl - len(l)} duplicate labels removed' else: ne = 1 # label empty l = np.zeros((0, 5), dtype=np.float32) else: nm = 1 # label missing l = np.zeros((0, 5), dtype=np.float32) return im_file, l, shape, segments, nm, nf, ne, nc, msg except Exception as e: nc = 1 msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}' return [None, None, None, None, nm, nf, ne, nc, msg] def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False): """ Return dataset statistics dictionary with images and instances counts per split per class To run in parent directory: export PYTHONPATH="$PWD/yolov5" Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True) Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip') Arguments path: Path to data.yaml or data.zip (with data.yaml inside data.zip) autodownload: Attempt to download dataset if not found locally verbose: Print stats dictionary """ def round_labels(labels): # Update labels to integer class and 6 decimal place floats return [[int(c), *[round(x, 4) for x in points]] for c, *points in labels] def unzip(path): # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/' if str(path).endswith('.zip'): # path is data.zip assert Path(path).is_file(), f'Error unzipping {path}, file not found' ZipFile(path).extractall(path=path.parent) # unzip dir = path.with_suffix('') # dataset directory == zip name return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path else: # path is data.yaml return False, None, path def hub_ops(f, max_dim=1920): # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing f_new = im_dir / Path(f).name # dataset-hub image filename try: # use PIL im = Image.open(f) r = max_dim / max(im.height, im.width) # ratio if r < 1.0: # image too large im = im.resize((int(im.width * r), int(im.height * r))) im.save(f_new, quality=75) # save except Exception as e: # use OpenCV print(f'WARNING: HUB ops PIL failure {f}: {e}') im = cv2.imread(f) im_height, im_width = im.shape[:2] r = max_dim / max(im_height, im_width) # ratio if r < 1.0: # image too large im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_LINEAR) cv2.imwrite(str(f_new), im) zipped, data_dir, yaml_path = unzip(Path(path)) with open(check_yaml(yaml_path), errors='ignore') as f: data = yaml.safe_load(f) # data dict if zipped: data['path'] = data_dir # TODO: should this be dir.resolve()? check_dataset(data, autodownload) # download dataset if missing hub_dir = Path(data['path'] + ('-hub' if hub else '')) stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary for split in 'train', 'val', 'test': if data.get(split) is None: stats[split] = None # i.e. no test set continue x = [] dataset = LoadImagesAndLabels(data[split]) # load dataset for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'): x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc'])) x = np.array(x) # shape(128x80) stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()}, 'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()), 'per_class': (x > 0).sum(0).tolist()}, 'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in zip(dataset.img_files, dataset.labels)]} if hub: im_dir = hub_dir / 'images' im_dir.mkdir(parents=True, exist_ok=True) for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'): pass # Profile stats_path = hub_dir / 'stats.json' if profile: for _ in range(1): file = stats_path.with_suffix('.npy') t1 = time.time() np.save(file, stats) t2 = time.time() x = np.load(file, allow_pickle=True) print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write') file = stats_path.with_suffix('.json') t1 = time.time() with open(file, 'w') as f: json.dump(stats, f) # save stats *.json t2 = time.time() with open(file, 'r') as f: x = json.load(f) # load hyps dict print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write') # Save, print and return if hub: print(f'Saving {stats_path.resolve()}...') with open(stats_path, 'w') as f: json.dump(stats, f) # save stats.json if verbose: print(json.dumps(stats, indent=2, sort_keys=False)) return stats