forked from openkylin/imagemagick
2374 lines
83 KiB
C
2374 lines
83 KiB
C
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% FFFFF EEEEE AAA TTTTT U U RRRR EEEEE %
|
||
% F E A A T U U R R E %
|
||
% FFF EEE AAAAA T U U RRRR EEE %
|
||
% F E A A T U U R R E %
|
||
% F EEEEE A A T UUU R R EEEEE %
|
||
% %
|
||
% %
|
||
% MagickCore Image Feature Methods %
|
||
% %
|
||
% Software Design %
|
||
% Cristy %
|
||
% July 1992 %
|
||
% %
|
||
% %
|
||
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
|
||
% dedicated to making software imaging solutions freely available. %
|
||
% %
|
||
% You may not use this file except in compliance with the License. You may %
|
||
% obtain a copy of the License at %
|
||
% %
|
||
% https://imagemagick.org/script/license.php %
|
||
% %
|
||
% Unless required by applicable law or agreed to in writing, software %
|
||
% distributed under the License is distributed on an "AS IS" BASIS, %
|
||
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
|
||
% See the License for the specific language governing permissions and %
|
||
% limitations under the License. %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
%
|
||
%
|
||
*/
|
||
|
||
/*
|
||
Include declarations.
|
||
*/
|
||
#include "magick/studio.h"
|
||
#include "magick/animate.h"
|
||
#include "magick/artifact.h"
|
||
#include "magick/blob.h"
|
||
#include "magick/blob-private.h"
|
||
#include "magick/cache.h"
|
||
#include "magick/cache-private.h"
|
||
#include "magick/cache-view.h"
|
||
#include "magick/channel.h"
|
||
#include "magick/client.h"
|
||
#include "magick/color.h"
|
||
#include "magick/color-private.h"
|
||
#include "magick/colorspace.h"
|
||
#include "magick/colorspace-private.h"
|
||
#include "magick/composite.h"
|
||
#include "magick/composite-private.h"
|
||
#include "magick/compress.h"
|
||
#include "magick/constitute.h"
|
||
#include "magick/deprecate.h"
|
||
#include "magick/display.h"
|
||
#include "magick/draw.h"
|
||
#include "magick/enhance.h"
|
||
#include "magick/exception.h"
|
||
#include "magick/exception-private.h"
|
||
#include "magick/feature.h"
|
||
#include "magick/gem.h"
|
||
#include "magick/geometry.h"
|
||
#include "magick/list.h"
|
||
#include "magick/image-private.h"
|
||
#include "magick/magic.h"
|
||
#include "magick/magick.h"
|
||
#include "magick/matrix.h"
|
||
#include "magick/memory_.h"
|
||
#include "magick/module.h"
|
||
#include "magick/monitor.h"
|
||
#include "magick/monitor-private.h"
|
||
#include "magick/morphology-private.h"
|
||
#include "magick/option.h"
|
||
#include "magick/paint.h"
|
||
#include "magick/pixel-private.h"
|
||
#include "magick/profile.h"
|
||
#include "magick/property.h"
|
||
#include "magick/quantize.h"
|
||
#include "magick/random_.h"
|
||
#include "magick/resource_.h"
|
||
#include "magick/segment.h"
|
||
#include "magick/semaphore.h"
|
||
#include "magick/signature-private.h"
|
||
#include "magick/string_.h"
|
||
#include "magick/thread-private.h"
|
||
#include "magick/timer.h"
|
||
#include "magick/token.h"
|
||
#include "magick/utility.h"
|
||
#include "magick/version.h"
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% C a n n y E d g e I m a g e %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% CannyEdgeImage() uses a multi-stage algorithm to detect a wide range of
|
||
% edges in images.
|
||
%
|
||
% The format of the CannyEdgeImage method is:
|
||
%
|
||
% Image *CannyEdgeImage(const Image *image,const double radius,
|
||
% const double sigma,const double lower_percent,
|
||
% const double upper_percent,ExceptionInfo *exception)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o image: the image.
|
||
%
|
||
% o radius: the radius of the gaussian smoothing filter.
|
||
%
|
||
% o sigma: the sigma of the gaussian smoothing filter.
|
||
%
|
||
% o lower_percent: percentage of edge pixels in the lower threshold.
|
||
%
|
||
% o upper_percent: percentage of edge pixels in the upper threshold.
|
||
%
|
||
% o exception: return any errors or warnings in this structure.
|
||
%
|
||
*/
|
||
|
||
typedef struct _CannyInfo
|
||
{
|
||
double
|
||
magnitude,
|
||
intensity;
|
||
|
||
int
|
||
orientation;
|
||
|
||
ssize_t
|
||
x,
|
||
y;
|
||
} CannyInfo;
|
||
|
||
static inline MagickBooleanType IsAuthenticPixel(const Image *image,
|
||
const ssize_t x,const ssize_t y)
|
||
{
|
||
if ((x < 0) || (x >= (ssize_t) image->columns))
|
||
return(MagickFalse);
|
||
if ((y < 0) || (y >= (ssize_t) image->rows))
|
||
return(MagickFalse);
|
||
return(MagickTrue);
|
||
}
|
||
|
||
static MagickBooleanType TraceEdges(Image *edge_image,CacheView *edge_view,
|
||
MatrixInfo *canny_cache,const ssize_t x,const ssize_t y,
|
||
const double lower_threshold,ExceptionInfo *exception)
|
||
{
|
||
CannyInfo
|
||
edge,
|
||
pixel;
|
||
|
||
MagickBooleanType
|
||
status;
|
||
|
||
PixelPacket
|
||
*q;
|
||
|
||
ssize_t
|
||
i;
|
||
|
||
q=GetCacheViewAuthenticPixels(edge_view,x,y,1,1,exception);
|
||
if (q == (PixelPacket *) NULL)
|
||
return(MagickFalse);
|
||
q->red=QuantumRange;
|
||
q->green=QuantumRange;
|
||
q->blue=QuantumRange;
|
||
status=SyncCacheViewAuthenticPixels(edge_view,exception);
|
||
if (status == MagickFalse)
|
||
return(MagickFalse);
|
||
if (GetMatrixElement(canny_cache,0,0,&edge) == MagickFalse)
|
||
return(MagickFalse);
|
||
edge.x=x;
|
||
edge.y=y;
|
||
if (SetMatrixElement(canny_cache,0,0,&edge) == MagickFalse)
|
||
return(MagickFalse);
|
||
for (i=1; i != 0; )
|
||
{
|
||
ssize_t
|
||
v;
|
||
|
||
i--;
|
||
status=GetMatrixElement(canny_cache,i,0,&edge);
|
||
if (status == MagickFalse)
|
||
return(MagickFalse);
|
||
for (v=(-1); v <= 1; v++)
|
||
{
|
||
ssize_t
|
||
u;
|
||
|
||
for (u=(-1); u <= 1; u++)
|
||
{
|
||
if ((u == 0) && (v == 0))
|
||
continue;
|
||
if (IsAuthenticPixel(edge_image,edge.x+u,edge.y+v) == MagickFalse)
|
||
continue;
|
||
/*
|
||
Not an edge if gradient value is below the lower threshold.
|
||
*/
|
||
q=GetCacheViewAuthenticPixels(edge_view,edge.x+u,edge.y+v,1,1,
|
||
exception);
|
||
if (q == (PixelPacket *) NULL)
|
||
return(MagickFalse);
|
||
status=GetMatrixElement(canny_cache,edge.x+u,edge.y+v,&pixel);
|
||
if (status == MagickFalse)
|
||
return(MagickFalse);
|
||
if ((GetPixelIntensity(edge_image,q) == 0.0) &&
|
||
(pixel.intensity >= lower_threshold))
|
||
{
|
||
q->red=QuantumRange;
|
||
q->green=QuantumRange;
|
||
q->blue=QuantumRange;
|
||
status=SyncCacheViewAuthenticPixels(edge_view,exception);
|
||
if (status == MagickFalse)
|
||
return(MagickFalse);
|
||
edge.x+=u;
|
||
edge.y+=v;
|
||
status=SetMatrixElement(canny_cache,i,0,&edge);
|
||
if (status == MagickFalse)
|
||
return(MagickFalse);
|
||
i++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return(MagickTrue);
|
||
}
|
||
|
||
MagickExport Image *CannyEdgeImage(const Image *image,const double radius,
|
||
const double sigma,const double lower_percent,const double upper_percent,
|
||
ExceptionInfo *exception)
|
||
{
|
||
#define CannyEdgeImageTag "CannyEdge/Image"
|
||
|
||
CacheView
|
||
*edge_view;
|
||
|
||
CannyInfo
|
||
element;
|
||
|
||
char
|
||
geometry[MaxTextExtent];
|
||
|
||
double
|
||
lower_threshold,
|
||
max,
|
||
min,
|
||
upper_threshold;
|
||
|
||
Image
|
||
*edge_image;
|
||
|
||
KernelInfo
|
||
*kernel_info;
|
||
|
||
MagickBooleanType
|
||
status;
|
||
|
||
MagickOffsetType
|
||
progress;
|
||
|
||
MatrixInfo
|
||
*canny_cache;
|
||
|
||
ssize_t
|
||
y;
|
||
|
||
assert(image != (const Image *) NULL);
|
||
assert(image->signature == MagickCoreSignature);
|
||
if (image->debug != MagickFalse)
|
||
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
||
assert(exception != (ExceptionInfo *) NULL);
|
||
assert(exception->signature == MagickCoreSignature);
|
||
/*
|
||
Filter out noise.
|
||
*/
|
||
(void) FormatLocaleString(geometry,MaxTextExtent,
|
||
"blur:%.20gx%.20g;blur:%.20gx%.20g+90",radius,sigma,radius,sigma);
|
||
kernel_info=AcquireKernelInfo(geometry);
|
||
if (kernel_info == (KernelInfo *) NULL)
|
||
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
|
||
edge_image=MorphologyImageChannel(image,DefaultChannels,ConvolveMorphology,1,
|
||
kernel_info,exception);
|
||
kernel_info=DestroyKernelInfo(kernel_info);
|
||
if (edge_image == (Image *) NULL)
|
||
return((Image *) NULL);
|
||
if (TransformImageColorspace(edge_image,GRAYColorspace) == MagickFalse)
|
||
{
|
||
edge_image=DestroyImage(edge_image);
|
||
return((Image *) NULL);
|
||
}
|
||
(void) SetImageAlphaChannel(edge_image,DeactivateAlphaChannel);
|
||
/*
|
||
Find the intensity gradient of the image.
|
||
*/
|
||
canny_cache=AcquireMatrixInfo(edge_image->columns,edge_image->rows,
|
||
sizeof(CannyInfo),exception);
|
||
if (canny_cache == (MatrixInfo *) NULL)
|
||
{
|
||
edge_image=DestroyImage(edge_image);
|
||
return((Image *) NULL);
|
||
}
|
||
status=MagickTrue;
|
||
edge_view=AcquireVirtualCacheView(edge_image,exception);
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(edge_image,edge_image,edge_image->rows,1)
|
||
#endif
|
||
for (y=0; y < (ssize_t) edge_image->rows; y++)
|
||
{
|
||
const PixelPacket
|
||
*magick_restrict p;
|
||
|
||
ssize_t
|
||
x;
|
||
|
||
if (status == MagickFalse)
|
||
continue;
|
||
p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns+1,2,
|
||
exception);
|
||
if (p == (const PixelPacket *) NULL)
|
||
{
|
||
status=MagickFalse;
|
||
continue;
|
||
}
|
||
for (x=0; x < (ssize_t) edge_image->columns; x++)
|
||
{
|
||
CannyInfo
|
||
pixel;
|
||
|
||
double
|
||
dx,
|
||
dy;
|
||
|
||
const PixelPacket
|
||
*magick_restrict kernel_pixels;
|
||
|
||
ssize_t
|
||
v;
|
||
|
||
static double
|
||
Gx[2][2] =
|
||
{
|
||
{ -1.0, +1.0 },
|
||
{ -1.0, +1.0 }
|
||
},
|
||
Gy[2][2] =
|
||
{
|
||
{ +1.0, +1.0 },
|
||
{ -1.0, -1.0 }
|
||
};
|
||
|
||
(void) memset(&pixel,0,sizeof(pixel));
|
||
dx=0.0;
|
||
dy=0.0;
|
||
kernel_pixels=p;
|
||
for (v=0; v < 2; v++)
|
||
{
|
||
ssize_t
|
||
u;
|
||
|
||
for (u=0; u < 2; u++)
|
||
{
|
||
double
|
||
intensity;
|
||
|
||
intensity=GetPixelIntensity(edge_image,kernel_pixels+u);
|
||
dx+=0.5*Gx[v][u]*intensity;
|
||
dy+=0.5*Gy[v][u]*intensity;
|
||
}
|
||
kernel_pixels+=edge_image->columns+1;
|
||
}
|
||
pixel.magnitude=hypot(dx,dy);
|
||
pixel.orientation=0;
|
||
if (fabs(dx) > MagickEpsilon)
|
||
{
|
||
double
|
||
slope;
|
||
|
||
slope=dy/dx;
|
||
if (slope < 0.0)
|
||
{
|
||
if (slope < -2.41421356237)
|
||
pixel.orientation=0;
|
||
else
|
||
if (slope < -0.414213562373)
|
||
pixel.orientation=1;
|
||
else
|
||
pixel.orientation=2;
|
||
}
|
||
else
|
||
{
|
||
if (slope > 2.41421356237)
|
||
pixel.orientation=0;
|
||
else
|
||
if (slope > 0.414213562373)
|
||
pixel.orientation=3;
|
||
else
|
||
pixel.orientation=2;
|
||
}
|
||
}
|
||
if (SetMatrixElement(canny_cache,x,y,&pixel) == MagickFalse)
|
||
continue;
|
||
p++;
|
||
}
|
||
}
|
||
edge_view=DestroyCacheView(edge_view);
|
||
/*
|
||
Non-maxima suppression, remove pixels that are not considered to be part
|
||
of an edge.
|
||
*/
|
||
progress=0;
|
||
(void) GetMatrixElement(canny_cache,0,0,&element);
|
||
max=element.intensity;
|
||
min=element.intensity;
|
||
edge_view=AcquireAuthenticCacheView(edge_image,exception);
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(edge_image,edge_image,edge_image->rows,1)
|
||
#endif
|
||
for (y=0; y < (ssize_t) edge_image->rows; y++)
|
||
{
|
||
PixelPacket
|
||
*magick_restrict q;
|
||
|
||
ssize_t
|
||
x;
|
||
|
||
if (status == MagickFalse)
|
||
continue;
|
||
q=GetCacheViewAuthenticPixels(edge_view,0,y,edge_image->columns,1,
|
||
exception);
|
||
if (q == (PixelPacket *) NULL)
|
||
{
|
||
status=MagickFalse;
|
||
continue;
|
||
}
|
||
for (x=0; x < (ssize_t) edge_image->columns; x++)
|
||
{
|
||
CannyInfo
|
||
alpha_pixel,
|
||
beta_pixel,
|
||
pixel;
|
||
|
||
(void) GetMatrixElement(canny_cache,x,y,&pixel);
|
||
switch (pixel.orientation)
|
||
{
|
||
case 0:
|
||
default:
|
||
{
|
||
/*
|
||
0 degrees, north and south.
|
||
*/
|
||
(void) GetMatrixElement(canny_cache,x,y-1,&alpha_pixel);
|
||
(void) GetMatrixElement(canny_cache,x,y+1,&beta_pixel);
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
/*
|
||
45 degrees, northwest and southeast.
|
||
*/
|
||
(void) GetMatrixElement(canny_cache,x-1,y-1,&alpha_pixel);
|
||
(void) GetMatrixElement(canny_cache,x+1,y+1,&beta_pixel);
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
/*
|
||
90 degrees, east and west.
|
||
*/
|
||
(void) GetMatrixElement(canny_cache,x-1,y,&alpha_pixel);
|
||
(void) GetMatrixElement(canny_cache,x+1,y,&beta_pixel);
|
||
break;
|
||
}
|
||
case 3:
|
||
{
|
||
/*
|
||
135 degrees, northeast and southwest.
|
||
*/
|
||
(void) GetMatrixElement(canny_cache,x+1,y-1,&beta_pixel);
|
||
(void) GetMatrixElement(canny_cache,x-1,y+1,&alpha_pixel);
|
||
break;
|
||
}
|
||
}
|
||
pixel.intensity=pixel.magnitude;
|
||
if ((pixel.magnitude < alpha_pixel.magnitude) ||
|
||
(pixel.magnitude < beta_pixel.magnitude))
|
||
pixel.intensity=0;
|
||
(void) SetMatrixElement(canny_cache,x,y,&pixel);
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp critical (MagickCore_CannyEdgeImage)
|
||
#endif
|
||
{
|
||
if (pixel.intensity < min)
|
||
min=pixel.intensity;
|
||
if (pixel.intensity > max)
|
||
max=pixel.intensity;
|
||
}
|
||
q->red=0;
|
||
q->green=0;
|
||
q->blue=0;
|
||
q++;
|
||
}
|
||
if (SyncCacheViewAuthenticPixels(edge_view,exception) == MagickFalse)
|
||
status=MagickFalse;
|
||
if (image->progress_monitor != (MagickProgressMonitor) NULL)
|
||
{
|
||
MagickBooleanType
|
||
proceed;
|
||
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp atomic
|
||
#endif
|
||
progress++;
|
||
proceed=SetImageProgress(image,CannyEdgeImageTag,progress,image->rows);
|
||
if (proceed == MagickFalse)
|
||
status=MagickFalse;
|
||
}
|
||
}
|
||
edge_view=DestroyCacheView(edge_view);
|
||
/*
|
||
Estimate hysteresis threshold.
|
||
*/
|
||
lower_threshold=lower_percent*(max-min)+min;
|
||
upper_threshold=upper_percent*(max-min)+min;
|
||
/*
|
||
Hysteresis threshold.
|
||
*/
|
||
edge_view=AcquireAuthenticCacheView(edge_image,exception);
|
||
for (y=0; y < (ssize_t) edge_image->rows; y++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
if (status == MagickFalse)
|
||
continue;
|
||
for (x=0; x < (ssize_t) edge_image->columns; x++)
|
||
{
|
||
CannyInfo
|
||
pixel;
|
||
|
||
const PixelPacket
|
||
*magick_restrict p;
|
||
|
||
/*
|
||
Edge if pixel gradient higher than upper threshold.
|
||
*/
|
||
p=GetCacheViewVirtualPixels(edge_view,x,y,1,1,exception);
|
||
if (p == (const PixelPacket *) NULL)
|
||
continue;
|
||
status=GetMatrixElement(canny_cache,x,y,&pixel);
|
||
if (status == MagickFalse)
|
||
continue;
|
||
if ((GetPixelIntensity(edge_image,p) == 0.0) &&
|
||
(pixel.intensity >= upper_threshold))
|
||
status=TraceEdges(edge_image,edge_view,canny_cache,x,y,lower_threshold,
|
||
exception);
|
||
}
|
||
}
|
||
edge_view=DestroyCacheView(edge_view);
|
||
/*
|
||
Free resources.
|
||
*/
|
||
canny_cache=DestroyMatrixInfo(canny_cache);
|
||
return(edge_image);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% G e t I m a g e C h a n n e l F e a t u r e s %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% GetImageChannelFeatures() returns features for each channel in the image in
|
||
% each of four directions (horizontal, vertical, left and right diagonals)
|
||
% for the specified distance. The features include the angular second
|
||
% moment, contrast, correlation, sum of squares: variance, inverse difference
|
||
% moment, sum average, sum varience, sum entropy, entropy, difference variance,% difference entropy, information measures of correlation 1, information
|
||
% measures of correlation 2, and maximum correlation coefficient. You can
|
||
% access the red channel contrast, for example, like this:
|
||
%
|
||
% channel_features=GetImageChannelFeatures(image,1,exception);
|
||
% contrast=channel_features[RedChannel].contrast[0];
|
||
%
|
||
% Use MagickRelinquishMemory() to free the features buffer.
|
||
%
|
||
% The format of the GetImageChannelFeatures method is:
|
||
%
|
||
% ChannelFeatures *GetImageChannelFeatures(const Image *image,
|
||
% const size_t distance,ExceptionInfo *exception)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o image: the image.
|
||
%
|
||
% o distance: the distance.
|
||
%
|
||
% o exception: return any errors or warnings in this structure.
|
||
%
|
||
*/
|
||
|
||
static inline double MagickLog10(const double x)
|
||
{
|
||
#define Log10Epsilon (1.0e-11)
|
||
|
||
if (fabs(x) < Log10Epsilon)
|
||
return(log10(Log10Epsilon));
|
||
return(log10(fabs(x)));
|
||
}
|
||
|
||
MagickExport ChannelFeatures *GetImageChannelFeatures(const Image *image,
|
||
const size_t distance,ExceptionInfo *exception)
|
||
{
|
||
typedef struct _ChannelStatistics
|
||
{
|
||
DoublePixelPacket
|
||
direction[4]; /* horizontal, vertical, left and right diagonals */
|
||
} ChannelStatistics;
|
||
|
||
CacheView
|
||
*image_view;
|
||
|
||
ChannelFeatures
|
||
*channel_features;
|
||
|
||
ChannelStatistics
|
||
**cooccurrence,
|
||
correlation,
|
||
*density_x,
|
||
*density_xy,
|
||
*density_y,
|
||
entropy_x,
|
||
entropy_xy,
|
||
entropy_xy1,
|
||
entropy_xy2,
|
||
entropy_y,
|
||
mean,
|
||
**Q,
|
||
*sum,
|
||
sum_squares,
|
||
variance;
|
||
|
||
LongPixelPacket
|
||
gray,
|
||
*grays;
|
||
|
||
MagickBooleanType
|
||
status;
|
||
|
||
ssize_t
|
||
i;
|
||
|
||
size_t
|
||
length;
|
||
|
||
ssize_t
|
||
y;
|
||
|
||
unsigned int
|
||
number_grays;
|
||
|
||
assert(image != (Image *) NULL);
|
||
assert(image->signature == MagickCoreSignature);
|
||
if (image->debug != MagickFalse)
|
||
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
||
if ((image->columns < (distance+1)) || (image->rows < (distance+1)))
|
||
return((ChannelFeatures *) NULL);
|
||
length=CompositeChannels+1UL;
|
||
channel_features=(ChannelFeatures *) AcquireQuantumMemory(length,
|
||
sizeof(*channel_features));
|
||
if (channel_features == (ChannelFeatures *) NULL)
|
||
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
|
||
(void) memset(channel_features,0,length*
|
||
sizeof(*channel_features));
|
||
/*
|
||
Form grays.
|
||
*/
|
||
grays=(LongPixelPacket *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*grays));
|
||
if (grays == (LongPixelPacket *) NULL)
|
||
{
|
||
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
||
channel_features);
|
||
(void) ThrowMagickException(exception,GetMagickModule(),
|
||
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
||
return(channel_features);
|
||
}
|
||
for (i=0; i <= (ssize_t) MaxMap; i++)
|
||
{
|
||
grays[i].red=(~0U);
|
||
grays[i].green=(~0U);
|
||
grays[i].blue=(~0U);
|
||
grays[i].opacity=(~0U);
|
||
grays[i].index=(~0U);
|
||
}
|
||
status=MagickTrue;
|
||
image_view=AcquireVirtualCacheView(image,exception);
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(image,image,image->rows,1)
|
||
#endif
|
||
for (y=0; y < (ssize_t) image->rows; y++)
|
||
{
|
||
const IndexPacket
|
||
*magick_restrict indexes;
|
||
|
||
const PixelPacket
|
||
*magick_restrict p;
|
||
|
||
ssize_t
|
||
x;
|
||
|
||
if (status == MagickFalse)
|
||
continue;
|
||
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
|
||
if (p == (const PixelPacket *) NULL)
|
||
{
|
||
status=MagickFalse;
|
||
continue;
|
||
}
|
||
indexes=GetCacheViewVirtualIndexQueue(image_view);
|
||
for (x=0; x < (ssize_t) image->columns; x++)
|
||
{
|
||
grays[ScaleQuantumToMap(GetPixelRed(p))].red=
|
||
ScaleQuantumToMap(GetPixelRed(p));
|
||
grays[ScaleQuantumToMap(GetPixelGreen(p))].green=
|
||
ScaleQuantumToMap(GetPixelGreen(p));
|
||
grays[ScaleQuantumToMap(GetPixelBlue(p))].blue=
|
||
ScaleQuantumToMap(GetPixelBlue(p));
|
||
if (image->colorspace == CMYKColorspace)
|
||
grays[ScaleQuantumToMap(GetPixelIndex(indexes+x))].index=
|
||
ScaleQuantumToMap(GetPixelIndex(indexes+x));
|
||
if (image->matte != MagickFalse)
|
||
grays[ScaleQuantumToMap(GetPixelOpacity(p))].opacity=
|
||
ScaleQuantumToMap(GetPixelOpacity(p));
|
||
p++;
|
||
}
|
||
}
|
||
image_view=DestroyCacheView(image_view);
|
||
if (status == MagickFalse)
|
||
{
|
||
grays=(LongPixelPacket *) RelinquishMagickMemory(grays);
|
||
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
||
channel_features);
|
||
return(channel_features);
|
||
}
|
||
(void) memset(&gray,0,sizeof(gray));
|
||
for (i=0; i <= (ssize_t) MaxMap; i++)
|
||
{
|
||
if (grays[i].red != ~0U)
|
||
grays[(ssize_t) gray.red++].red=grays[i].red;
|
||
if (grays[i].green != ~0U)
|
||
grays[(ssize_t) gray.green++].green=grays[i].green;
|
||
if (grays[i].blue != ~0U)
|
||
grays[(ssize_t) gray.blue++].blue=grays[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
if (grays[i].index != ~0U)
|
||
grays[(ssize_t) gray.index++].index=grays[i].index;
|
||
if (image->matte != MagickFalse)
|
||
if (grays[i].opacity != ~0U)
|
||
grays[(ssize_t) gray.opacity++].opacity=grays[i].opacity;
|
||
}
|
||
/*
|
||
Allocate spatial dependence matrix.
|
||
*/
|
||
number_grays=gray.red;
|
||
if (gray.green > number_grays)
|
||
number_grays=gray.green;
|
||
if (gray.blue > number_grays)
|
||
number_grays=gray.blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
if (gray.index > number_grays)
|
||
number_grays=gray.index;
|
||
if (image->matte != MagickFalse)
|
||
if (gray.opacity > number_grays)
|
||
number_grays=gray.opacity;
|
||
cooccurrence=(ChannelStatistics **) AcquireQuantumMemory(number_grays,
|
||
sizeof(*cooccurrence));
|
||
density_x=(ChannelStatistics *) AcquireQuantumMemory(number_grays+1,
|
||
2*sizeof(*density_x));
|
||
density_xy=(ChannelStatistics *) AcquireQuantumMemory(number_grays+1,
|
||
2*sizeof(*density_xy));
|
||
density_y=(ChannelStatistics *) AcquireQuantumMemory(number_grays+1,
|
||
2*sizeof(*density_y));
|
||
Q=(ChannelStatistics **) AcquireQuantumMemory(number_grays,sizeof(*Q));
|
||
sum=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(*sum));
|
||
if ((cooccurrence == (ChannelStatistics **) NULL) ||
|
||
(density_x == (ChannelStatistics *) NULL) ||
|
||
(density_xy == (ChannelStatistics *) NULL) ||
|
||
(density_y == (ChannelStatistics *) NULL) ||
|
||
(Q == (ChannelStatistics **) NULL) ||
|
||
(sum == (ChannelStatistics *) NULL))
|
||
{
|
||
if (Q != (ChannelStatistics **) NULL)
|
||
{
|
||
for (i=0; i < (ssize_t) number_grays; i++)
|
||
Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
|
||
Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
|
||
}
|
||
if (sum != (ChannelStatistics *) NULL)
|
||
sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
|
||
if (density_y != (ChannelStatistics *) NULL)
|
||
density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
|
||
if (density_xy != (ChannelStatistics *) NULL)
|
||
density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
|
||
if (density_x != (ChannelStatistics *) NULL)
|
||
density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
|
||
if (cooccurrence != (ChannelStatistics **) NULL)
|
||
{
|
||
for (i=0; i < (ssize_t) number_grays; i++)
|
||
cooccurrence[i]=(ChannelStatistics *)
|
||
RelinquishMagickMemory(cooccurrence[i]);
|
||
cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(
|
||
cooccurrence);
|
||
}
|
||
grays=(LongPixelPacket *) RelinquishMagickMemory(grays);
|
||
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
||
channel_features);
|
||
(void) ThrowMagickException(exception,GetMagickModule(),
|
||
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
||
return(channel_features);
|
||
}
|
||
(void) memset(&correlation,0,sizeof(correlation));
|
||
(void) memset(density_x,0,2*(number_grays+1)*sizeof(*density_x));
|
||
(void) memset(density_xy,0,2*(number_grays+1)*sizeof(*density_xy));
|
||
(void) memset(density_y,0,2*(number_grays+1)*sizeof(*density_y));
|
||
(void) memset(&mean,0,sizeof(mean));
|
||
(void) memset(sum,0,number_grays*sizeof(*sum));
|
||
(void) memset(&sum_squares,0,sizeof(sum_squares));
|
||
(void) memset(density_xy,0,2*number_grays*sizeof(*density_xy));
|
||
(void) memset(&entropy_x,0,sizeof(entropy_x));
|
||
(void) memset(&entropy_xy,0,sizeof(entropy_xy));
|
||
(void) memset(&entropy_xy1,0,sizeof(entropy_xy1));
|
||
(void) memset(&entropy_xy2,0,sizeof(entropy_xy2));
|
||
(void) memset(&entropy_y,0,sizeof(entropy_y));
|
||
(void) memset(&variance,0,sizeof(variance));
|
||
for (i=0; i < (ssize_t) number_grays; i++)
|
||
{
|
||
cooccurrence[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,
|
||
sizeof(**cooccurrence));
|
||
Q[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(**Q));
|
||
if ((cooccurrence[i] == (ChannelStatistics *) NULL) ||
|
||
(Q[i] == (ChannelStatistics *) NULL))
|
||
break;
|
||
(void) memset(cooccurrence[i],0,number_grays*
|
||
sizeof(**cooccurrence));
|
||
(void) memset(Q[i],0,number_grays*sizeof(**Q));
|
||
}
|
||
if (i < (ssize_t) number_grays)
|
||
{
|
||
for (i--; i >= 0; i--)
|
||
{
|
||
if (Q[i] != (ChannelStatistics *) NULL)
|
||
Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
|
||
if (cooccurrence[i] != (ChannelStatistics *) NULL)
|
||
cooccurrence[i]=(ChannelStatistics *)
|
||
RelinquishMagickMemory(cooccurrence[i]);
|
||
}
|
||
Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
|
||
cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
|
||
sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
|
||
density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
|
||
density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
|
||
density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
|
||
grays=(LongPixelPacket *) RelinquishMagickMemory(grays);
|
||
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
||
channel_features);
|
||
(void) ThrowMagickException(exception,GetMagickModule(),
|
||
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
||
return(channel_features);
|
||
}
|
||
/*
|
||
Initialize spatial dependence matrix.
|
||
*/
|
||
status=MagickTrue;
|
||
image_view=AcquireVirtualCacheView(image,exception);
|
||
for (y=0; y < (ssize_t) image->rows; y++)
|
||
{
|
||
const IndexPacket
|
||
*magick_restrict indexes;
|
||
|
||
const PixelPacket
|
||
*magick_restrict p;
|
||
|
||
ssize_t
|
||
x;
|
||
|
||
ssize_t
|
||
i,
|
||
offset,
|
||
u,
|
||
v;
|
||
|
||
if (status == MagickFalse)
|
||
continue;
|
||
p=GetCacheViewVirtualPixels(image_view,-(ssize_t) distance,y,image->columns+
|
||
2*distance,distance+2,exception);
|
||
if (p == (const PixelPacket *) NULL)
|
||
{
|
||
status=MagickFalse;
|
||
continue;
|
||
}
|
||
indexes=GetCacheViewVirtualIndexQueue(image_view);
|
||
p+=distance;
|
||
indexes+=distance;
|
||
for (x=0; x < (ssize_t) image->columns; x++)
|
||
{
|
||
for (i=0; i < 4; i++)
|
||
{
|
||
switch (i)
|
||
{
|
||
case 0:
|
||
default:
|
||
{
|
||
/*
|
||
Horizontal adjacency.
|
||
*/
|
||
offset=(ssize_t) distance;
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
/*
|
||
Vertical adjacency.
|
||
*/
|
||
offset=(ssize_t) (image->columns+2*distance);
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
/*
|
||
Right diagonal adjacency.
|
||
*/
|
||
offset=(ssize_t) ((image->columns+2*distance)-distance);
|
||
break;
|
||
}
|
||
case 3:
|
||
{
|
||
/*
|
||
Left diagonal adjacency.
|
||
*/
|
||
offset=(ssize_t) ((image->columns+2*distance)+distance);
|
||
break;
|
||
}
|
||
}
|
||
u=0;
|
||
v=0;
|
||
while (grays[u].red != ScaleQuantumToMap(GetPixelRed(p)))
|
||
u++;
|
||
while (grays[v].red != ScaleQuantumToMap(GetPixelRed(p+offset)))
|
||
v++;
|
||
cooccurrence[u][v].direction[i].red++;
|
||
cooccurrence[v][u].direction[i].red++;
|
||
u=0;
|
||
v=0;
|
||
while (grays[u].green != ScaleQuantumToMap(GetPixelGreen(p)))
|
||
u++;
|
||
while (grays[v].green != ScaleQuantumToMap(GetPixelGreen(p+offset)))
|
||
v++;
|
||
cooccurrence[u][v].direction[i].green++;
|
||
cooccurrence[v][u].direction[i].green++;
|
||
u=0;
|
||
v=0;
|
||
while (grays[u].blue != ScaleQuantumToMap(GetPixelBlue(p)))
|
||
u++;
|
||
while (grays[v].blue != ScaleQuantumToMap((p+offset)->blue))
|
||
v++;
|
||
cooccurrence[u][v].direction[i].blue++;
|
||
cooccurrence[v][u].direction[i].blue++;
|
||
if (image->colorspace == CMYKColorspace)
|
||
{
|
||
u=0;
|
||
v=0;
|
||
while (grays[u].index != ScaleQuantumToMap(GetPixelIndex(indexes+x)))
|
||
u++;
|
||
while (grays[v].index != ScaleQuantumToMap(GetPixelIndex(indexes+x+offset)))
|
||
v++;
|
||
cooccurrence[u][v].direction[i].index++;
|
||
cooccurrence[v][u].direction[i].index++;
|
||
}
|
||
if (image->matte != MagickFalse)
|
||
{
|
||
u=0;
|
||
v=0;
|
||
while (grays[u].opacity != ScaleQuantumToMap(GetPixelOpacity(p)))
|
||
u++;
|
||
while (grays[v].opacity != ScaleQuantumToMap((p+offset)->opacity))
|
||
v++;
|
||
cooccurrence[u][v].direction[i].opacity++;
|
||
cooccurrence[v][u].direction[i].opacity++;
|
||
}
|
||
}
|
||
p++;
|
||
}
|
||
}
|
||
grays=(LongPixelPacket *) RelinquishMagickMemory(grays);
|
||
image_view=DestroyCacheView(image_view);
|
||
if (status == MagickFalse)
|
||
{
|
||
for (i=0; i < (ssize_t) number_grays; i++)
|
||
cooccurrence[i]=(ChannelStatistics *)
|
||
RelinquishMagickMemory(cooccurrence[i]);
|
||
cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
|
||
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
||
channel_features);
|
||
(void) ThrowMagickException(exception,GetMagickModule(),
|
||
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
||
return(channel_features);
|
||
}
|
||
/*
|
||
Normalize spatial dependence matrix.
|
||
*/
|
||
for (i=0; i < 4; i++)
|
||
{
|
||
double
|
||
normalize;
|
||
|
||
ssize_t
|
||
y;
|
||
|
||
switch (i)
|
||
{
|
||
case 0:
|
||
default:
|
||
{
|
||
/*
|
||
Horizontal adjacency.
|
||
*/
|
||
normalize=2.0*image->rows*(image->columns-distance);
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
/*
|
||
Vertical adjacency.
|
||
*/
|
||
normalize=2.0*(image->rows-distance)*image->columns;
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
/*
|
||
Right diagonal adjacency.
|
||
*/
|
||
normalize=2.0*(image->rows-distance)*(image->columns-distance);
|
||
break;
|
||
}
|
||
case 3:
|
||
{
|
||
/*
|
||
Left diagonal adjacency.
|
||
*/
|
||
normalize=2.0*(image->rows-distance)*(image->columns-distance);
|
||
break;
|
||
}
|
||
}
|
||
normalize=PerceptibleReciprocal(normalize);
|
||
for (y=0; y < (ssize_t) number_grays; y++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
for (x=0; x < (ssize_t) number_grays; x++)
|
||
{
|
||
cooccurrence[x][y].direction[i].red*=normalize;
|
||
cooccurrence[x][y].direction[i].green*=normalize;
|
||
cooccurrence[x][y].direction[i].blue*=normalize;
|
||
if (image->colorspace == CMYKColorspace)
|
||
cooccurrence[x][y].direction[i].index*=normalize;
|
||
if (image->matte != MagickFalse)
|
||
cooccurrence[x][y].direction[i].opacity*=normalize;
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
Compute texture features.
|
||
*/
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(image,image,number_grays,1)
|
||
#endif
|
||
for (i=0; i < 4; i++)
|
||
{
|
||
ssize_t
|
||
y;
|
||
|
||
for (y=0; y < (ssize_t) number_grays; y++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
for (x=0; x < (ssize_t) number_grays; x++)
|
||
{
|
||
/*
|
||
Angular second moment: measure of homogeneity of the image.
|
||
*/
|
||
channel_features[RedChannel].angular_second_moment[i]+=
|
||
cooccurrence[x][y].direction[i].red*
|
||
cooccurrence[x][y].direction[i].red;
|
||
channel_features[GreenChannel].angular_second_moment[i]+=
|
||
cooccurrence[x][y].direction[i].green*
|
||
cooccurrence[x][y].direction[i].green;
|
||
channel_features[BlueChannel].angular_second_moment[i]+=
|
||
cooccurrence[x][y].direction[i].blue*
|
||
cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[BlackChannel].angular_second_moment[i]+=
|
||
cooccurrence[x][y].direction[i].index*
|
||
cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].angular_second_moment[i]+=
|
||
cooccurrence[x][y].direction[i].opacity*
|
||
cooccurrence[x][y].direction[i].opacity;
|
||
/*
|
||
Correlation: measure of linear-dependencies in the image.
|
||
*/
|
||
sum[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
|
||
sum[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
|
||
sum[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
sum[y].direction[i].index+=cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
sum[y].direction[i].opacity+=cooccurrence[x][y].direction[i].opacity;
|
||
correlation.direction[i].red+=x*y*cooccurrence[x][y].direction[i].red;
|
||
correlation.direction[i].green+=x*y*
|
||
cooccurrence[x][y].direction[i].green;
|
||
correlation.direction[i].blue+=x*y*
|
||
cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
correlation.direction[i].index+=x*y*
|
||
cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
correlation.direction[i].opacity+=x*y*
|
||
cooccurrence[x][y].direction[i].opacity;
|
||
/*
|
||
Inverse Difference Moment.
|
||
*/
|
||
channel_features[RedChannel].inverse_difference_moment[i]+=
|
||
cooccurrence[x][y].direction[i].red/((y-x)*(y-x)+1);
|
||
channel_features[GreenChannel].inverse_difference_moment[i]+=
|
||
cooccurrence[x][y].direction[i].green/((y-x)*(y-x)+1);
|
||
channel_features[BlueChannel].inverse_difference_moment[i]+=
|
||
cooccurrence[x][y].direction[i].blue/((y-x)*(y-x)+1);
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].inverse_difference_moment[i]+=
|
||
cooccurrence[x][y].direction[i].index/((y-x)*(y-x)+1);
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].inverse_difference_moment[i]+=
|
||
cooccurrence[x][y].direction[i].opacity/((y-x)*(y-x)+1);
|
||
/*
|
||
Sum average.
|
||
*/
|
||
density_xy[y+x+2].direction[i].red+=
|
||
cooccurrence[x][y].direction[i].red;
|
||
density_xy[y+x+2].direction[i].green+=
|
||
cooccurrence[x][y].direction[i].green;
|
||
density_xy[y+x+2].direction[i].blue+=
|
||
cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
density_xy[y+x+2].direction[i].index+=
|
||
cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
density_xy[y+x+2].direction[i].opacity+=
|
||
cooccurrence[x][y].direction[i].opacity;
|
||
/*
|
||
Entropy.
|
||
*/
|
||
channel_features[RedChannel].entropy[i]-=
|
||
cooccurrence[x][y].direction[i].red*
|
||
MagickLog10(cooccurrence[x][y].direction[i].red);
|
||
channel_features[GreenChannel].entropy[i]-=
|
||
cooccurrence[x][y].direction[i].green*
|
||
MagickLog10(cooccurrence[x][y].direction[i].green);
|
||
channel_features[BlueChannel].entropy[i]-=
|
||
cooccurrence[x][y].direction[i].blue*
|
||
MagickLog10(cooccurrence[x][y].direction[i].blue);
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].entropy[i]-=
|
||
cooccurrence[x][y].direction[i].index*
|
||
MagickLog10(cooccurrence[x][y].direction[i].index);
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].entropy[i]-=
|
||
cooccurrence[x][y].direction[i].opacity*
|
||
MagickLog10(cooccurrence[x][y].direction[i].opacity);
|
||
/*
|
||
Information Measures of Correlation.
|
||
*/
|
||
density_x[x].direction[i].red+=cooccurrence[x][y].direction[i].red;
|
||
density_x[x].direction[i].green+=cooccurrence[x][y].direction[i].green;
|
||
density_x[x].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
density_x[x].direction[i].index+=
|
||
cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
density_x[x].direction[i].opacity+=
|
||
cooccurrence[x][y].direction[i].opacity;
|
||
density_y[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
|
||
density_y[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
|
||
density_y[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
density_y[y].direction[i].index+=
|
||
cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
density_y[y].direction[i].opacity+=
|
||
cooccurrence[x][y].direction[i].opacity;
|
||
}
|
||
mean.direction[i].red+=y*sum[y].direction[i].red;
|
||
sum_squares.direction[i].red+=y*y*sum[y].direction[i].red;
|
||
mean.direction[i].green+=y*sum[y].direction[i].green;
|
||
sum_squares.direction[i].green+=y*y*sum[y].direction[i].green;
|
||
mean.direction[i].blue+=y*sum[y].direction[i].blue;
|
||
sum_squares.direction[i].blue+=y*y*sum[y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
{
|
||
mean.direction[i].index+=y*sum[y].direction[i].index;
|
||
sum_squares.direction[i].index+=y*y*sum[y].direction[i].index;
|
||
}
|
||
if (image->matte != MagickFalse)
|
||
{
|
||
mean.direction[i].opacity+=y*sum[y].direction[i].opacity;
|
||
sum_squares.direction[i].opacity+=y*y*sum[y].direction[i].opacity;
|
||
}
|
||
}
|
||
/*
|
||
Correlation: measure of linear-dependencies in the image.
|
||
*/
|
||
channel_features[RedChannel].correlation[i]=
|
||
(correlation.direction[i].red-mean.direction[i].red*
|
||
mean.direction[i].red)/(sqrt(sum_squares.direction[i].red-
|
||
(mean.direction[i].red*mean.direction[i].red))*sqrt(
|
||
sum_squares.direction[i].red-(mean.direction[i].red*
|
||
mean.direction[i].red)));
|
||
channel_features[GreenChannel].correlation[i]=
|
||
(correlation.direction[i].green-mean.direction[i].green*
|
||
mean.direction[i].green)/(sqrt(sum_squares.direction[i].green-
|
||
(mean.direction[i].green*mean.direction[i].green))*sqrt(
|
||
sum_squares.direction[i].green-(mean.direction[i].green*
|
||
mean.direction[i].green)));
|
||
channel_features[BlueChannel].correlation[i]=
|
||
(correlation.direction[i].blue-mean.direction[i].blue*
|
||
mean.direction[i].blue)/(sqrt(sum_squares.direction[i].blue-
|
||
(mean.direction[i].blue*mean.direction[i].blue))*sqrt(
|
||
sum_squares.direction[i].blue-(mean.direction[i].blue*
|
||
mean.direction[i].blue)));
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].correlation[i]=
|
||
(correlation.direction[i].index-mean.direction[i].index*
|
||
mean.direction[i].index)/(sqrt(sum_squares.direction[i].index-
|
||
(mean.direction[i].index*mean.direction[i].index))*sqrt(
|
||
sum_squares.direction[i].index-(mean.direction[i].index*
|
||
mean.direction[i].index)));
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].correlation[i]=
|
||
(correlation.direction[i].opacity-mean.direction[i].opacity*
|
||
mean.direction[i].opacity)/(sqrt(sum_squares.direction[i].opacity-
|
||
(mean.direction[i].opacity*mean.direction[i].opacity))*sqrt(
|
||
sum_squares.direction[i].opacity-(mean.direction[i].opacity*
|
||
mean.direction[i].opacity)));
|
||
}
|
||
/*
|
||
Compute more texture features.
|
||
*/
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(image,image,number_grays,1)
|
||
#endif
|
||
for (i=0; i < 4; i++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
for (x=2; x < (ssize_t) (2*number_grays); x++)
|
||
{
|
||
/*
|
||
Sum average.
|
||
*/
|
||
channel_features[RedChannel].sum_average[i]+=
|
||
x*density_xy[x].direction[i].red;
|
||
channel_features[GreenChannel].sum_average[i]+=
|
||
x*density_xy[x].direction[i].green;
|
||
channel_features[BlueChannel].sum_average[i]+=
|
||
x*density_xy[x].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].sum_average[i]+=
|
||
x*density_xy[x].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].sum_average[i]+=
|
||
x*density_xy[x].direction[i].opacity;
|
||
/*
|
||
Sum entropy.
|
||
*/
|
||
channel_features[RedChannel].sum_entropy[i]-=
|
||
density_xy[x].direction[i].red*
|
||
MagickLog10(density_xy[x].direction[i].red);
|
||
channel_features[GreenChannel].sum_entropy[i]-=
|
||
density_xy[x].direction[i].green*
|
||
MagickLog10(density_xy[x].direction[i].green);
|
||
channel_features[BlueChannel].sum_entropy[i]-=
|
||
density_xy[x].direction[i].blue*
|
||
MagickLog10(density_xy[x].direction[i].blue);
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].sum_entropy[i]-=
|
||
density_xy[x].direction[i].index*
|
||
MagickLog10(density_xy[x].direction[i].index);
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].sum_entropy[i]-=
|
||
density_xy[x].direction[i].opacity*
|
||
MagickLog10(density_xy[x].direction[i].opacity);
|
||
/*
|
||
Sum variance.
|
||
*/
|
||
channel_features[RedChannel].sum_variance[i]+=
|
||
(x-channel_features[RedChannel].sum_entropy[i])*
|
||
(x-channel_features[RedChannel].sum_entropy[i])*
|
||
density_xy[x].direction[i].red;
|
||
channel_features[GreenChannel].sum_variance[i]+=
|
||
(x-channel_features[GreenChannel].sum_entropy[i])*
|
||
(x-channel_features[GreenChannel].sum_entropy[i])*
|
||
density_xy[x].direction[i].green;
|
||
channel_features[BlueChannel].sum_variance[i]+=
|
||
(x-channel_features[BlueChannel].sum_entropy[i])*
|
||
(x-channel_features[BlueChannel].sum_entropy[i])*
|
||
density_xy[x].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].sum_variance[i]+=
|
||
(x-channel_features[IndexChannel].sum_entropy[i])*
|
||
(x-channel_features[IndexChannel].sum_entropy[i])*
|
||
density_xy[x].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].sum_variance[i]+=
|
||
(x-channel_features[OpacityChannel].sum_entropy[i])*
|
||
(x-channel_features[OpacityChannel].sum_entropy[i])*
|
||
density_xy[x].direction[i].opacity;
|
||
}
|
||
}
|
||
/*
|
||
Compute more texture features.
|
||
*/
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(image,image,number_grays,1)
|
||
#endif
|
||
for (i=0; i < 4; i++)
|
||
{
|
||
ssize_t
|
||
y;
|
||
|
||
for (y=0; y < (ssize_t) number_grays; y++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
for (x=0; x < (ssize_t) number_grays; x++)
|
||
{
|
||
/*
|
||
Sum of Squares: Variance
|
||
*/
|
||
variance.direction[i].red+=(y-mean.direction[i].red+1)*
|
||
(y-mean.direction[i].red+1)*cooccurrence[x][y].direction[i].red;
|
||
variance.direction[i].green+=(y-mean.direction[i].green+1)*
|
||
(y-mean.direction[i].green+1)*cooccurrence[x][y].direction[i].green;
|
||
variance.direction[i].blue+=(y-mean.direction[i].blue+1)*
|
||
(y-mean.direction[i].blue+1)*cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
variance.direction[i].index+=(y-mean.direction[i].index+1)*
|
||
(y-mean.direction[i].index+1)*cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
variance.direction[i].opacity+=(y-mean.direction[i].opacity+1)*
|
||
(y-mean.direction[i].opacity+1)*
|
||
cooccurrence[x][y].direction[i].opacity;
|
||
/*
|
||
Sum average / Difference Variance.
|
||
*/
|
||
density_xy[MagickAbsoluteValue(y-x)].direction[i].red+=
|
||
cooccurrence[x][y].direction[i].red;
|
||
density_xy[MagickAbsoluteValue(y-x)].direction[i].green+=
|
||
cooccurrence[x][y].direction[i].green;
|
||
density_xy[MagickAbsoluteValue(y-x)].direction[i].blue+=
|
||
cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
density_xy[MagickAbsoluteValue(y-x)].direction[i].index+=
|
||
cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
density_xy[MagickAbsoluteValue(y-x)].direction[i].opacity+=
|
||
cooccurrence[x][y].direction[i].opacity;
|
||
/*
|
||
Information Measures of Correlation.
|
||
*/
|
||
entropy_xy.direction[i].red-=cooccurrence[x][y].direction[i].red*
|
||
MagickLog10(cooccurrence[x][y].direction[i].red);
|
||
entropy_xy.direction[i].green-=cooccurrence[x][y].direction[i].green*
|
||
MagickLog10(cooccurrence[x][y].direction[i].green);
|
||
entropy_xy.direction[i].blue-=cooccurrence[x][y].direction[i].blue*
|
||
MagickLog10(cooccurrence[x][y].direction[i].blue);
|
||
if (image->colorspace == CMYKColorspace)
|
||
entropy_xy.direction[i].index-=cooccurrence[x][y].direction[i].index*
|
||
MagickLog10(cooccurrence[x][y].direction[i].index);
|
||
if (image->matte != MagickFalse)
|
||
entropy_xy.direction[i].opacity-=
|
||
cooccurrence[x][y].direction[i].opacity*MagickLog10(
|
||
cooccurrence[x][y].direction[i].opacity);
|
||
entropy_xy1.direction[i].red-=(cooccurrence[x][y].direction[i].red*
|
||
MagickLog10(density_x[x].direction[i].red*
|
||
density_y[y].direction[i].red));
|
||
entropy_xy1.direction[i].green-=(cooccurrence[x][y].direction[i].green*
|
||
MagickLog10(density_x[x].direction[i].green*
|
||
density_y[y].direction[i].green));
|
||
entropy_xy1.direction[i].blue-=(cooccurrence[x][y].direction[i].blue*
|
||
MagickLog10(density_x[x].direction[i].blue*
|
||
density_y[y].direction[i].blue));
|
||
if (image->colorspace == CMYKColorspace)
|
||
entropy_xy1.direction[i].index-=(
|
||
cooccurrence[x][y].direction[i].index*MagickLog10(
|
||
density_x[x].direction[i].index*density_y[y].direction[i].index));
|
||
if (image->matte != MagickFalse)
|
||
entropy_xy1.direction[i].opacity-=(
|
||
cooccurrence[x][y].direction[i].opacity*MagickLog10(
|
||
density_x[x].direction[i].opacity*
|
||
density_y[y].direction[i].opacity));
|
||
entropy_xy2.direction[i].red-=(density_x[x].direction[i].red*
|
||
density_y[y].direction[i].red*MagickLog10(
|
||
density_x[x].direction[i].red*density_y[y].direction[i].red));
|
||
entropy_xy2.direction[i].green-=(density_x[x].direction[i].green*
|
||
density_y[y].direction[i].green*MagickLog10(
|
||
density_x[x].direction[i].green*density_y[y].direction[i].green));
|
||
entropy_xy2.direction[i].blue-=(density_x[x].direction[i].blue*
|
||
density_y[y].direction[i].blue*MagickLog10(
|
||
density_x[x].direction[i].blue*density_y[y].direction[i].blue));
|
||
if (image->colorspace == CMYKColorspace)
|
||
entropy_xy2.direction[i].index-=(density_x[x].direction[i].index*
|
||
density_y[y].direction[i].index*MagickLog10(
|
||
density_x[x].direction[i].index*density_y[y].direction[i].index));
|
||
if (image->matte != MagickFalse)
|
||
entropy_xy2.direction[i].opacity-=(density_x[x].direction[i].opacity*
|
||
density_y[y].direction[i].opacity*MagickLog10(
|
||
density_x[x].direction[i].opacity*
|
||
density_y[y].direction[i].opacity));
|
||
}
|
||
}
|
||
channel_features[RedChannel].variance_sum_of_squares[i]=
|
||
variance.direction[i].red;
|
||
channel_features[GreenChannel].variance_sum_of_squares[i]=
|
||
variance.direction[i].green;
|
||
channel_features[BlueChannel].variance_sum_of_squares[i]=
|
||
variance.direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[RedChannel].variance_sum_of_squares[i]=
|
||
variance.direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
channel_features[RedChannel].variance_sum_of_squares[i]=
|
||
variance.direction[i].opacity;
|
||
}
|
||
/*
|
||
Compute more texture features.
|
||
*/
|
||
(void) memset(&variance,0,sizeof(variance));
|
||
(void) memset(&sum_squares,0,sizeof(sum_squares));
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(image,image,number_grays,1)
|
||
#endif
|
||
for (i=0; i < 4; i++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
for (x=0; x < (ssize_t) number_grays; x++)
|
||
{
|
||
/*
|
||
Difference variance.
|
||
*/
|
||
variance.direction[i].red+=density_xy[x].direction[i].red;
|
||
variance.direction[i].green+=density_xy[x].direction[i].green;
|
||
variance.direction[i].blue+=density_xy[x].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
variance.direction[i].index+=density_xy[x].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
variance.direction[i].opacity+=density_xy[x].direction[i].opacity;
|
||
sum_squares.direction[i].red+=density_xy[x].direction[i].red*
|
||
density_xy[x].direction[i].red;
|
||
sum_squares.direction[i].green+=density_xy[x].direction[i].green*
|
||
density_xy[x].direction[i].green;
|
||
sum_squares.direction[i].blue+=density_xy[x].direction[i].blue*
|
||
density_xy[x].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
sum_squares.direction[i].index+=density_xy[x].direction[i].index*
|
||
density_xy[x].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
sum_squares.direction[i].opacity+=density_xy[x].direction[i].opacity*
|
||
density_xy[x].direction[i].opacity;
|
||
/*
|
||
Difference entropy.
|
||
*/
|
||
channel_features[RedChannel].difference_entropy[i]-=
|
||
density_xy[x].direction[i].red*
|
||
MagickLog10(density_xy[x].direction[i].red);
|
||
channel_features[GreenChannel].difference_entropy[i]-=
|
||
density_xy[x].direction[i].green*
|
||
MagickLog10(density_xy[x].direction[i].green);
|
||
channel_features[BlueChannel].difference_entropy[i]-=
|
||
density_xy[x].direction[i].blue*
|
||
MagickLog10(density_xy[x].direction[i].blue);
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].difference_entropy[i]-=
|
||
density_xy[x].direction[i].index*
|
||
MagickLog10(density_xy[x].direction[i].index);
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].difference_entropy[i]-=
|
||
density_xy[x].direction[i].opacity*
|
||
MagickLog10(density_xy[x].direction[i].opacity);
|
||
/*
|
||
Information Measures of Correlation.
|
||
*/
|
||
entropy_x.direction[i].red-=(density_x[x].direction[i].red*
|
||
MagickLog10(density_x[x].direction[i].red));
|
||
entropy_x.direction[i].green-=(density_x[x].direction[i].green*
|
||
MagickLog10(density_x[x].direction[i].green));
|
||
entropy_x.direction[i].blue-=(density_x[x].direction[i].blue*
|
||
MagickLog10(density_x[x].direction[i].blue));
|
||
if (image->colorspace == CMYKColorspace)
|
||
entropy_x.direction[i].index-=(density_x[x].direction[i].index*
|
||
MagickLog10(density_x[x].direction[i].index));
|
||
if (image->matte != MagickFalse)
|
||
entropy_x.direction[i].opacity-=(density_x[x].direction[i].opacity*
|
||
MagickLog10(density_x[x].direction[i].opacity));
|
||
entropy_y.direction[i].red-=(density_y[x].direction[i].red*
|
||
MagickLog10(density_y[x].direction[i].red));
|
||
entropy_y.direction[i].green-=(density_y[x].direction[i].green*
|
||
MagickLog10(density_y[x].direction[i].green));
|
||
entropy_y.direction[i].blue-=(density_y[x].direction[i].blue*
|
||
MagickLog10(density_y[x].direction[i].blue));
|
||
if (image->colorspace == CMYKColorspace)
|
||
entropy_y.direction[i].index-=(density_y[x].direction[i].index*
|
||
MagickLog10(density_y[x].direction[i].index));
|
||
if (image->matte != MagickFalse)
|
||
entropy_y.direction[i].opacity-=(density_y[x].direction[i].opacity*
|
||
MagickLog10(density_y[x].direction[i].opacity));
|
||
}
|
||
/*
|
||
Difference variance.
|
||
*/
|
||
channel_features[RedChannel].difference_variance[i]=
|
||
(((double) number_grays*number_grays*sum_squares.direction[i].red)-
|
||
(variance.direction[i].red*variance.direction[i].red))/
|
||
((double) number_grays*number_grays*number_grays*number_grays);
|
||
channel_features[GreenChannel].difference_variance[i]=
|
||
(((double) number_grays*number_grays*sum_squares.direction[i].green)-
|
||
(variance.direction[i].green*variance.direction[i].green))/
|
||
((double) number_grays*number_grays*number_grays*number_grays);
|
||
channel_features[BlueChannel].difference_variance[i]=
|
||
(((double) number_grays*number_grays*sum_squares.direction[i].blue)-
|
||
(variance.direction[i].blue*variance.direction[i].blue))/
|
||
((double) number_grays*number_grays*number_grays*number_grays);
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].difference_variance[i]=
|
||
(((double) number_grays*number_grays*sum_squares.direction[i].opacity)-
|
||
(variance.direction[i].opacity*variance.direction[i].opacity))/
|
||
((double) number_grays*number_grays*number_grays*number_grays);
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].difference_variance[i]=
|
||
(((double) number_grays*number_grays*sum_squares.direction[i].index)-
|
||
(variance.direction[i].index*variance.direction[i].index))/
|
||
((double) number_grays*number_grays*number_grays*number_grays);
|
||
/*
|
||
Information Measures of Correlation.
|
||
*/
|
||
channel_features[RedChannel].measure_of_correlation_1[i]=
|
||
(entropy_xy.direction[i].red-entropy_xy1.direction[i].red)/
|
||
(entropy_x.direction[i].red > entropy_y.direction[i].red ?
|
||
entropy_x.direction[i].red : entropy_y.direction[i].red);
|
||
channel_features[GreenChannel].measure_of_correlation_1[i]=
|
||
(entropy_xy.direction[i].green-entropy_xy1.direction[i].green)/
|
||
(entropy_x.direction[i].green > entropy_y.direction[i].green ?
|
||
entropy_x.direction[i].green : entropy_y.direction[i].green);
|
||
channel_features[BlueChannel].measure_of_correlation_1[i]=
|
||
(entropy_xy.direction[i].blue-entropy_xy1.direction[i].blue)/
|
||
(entropy_x.direction[i].blue > entropy_y.direction[i].blue ?
|
||
entropy_x.direction[i].blue : entropy_y.direction[i].blue);
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].measure_of_correlation_1[i]=
|
||
(entropy_xy.direction[i].index-entropy_xy1.direction[i].index)/
|
||
(entropy_x.direction[i].index > entropy_y.direction[i].index ?
|
||
entropy_x.direction[i].index : entropy_y.direction[i].index);
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].measure_of_correlation_1[i]=
|
||
(entropy_xy.direction[i].opacity-entropy_xy1.direction[i].opacity)/
|
||
(entropy_x.direction[i].opacity > entropy_y.direction[i].opacity ?
|
||
entropy_x.direction[i].opacity : entropy_y.direction[i].opacity);
|
||
channel_features[RedChannel].measure_of_correlation_2[i]=
|
||
(sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].red-
|
||
entropy_xy.direction[i].red)))));
|
||
channel_features[GreenChannel].measure_of_correlation_2[i]=
|
||
(sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].green-
|
||
entropy_xy.direction[i].green)))));
|
||
channel_features[BlueChannel].measure_of_correlation_2[i]=
|
||
(sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].blue-
|
||
entropy_xy.direction[i].blue)))));
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].measure_of_correlation_2[i]=
|
||
(sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].index-
|
||
entropy_xy.direction[i].index)))));
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].measure_of_correlation_2[i]=
|
||
(sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].opacity-
|
||
entropy_xy.direction[i].opacity)))));
|
||
}
|
||
/*
|
||
Compute more texture features.
|
||
*/
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(image,image,number_grays,1)
|
||
#endif
|
||
for (i=0; i < 4; i++)
|
||
{
|
||
ssize_t
|
||
z;
|
||
|
||
for (z=0; z < (ssize_t) number_grays; z++)
|
||
{
|
||
ssize_t
|
||
y;
|
||
|
||
ChannelStatistics
|
||
pixel;
|
||
|
||
(void) memset(&pixel,0,sizeof(pixel));
|
||
for (y=0; y < (ssize_t) number_grays; y++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
for (x=0; x < (ssize_t) number_grays; x++)
|
||
{
|
||
/*
|
||
Contrast: amount of local variations present in an image.
|
||
*/
|
||
if (((y-x) == z) || ((x-y) == z))
|
||
{
|
||
pixel.direction[i].red+=cooccurrence[x][y].direction[i].red;
|
||
pixel.direction[i].green+=cooccurrence[x][y].direction[i].green;
|
||
pixel.direction[i].blue+=cooccurrence[x][y].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
pixel.direction[i].index+=cooccurrence[x][y].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
pixel.direction[i].opacity+=
|
||
cooccurrence[x][y].direction[i].opacity;
|
||
}
|
||
/*
|
||
Maximum Correlation Coefficient.
|
||
*/
|
||
if ((fabs(density_x[z].direction[i].red) > MagickEpsilon) &&
|
||
(fabs(density_y[x].direction[i].red) > MagickEpsilon))
|
||
Q[z][y].direction[i].red+=cooccurrence[z][x].direction[i].red*
|
||
cooccurrence[y][x].direction[i].red/density_x[z].direction[i].red/
|
||
density_y[x].direction[i].red;
|
||
if ((fabs(density_x[z].direction[i].green) > MagickEpsilon) &&
|
||
(fabs(density_y[x].direction[i].red) > MagickEpsilon))
|
||
Q[z][y].direction[i].green+=cooccurrence[z][x].direction[i].green*
|
||
cooccurrence[y][x].direction[i].green/
|
||
density_x[z].direction[i].green/density_y[x].direction[i].red;
|
||
if ((fabs(density_x[z].direction[i].blue) > MagickEpsilon) &&
|
||
(fabs(density_y[x].direction[i].blue) > MagickEpsilon))
|
||
Q[z][y].direction[i].blue+=cooccurrence[z][x].direction[i].blue*
|
||
cooccurrence[y][x].direction[i].blue/
|
||
density_x[z].direction[i].blue/density_y[x].direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
if ((fabs(density_x[z].direction[i].index) > MagickEpsilon) &&
|
||
(fabs(density_y[x].direction[i].index) > MagickEpsilon))
|
||
Q[z][y].direction[i].index+=cooccurrence[z][x].direction[i].index*
|
||
cooccurrence[y][x].direction[i].index/
|
||
density_x[z].direction[i].index/density_y[x].direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
if ((fabs(density_x[z].direction[i].opacity) > MagickEpsilon) &&
|
||
(fabs(density_y[x].direction[i].opacity) > MagickEpsilon))
|
||
Q[z][y].direction[i].opacity+=
|
||
cooccurrence[z][x].direction[i].opacity*
|
||
cooccurrence[y][x].direction[i].opacity/
|
||
density_x[z].direction[i].opacity/
|
||
density_y[x].direction[i].opacity;
|
||
}
|
||
}
|
||
channel_features[RedChannel].contrast[i]+=z*z*pixel.direction[i].red;
|
||
channel_features[GreenChannel].contrast[i]+=z*z*pixel.direction[i].green;
|
||
channel_features[BlueChannel].contrast[i]+=z*z*pixel.direction[i].blue;
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[BlackChannel].contrast[i]+=z*z*
|
||
pixel.direction[i].index;
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].contrast[i]+=z*z*
|
||
pixel.direction[i].opacity;
|
||
}
|
||
/*
|
||
Maximum Correlation Coefficient.
|
||
Future: return second largest eigenvalue of Q.
|
||
*/
|
||
channel_features[RedChannel].maximum_correlation_coefficient[i]=
|
||
sqrt((double) -1.0);
|
||
channel_features[GreenChannel].maximum_correlation_coefficient[i]=
|
||
sqrt((double) -1.0);
|
||
channel_features[BlueChannel].maximum_correlation_coefficient[i]=
|
||
sqrt((double) -1.0);
|
||
if (image->colorspace == CMYKColorspace)
|
||
channel_features[IndexChannel].maximum_correlation_coefficient[i]=
|
||
sqrt((double) -1.0);
|
||
if (image->matte != MagickFalse)
|
||
channel_features[OpacityChannel].maximum_correlation_coefficient[i]=
|
||
sqrt((double) -1.0);
|
||
}
|
||
/*
|
||
Relinquish resources.
|
||
*/
|
||
sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
|
||
for (i=0; i < (ssize_t) number_grays; i++)
|
||
Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
|
||
Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
|
||
density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
|
||
density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
|
||
density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
|
||
for (i=0; i < (ssize_t) number_grays; i++)
|
||
cooccurrence[i]=(ChannelStatistics *)
|
||
RelinquishMagickMemory(cooccurrence[i]);
|
||
cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
|
||
return(channel_features);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% H o u g h L i n e I m a g e %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% Use HoughLineImage() in conjunction with any binary edge extracted image (we
|
||
% recommand Canny) to identify lines in the image. The algorithm accumulates
|
||
% counts for every white pixel for every possible orientation (for angles from
|
||
% 0 to 179 in 1 degree increments) and distance from the center of the image to
|
||
% the corner (in 1 px increments) and stores the counts in an accumulator
|
||
% matrix of angle vs distance. The size of the accumulator is 180x(diagonal/2).% Next it searches this space for peaks in counts and converts the locations
|
||
% of the peaks to slope and intercept in the normal x,y input image space. Use
|
||
% the slope/intercepts to find the endpoints clipped to the bounds of the
|
||
% image. The lines are then drawn. The counts are a measure of the length of
|
||
% the lines.
|
||
%
|
||
% The format of the HoughLineImage method is:
|
||
%
|
||
% Image *HoughLineImage(const Image *image,const size_t width,
|
||
% const size_t height,const size_t threshold,ExceptionInfo *exception)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o image: the image.
|
||
%
|
||
% o width, height: find line pairs as local maxima in this neighborhood.
|
||
%
|
||
% o threshold: the line count threshold.
|
||
%
|
||
% o exception: return any errors or warnings in this structure.
|
||
%
|
||
*/
|
||
|
||
static inline double MagickRound(double x)
|
||
{
|
||
/*
|
||
Round the fraction to nearest integer.
|
||
*/
|
||
if ((x-floor(x)) < (ceil(x)-x))
|
||
return(floor(x));
|
||
return(ceil(x));
|
||
}
|
||
|
||
static Image *RenderHoughLines(const ImageInfo *image_info,const size_t columns,
|
||
const size_t rows,ExceptionInfo *exception)
|
||
{
|
||
#define BoundingBox "viewbox"
|
||
|
||
DrawInfo
|
||
*draw_info;
|
||
|
||
Image
|
||
*image;
|
||
|
||
MagickBooleanType
|
||
status;
|
||
|
||
/*
|
||
Open image.
|
||
*/
|
||
image=AcquireImage(image_info);
|
||
status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
|
||
if (status == MagickFalse)
|
||
{
|
||
image=DestroyImageList(image);
|
||
return((Image *) NULL);
|
||
}
|
||
image->columns=columns;
|
||
image->rows=rows;
|
||
draw_info=CloneDrawInfo(image_info,(DrawInfo *) NULL);
|
||
draw_info->affine.sx=image->x_resolution == 0.0 ? 1.0 : image->x_resolution/
|
||
DefaultResolution;
|
||
draw_info->affine.sy=image->y_resolution == 0.0 ? 1.0 : image->y_resolution/
|
||
DefaultResolution;
|
||
image->columns=(size_t) (draw_info->affine.sx*image->columns);
|
||
image->rows=(size_t) (draw_info->affine.sy*image->rows);
|
||
status=SetImageExtent(image,image->columns,image->rows);
|
||
if (status == MagickFalse)
|
||
return(DestroyImageList(image));
|
||
if (SetImageBackgroundColor(image) == MagickFalse)
|
||
{
|
||
image=DestroyImageList(image);
|
||
return((Image *) NULL);
|
||
}
|
||
/*
|
||
Render drawing.
|
||
*/
|
||
if (GetBlobStreamData(image) == (unsigned char *) NULL)
|
||
draw_info->primitive=FileToString(image->filename,~0UL,exception);
|
||
else
|
||
{
|
||
draw_info->primitive=(char *) AcquireQuantumMemory(1,(size_t)
|
||
GetBlobSize(image)+1);
|
||
if (draw_info->primitive != (char *) NULL)
|
||
{
|
||
(void) memcpy(draw_info->primitive,GetBlobStreamData(image),
|
||
(size_t) GetBlobSize(image));
|
||
draw_info->primitive[GetBlobSize(image)]='\0';
|
||
}
|
||
}
|
||
(void) DrawImage(image,draw_info);
|
||
draw_info=DestroyDrawInfo(draw_info);
|
||
(void) CloseBlob(image);
|
||
return(GetFirstImageInList(image));
|
||
}
|
||
|
||
MagickExport Image *HoughLineImage(const Image *image,const size_t width,
|
||
const size_t height,const size_t threshold,ExceptionInfo *exception)
|
||
{
|
||
#define HoughLineImageTag "HoughLine/Image"
|
||
|
||
CacheView
|
||
*image_view;
|
||
|
||
char
|
||
message[MaxTextExtent],
|
||
path[MaxTextExtent];
|
||
|
||
const char
|
||
*artifact;
|
||
|
||
double
|
||
hough_height;
|
||
|
||
Image
|
||
*lines_image = NULL;
|
||
|
||
ImageInfo
|
||
*image_info;
|
||
|
||
int
|
||
file;
|
||
|
||
MagickBooleanType
|
||
status;
|
||
|
||
MagickOffsetType
|
||
progress;
|
||
|
||
MatrixInfo
|
||
*accumulator;
|
||
|
||
PointInfo
|
||
center;
|
||
|
||
ssize_t
|
||
y;
|
||
|
||
size_t
|
||
accumulator_height,
|
||
accumulator_width,
|
||
line_count;
|
||
|
||
/*
|
||
Create the accumulator.
|
||
*/
|
||
assert(image != (const Image *) NULL);
|
||
assert(image->signature == MagickCoreSignature);
|
||
if (image->debug != MagickFalse)
|
||
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
||
assert(exception != (ExceptionInfo *) NULL);
|
||
assert(exception->signature == MagickCoreSignature);
|
||
accumulator_width=180;
|
||
hough_height=((sqrt(2.0)*(double) (image->rows > image->columns ?
|
||
image->rows : image->columns))/2.0);
|
||
accumulator_height=(size_t) (2.0*hough_height);
|
||
accumulator=AcquireMatrixInfo(accumulator_width,accumulator_height,
|
||
sizeof(double),exception);
|
||
if (accumulator == (MatrixInfo *) NULL)
|
||
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
|
||
if (NullMatrix(accumulator) == MagickFalse)
|
||
{
|
||
accumulator=DestroyMatrixInfo(accumulator);
|
||
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
|
||
}
|
||
/*
|
||
Populate the accumulator.
|
||
*/
|
||
status=MagickTrue;
|
||
progress=0;
|
||
center.x=(double) image->columns/2.0;
|
||
center.y=(double) image->rows/2.0;
|
||
image_view=AcquireVirtualCacheView(image,exception);
|
||
for (y=0; y < (ssize_t) image->rows; y++)
|
||
{
|
||
const PixelPacket
|
||
*magick_restrict p;
|
||
|
||
ssize_t
|
||
x;
|
||
|
||
if (status == MagickFalse)
|
||
continue;
|
||
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
|
||
if (p == (PixelPacket *) NULL)
|
||
{
|
||
status=MagickFalse;
|
||
continue;
|
||
}
|
||
for (x=0; x < (ssize_t) image->columns; x++)
|
||
{
|
||
if (GetPixelIntensity(image,p) > (QuantumRange/2.0))
|
||
{
|
||
ssize_t
|
||
i;
|
||
|
||
for (i=0; i < 180; i++)
|
||
{
|
||
double
|
||
count,
|
||
radius;
|
||
|
||
radius=(((double) x-center.x)*cos(DegreesToRadians((double) i)))+
|
||
(((double) y-center.y)*sin(DegreesToRadians((double) i)));
|
||
(void) GetMatrixElement(accumulator,i,(ssize_t)
|
||
MagickRound(radius+hough_height),&count);
|
||
count++;
|
||
(void) SetMatrixElement(accumulator,i,(ssize_t)
|
||
MagickRound(radius+hough_height),&count);
|
||
}
|
||
}
|
||
p++;
|
||
}
|
||
if (image->progress_monitor != (MagickProgressMonitor) NULL)
|
||
{
|
||
MagickBooleanType
|
||
proceed;
|
||
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp atomic
|
||
#endif
|
||
progress++;
|
||
proceed=SetImageProgress(image,HoughLineImageTag,progress,image->rows);
|
||
if (proceed == MagickFalse)
|
||
status=MagickFalse;
|
||
}
|
||
}
|
||
image_view=DestroyCacheView(image_view);
|
||
if (status == MagickFalse)
|
||
{
|
||
accumulator=DestroyMatrixInfo(accumulator);
|
||
return((Image *) NULL);
|
||
}
|
||
/*
|
||
Generate line segments from accumulator.
|
||
*/
|
||
file=AcquireUniqueFileResource(path);
|
||
if (file == -1)
|
||
{
|
||
accumulator=DestroyMatrixInfo(accumulator);
|
||
return((Image *) NULL);
|
||
}
|
||
(void) FormatLocaleString(message,MaxTextExtent,
|
||
"# Hough line transform: %.20gx%.20g%+.20g\n",(double) width,
|
||
(double) height,(double) threshold);
|
||
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
|
||
status=MagickFalse;
|
||
(void) FormatLocaleString(message,MaxTextExtent,"viewbox 0 0 %.20g %.20g\n",
|
||
(double) image->columns,(double) image->rows);
|
||
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
|
||
status=MagickFalse;
|
||
(void) FormatLocaleString(message,MaxTextExtent,
|
||
"# x1,y1 x2,y2 # count angle distance\n");
|
||
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
|
||
status=MagickFalse;
|
||
line_count=image->columns > image->rows ? image->columns/4 : image->rows/4;
|
||
if (threshold != 0)
|
||
line_count=threshold;
|
||
for (y=0; y < (ssize_t) accumulator_height; y++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
for (x=0; x < (ssize_t) accumulator_width; x++)
|
||
{
|
||
double
|
||
count;
|
||
|
||
(void) GetMatrixElement(accumulator,x,y,&count);
|
||
if (count >= (double) line_count)
|
||
{
|
||
double
|
||
maxima;
|
||
|
||
SegmentInfo
|
||
line;
|
||
|
||
ssize_t
|
||
v;
|
||
|
||
/*
|
||
Is point a local maxima?
|
||
*/
|
||
maxima=count;
|
||
for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
|
||
{
|
||
ssize_t
|
||
u;
|
||
|
||
for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
|
||
{
|
||
if ((u != 0) || (v !=0))
|
||
{
|
||
(void) GetMatrixElement(accumulator,x+u,y+v,&count);
|
||
if (count > maxima)
|
||
{
|
||
maxima=count;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if (u < (ssize_t) (width/2))
|
||
break;
|
||
}
|
||
(void) GetMatrixElement(accumulator,x,y,&count);
|
||
if (maxima > count)
|
||
continue;
|
||
if ((x >= 45) && (x <= 135))
|
||
{
|
||
/*
|
||
y = (r-x cos(t))/sin(t)
|
||
*/
|
||
line.x1=0.0;
|
||
line.y1=((double) (y-(accumulator_height/2.0))-((line.x1-
|
||
(image->columns/2.0))*cos(DegreesToRadians((double) x))))/
|
||
sin(DegreesToRadians((double) x))+(image->rows/2.0);
|
||
line.x2=(double) image->columns;
|
||
line.y2=((double) (y-(accumulator_height/2.0))-((line.x2-
|
||
(image->columns/2.0))*cos(DegreesToRadians((double) x))))/
|
||
sin(DegreesToRadians((double) x))+(image->rows/2.0);
|
||
}
|
||
else
|
||
{
|
||
/*
|
||
x = (r-y cos(t))/sin(t)
|
||
*/
|
||
line.y1=0.0;
|
||
line.x1=((double) (y-(accumulator_height/2.0))-((line.y1-
|
||
(image->rows/2.0))*sin(DegreesToRadians((double) x))))/
|
||
cos(DegreesToRadians((double) x))+(image->columns/2.0);
|
||
line.y2=(double) image->rows;
|
||
line.x2=((double) (y-(accumulator_height/2.0))-((line.y2-
|
||
(image->rows/2.0))*sin(DegreesToRadians((double) x))))/
|
||
cos(DegreesToRadians((double) x))+(image->columns/2.0);
|
||
}
|
||
(void) FormatLocaleString(message,MaxTextExtent,
|
||
"line %g,%g %g,%g # %g %g %g\n",line.x1,line.y1,line.x2,line.y2,
|
||
maxima,(double) x,(double) y);
|
||
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
|
||
status=MagickFalse;
|
||
}
|
||
}
|
||
}
|
||
(void) close(file);
|
||
/*
|
||
Render lines to image canvas.
|
||
*/
|
||
image_info=AcquireImageInfo();
|
||
image_info->background_color=image->background_color;
|
||
(void) FormatLocaleString(image_info->filename,MaxTextExtent,"%s",path);
|
||
artifact=GetImageArtifact(image,"background");
|
||
if (artifact != (const char *) NULL)
|
||
(void) SetImageOption(image_info,"background",artifact);
|
||
artifact=GetImageArtifact(image,"fill");
|
||
if (artifact != (const char *) NULL)
|
||
(void) SetImageOption(image_info,"fill",artifact);
|
||
artifact=GetImageArtifact(image,"stroke");
|
||
if (artifact != (const char *) NULL)
|
||
(void) SetImageOption(image_info,"stroke",artifact);
|
||
artifact=GetImageArtifact(image,"strokewidth");
|
||
if (artifact != (const char *) NULL)
|
||
(void) SetImageOption(image_info,"strokewidth",artifact);
|
||
lines_image=RenderHoughLines(image_info,image->columns,image->rows,exception);
|
||
artifact=GetImageArtifact(image,"hough-lines:accumulator");
|
||
if ((lines_image != (Image *) NULL) &&
|
||
(IsMagickTrue(artifact) != MagickFalse))
|
||
{
|
||
Image
|
||
*accumulator_image;
|
||
|
||
accumulator_image=MatrixToImage(accumulator,exception);
|
||
if (accumulator_image != (Image *) NULL)
|
||
AppendImageToList(&lines_image,accumulator_image);
|
||
}
|
||
/*
|
||
Free resources.
|
||
*/
|
||
accumulator=DestroyMatrixInfo(accumulator);
|
||
image_info=DestroyImageInfo(image_info);
|
||
(void) RelinquishUniqueFileResource(path);
|
||
return(GetFirstImageInList(lines_image));
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% M e a n S h i f t I m a g e %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% MeanShiftImage() delineate arbitrarily shaped clusters in the image. For
|
||
% each pixel, it visits all the pixels in the neighborhood specified by
|
||
% the window centered at the pixel and excludes those that are outside the
|
||
% radius=(window-1)/2 surrounding the pixel. From those pixels, it finds those
|
||
% that are within the specified color distance from the current mean, and
|
||
% computes a new x,y centroid from those coordinates and a new mean. This new
|
||
% x,y centroid is used as the center for a new window. This process iterates
|
||
% until it converges and the final mean is replaces the (original window
|
||
% center) pixel value. It repeats this process for the next pixel, etc.,
|
||
% until it processes all pixels in the image. Results are typically better with
|
||
% colorspaces other than sRGB. We recommend YIQ, YUV or YCbCr.
|
||
%
|
||
% The format of the MeanShiftImage method is:
|
||
%
|
||
% Image *MeanShiftImage(const Image *image,const size_t width,
|
||
% const size_t height,const double color_distance,
|
||
% ExceptionInfo *exception)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o image: the image.
|
||
%
|
||
% o width, height: find pixels in this neighborhood.
|
||
%
|
||
% o color_distance: the color distance.
|
||
%
|
||
% o exception: return any errors or warnings in this structure.
|
||
%
|
||
*/
|
||
MagickExport Image *MeanShiftImage(const Image *image,const size_t width,
|
||
const size_t height,const double color_distance,ExceptionInfo *exception)
|
||
{
|
||
#define MaxMeanShiftIterations 100
|
||
#define MeanShiftImageTag "MeanShift/Image"
|
||
|
||
CacheView
|
||
*image_view,
|
||
*mean_view,
|
||
*pixel_view;
|
||
|
||
Image
|
||
*mean_image;
|
||
|
||
MagickBooleanType
|
||
status;
|
||
|
||
MagickOffsetType
|
||
progress;
|
||
|
||
ssize_t
|
||
y;
|
||
|
||
assert(image != (const Image *) NULL);
|
||
assert(image->signature == MagickCoreSignature);
|
||
if (image->debug != MagickFalse)
|
||
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
||
assert(exception != (ExceptionInfo *) NULL);
|
||
assert(exception->signature == MagickCoreSignature);
|
||
mean_image=CloneImage(image,0,0,MagickTrue,exception);
|
||
if (mean_image == (Image *) NULL)
|
||
return((Image *) NULL);
|
||
if (SetImageStorageClass(mean_image,DirectClass) == MagickFalse)
|
||
{
|
||
InheritException(exception,&mean_image->exception);
|
||
mean_image=DestroyImage(mean_image);
|
||
return((Image *) NULL);
|
||
}
|
||
status=MagickTrue;
|
||
progress=0;
|
||
image_view=AcquireVirtualCacheView(image,exception);
|
||
pixel_view=AcquireVirtualCacheView(image,exception);
|
||
mean_view=AcquireAuthenticCacheView(mean_image,exception);
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status,progress) \
|
||
magick_number_threads(mean_image,mean_image,mean_image->rows,1)
|
||
#endif
|
||
for (y=0; y < (ssize_t) mean_image->rows; y++)
|
||
{
|
||
const IndexPacket
|
||
*magick_restrict indexes;
|
||
|
||
const PixelPacket
|
||
*magick_restrict p;
|
||
|
||
PixelPacket
|
||
*magick_restrict q;
|
||
|
||
ssize_t
|
||
x;
|
||
|
||
if (status == MagickFalse)
|
||
continue;
|
||
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
|
||
q=GetCacheViewAuthenticPixels(mean_view,0,y,mean_image->columns,1,
|
||
exception);
|
||
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
|
||
{
|
||
status=MagickFalse;
|
||
continue;
|
||
}
|
||
indexes=GetCacheViewVirtualIndexQueue(image_view);
|
||
for (x=0; x < (ssize_t) mean_image->columns; x++)
|
||
{
|
||
MagickPixelPacket
|
||
mean_pixel,
|
||
previous_pixel;
|
||
|
||
PointInfo
|
||
mean_location,
|
||
previous_location;
|
||
|
||
ssize_t
|
||
i;
|
||
|
||
GetMagickPixelPacket(image,&mean_pixel);
|
||
SetMagickPixelPacket(image,p,indexes+x,&mean_pixel);
|
||
mean_location.x=(double) x;
|
||
mean_location.y=(double) y;
|
||
for (i=0; i < MaxMeanShiftIterations; i++)
|
||
{
|
||
double
|
||
distance,
|
||
gamma;
|
||
|
||
MagickPixelPacket
|
||
sum_pixel;
|
||
|
||
PointInfo
|
||
sum_location;
|
||
|
||
ssize_t
|
||
count,
|
||
v;
|
||
|
||
sum_location.x=0.0;
|
||
sum_location.y=0.0;
|
||
GetMagickPixelPacket(image,&sum_pixel);
|
||
previous_location=mean_location;
|
||
previous_pixel=mean_pixel;
|
||
count=0;
|
||
for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
|
||
{
|
||
ssize_t
|
||
u;
|
||
|
||
for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
|
||
{
|
||
if ((v*v+u*u) <= (ssize_t) ((width/2)*(height/2)))
|
||
{
|
||
PixelPacket
|
||
pixel;
|
||
|
||
status=GetOneCacheViewVirtualPixel(pixel_view,(ssize_t)
|
||
MagickRound(mean_location.x+u),(ssize_t) MagickRound(
|
||
mean_location.y+v),&pixel,exception);
|
||
distance=(mean_pixel.red-pixel.red)*(mean_pixel.red-pixel.red)+
|
||
(mean_pixel.green-pixel.green)*(mean_pixel.green-pixel.green)+
|
||
(mean_pixel.blue-pixel.blue)*(mean_pixel.blue-pixel.blue);
|
||
if (distance <= (color_distance*color_distance))
|
||
{
|
||
sum_location.x+=mean_location.x+u;
|
||
sum_location.y+=mean_location.y+v;
|
||
sum_pixel.red+=pixel.red;
|
||
sum_pixel.green+=pixel.green;
|
||
sum_pixel.blue+=pixel.blue;
|
||
sum_pixel.opacity+=pixel.opacity;
|
||
count++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
gamma=PerceptibleReciprocal(count);
|
||
mean_location.x=gamma*sum_location.x;
|
||
mean_location.y=gamma*sum_location.y;
|
||
mean_pixel.red=gamma*sum_pixel.red;
|
||
mean_pixel.green=gamma*sum_pixel.green;
|
||
mean_pixel.blue=gamma*sum_pixel.blue;
|
||
mean_pixel.opacity=gamma*sum_pixel.opacity;
|
||
distance=(mean_location.x-previous_location.x)*
|
||
(mean_location.x-previous_location.x)+
|
||
(mean_location.y-previous_location.y)*
|
||
(mean_location.y-previous_location.y)+
|
||
255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)*
|
||
255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)+
|
||
255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)*
|
||
255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)+
|
||
255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue)*
|
||
255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue);
|
||
if (distance <= 3.0)
|
||
break;
|
||
}
|
||
q->red=ClampToQuantum(mean_pixel.red);
|
||
q->green=ClampToQuantum(mean_pixel.green);
|
||
q->blue=ClampToQuantum(mean_pixel.blue);
|
||
q->opacity=ClampToQuantum(mean_pixel.opacity);
|
||
p++;
|
||
q++;
|
||
}
|
||
if (SyncCacheViewAuthenticPixels(mean_view,exception) == MagickFalse)
|
||
status=MagickFalse;
|
||
if (image->progress_monitor != (MagickProgressMonitor) NULL)
|
||
{
|
||
MagickBooleanType
|
||
proceed;
|
||
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp atomic
|
||
#endif
|
||
progress++;
|
||
proceed=SetImageProgress(image,MeanShiftImageTag,progress,image->rows);
|
||
if (proceed == MagickFalse)
|
||
status=MagickFalse;
|
||
}
|
||
}
|
||
mean_view=DestroyCacheView(mean_view);
|
||
pixel_view=DestroyCacheView(pixel_view);
|
||
image_view=DestroyCacheView(image_view);
|
||
return(mean_image);
|
||
}
|