forked from openkylin/imagemagick
1133 lines
38 KiB
C
1133 lines
38 KiB
C
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% M M AAA TTTTT RRRR IIIII X X %
|
||
% MM MM A A T R R I X X %
|
||
% M M M AAAAA T RRRR I X %
|
||
% M M A A T R R I X X %
|
||
% M M A A T R R IIIII X X %
|
||
% %
|
||
% %
|
||
% MagickCore Matrix Methods %
|
||
% %
|
||
% Software Design %
|
||
% Cristy %
|
||
% August 2007 %
|
||
% %
|
||
% %
|
||
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
|
||
% dedicated to making software imaging solutions freely available. %
|
||
% %
|
||
% You may not use this file except in compliance with the License. You may %
|
||
% obtain a copy of the License at %
|
||
% %
|
||
% https://imagemagick.org/script/license.php %
|
||
% %
|
||
% Unless required by applicable law or agreed to in writing, software %
|
||
% distributed under the License is distributed on an "AS IS" BASIS, %
|
||
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
|
||
% See the License for the specific language governing permissions and %
|
||
% limitations under the License. %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
%
|
||
*/
|
||
|
||
/*
|
||
Include declarations.
|
||
*/
|
||
#include "magick/studio.h"
|
||
#include "magick/blob.h"
|
||
#include "magick/blob-private.h"
|
||
#include "magick/exception.h"
|
||
#include "magick/exception-private.h"
|
||
#include "magick/image-private.h"
|
||
#include "magick/matrix.h"
|
||
#include "magick/memory_.h"
|
||
#include "magick/pixel-private.h"
|
||
#include "magick/resource_.h"
|
||
#include "magick/semaphore.h"
|
||
#include "magick/thread-private.h"
|
||
#include "magick/utility.h"
|
||
|
||
/*
|
||
Typedef declaration.
|
||
*/
|
||
struct _MatrixInfo
|
||
{
|
||
CacheType
|
||
type;
|
||
|
||
size_t
|
||
columns,
|
||
rows,
|
||
stride;
|
||
|
||
MagickSizeType
|
||
length;
|
||
|
||
MagickBooleanType
|
||
mapped,
|
||
synchronize;
|
||
|
||
char
|
||
path[MaxTextExtent];
|
||
|
||
int
|
||
file;
|
||
|
||
void
|
||
*elements;
|
||
|
||
SemaphoreInfo
|
||
*semaphore;
|
||
|
||
size_t
|
||
signature;
|
||
};
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% A c q u i r e M a t r i x I n f o %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% AcquireMatrixInfo() allocates the ImageInfo structure.
|
||
%
|
||
% The format of the AcquireMatrixInfo method is:
|
||
%
|
||
% MatrixInfo *AcquireMatrixInfo(const size_t columns,const size_t rows,
|
||
% const size_t stride,ExceptionInfo *exception)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o columns: the matrix columns.
|
||
%
|
||
% o rows: the matrix rows.
|
||
%
|
||
% o stride: the matrix stride.
|
||
%
|
||
% o exception: return any errors or warnings in this structure.
|
||
%
|
||
*/
|
||
|
||
#if defined(SIGBUS)
|
||
static void MatrixSignalHandler(int status)
|
||
{
|
||
ThrowFatalException(CacheFatalError,"UnableToExtendMatrixCache");
|
||
}
|
||
#endif
|
||
|
||
static inline MagickOffsetType WriteMatrixElements(
|
||
const MatrixInfo *magick_restrict matrix_info,const MagickOffsetType offset,
|
||
const MagickSizeType length,const unsigned char *magick_restrict buffer)
|
||
{
|
||
MagickOffsetType
|
||
i;
|
||
|
||
ssize_t
|
||
count;
|
||
|
||
#if !defined(MAGICKCORE_HAVE_PWRITE)
|
||
LockSemaphoreInfo(matrix_info->semaphore);
|
||
if (lseek(matrix_info->file,offset,SEEK_SET) < 0)
|
||
{
|
||
UnlockSemaphoreInfo(matrix_info->semaphore);
|
||
return((MagickOffsetType) -1);
|
||
}
|
||
#endif
|
||
count=0;
|
||
for (i=0; i < (MagickOffsetType) length; i+=count)
|
||
{
|
||
#if !defined(MAGICKCORE_HAVE_PWRITE)
|
||
count=write(matrix_info->file,buffer+i,(size_t) MagickMin(length-i,
|
||
(MagickSizeType) MAGICK_SSIZE_MAX));
|
||
#else
|
||
count=pwrite(matrix_info->file,buffer+i,(size_t) MagickMin(length-i,
|
||
(MagickSizeType) MAGICK_SSIZE_MAX),(off_t) (offset+i));
|
||
#endif
|
||
if (count <= 0)
|
||
{
|
||
count=0;
|
||
if (errno != EINTR)
|
||
break;
|
||
}
|
||
}
|
||
#if !defined(MAGICKCORE_HAVE_PWRITE)
|
||
UnlockSemaphoreInfo(matrix_info->semaphore);
|
||
#endif
|
||
return(i);
|
||
}
|
||
|
||
static MagickBooleanType SetMatrixExtent(
|
||
MatrixInfo *magick_restrict matrix_info,MagickSizeType length)
|
||
{
|
||
MagickOffsetType
|
||
count,
|
||
extent,
|
||
offset;
|
||
|
||
if (length != (MagickSizeType) ((MagickOffsetType) length))
|
||
return(MagickFalse);
|
||
offset=(MagickOffsetType) lseek(matrix_info->file,0,SEEK_END);
|
||
if (offset < 0)
|
||
return(MagickFalse);
|
||
if ((MagickSizeType) offset >= length)
|
||
return(MagickTrue);
|
||
extent=(MagickOffsetType) length-1;
|
||
count=WriteMatrixElements(matrix_info,extent,1,(const unsigned char *) "");
|
||
#if defined(MAGICKCORE_HAVE_POSIX_FALLOCATE)
|
||
if (matrix_info->synchronize != MagickFalse)
|
||
(void) posix_fallocate(matrix_info->file,offset+1,extent-offset);
|
||
#endif
|
||
#if defined(SIGBUS)
|
||
(void) signal(SIGBUS,MatrixSignalHandler);
|
||
#endif
|
||
return(count != (MagickOffsetType) 1 ? MagickFalse : MagickTrue);
|
||
}
|
||
|
||
MagickExport MatrixInfo *AcquireMatrixInfo(const size_t columns,
|
||
const size_t rows,const size_t stride,ExceptionInfo *exception)
|
||
{
|
||
char
|
||
*synchronize;
|
||
|
||
MagickBooleanType
|
||
status;
|
||
|
||
MatrixInfo
|
||
*matrix_info;
|
||
|
||
matrix_info=(MatrixInfo *) AcquireMagickMemory(sizeof(*matrix_info));
|
||
if (matrix_info == (MatrixInfo *) NULL)
|
||
return((MatrixInfo *) NULL);
|
||
(void) memset(matrix_info,0,sizeof(*matrix_info));
|
||
matrix_info->signature=MagickCoreSignature;
|
||
matrix_info->columns=columns;
|
||
matrix_info->rows=rows;
|
||
matrix_info->stride=stride;
|
||
matrix_info->semaphore=AllocateSemaphoreInfo();
|
||
synchronize=GetEnvironmentValue("MAGICK_SYNCHRONIZE");
|
||
if (synchronize != (const char *) NULL)
|
||
{
|
||
matrix_info->synchronize=IsStringTrue(synchronize);
|
||
synchronize=DestroyString(synchronize);
|
||
}
|
||
matrix_info->length=(MagickSizeType) columns*rows*stride;
|
||
if (matrix_info->columns != (size_t) (matrix_info->length/rows/stride))
|
||
{
|
||
(void) ThrowMagickException(exception,GetMagickModule(),CacheError,
|
||
"CacheResourcesExhausted","`%s'","matrix cache");
|
||
return(DestroyMatrixInfo(matrix_info));
|
||
}
|
||
matrix_info->type=MemoryCache;
|
||
status=AcquireMagickResource(AreaResource,matrix_info->length);
|
||
if ((status != MagickFalse) &&
|
||
(matrix_info->length == (MagickSizeType) ((size_t) matrix_info->length)))
|
||
{
|
||
status=AcquireMagickResource(MemoryResource,matrix_info->length);
|
||
if (status != MagickFalse)
|
||
{
|
||
matrix_info->mapped=MagickFalse;
|
||
matrix_info->elements=AcquireMagickMemory((size_t)
|
||
matrix_info->length);
|
||
if (matrix_info->elements == NULL)
|
||
{
|
||
matrix_info->mapped=MagickTrue;
|
||
matrix_info->elements=MapBlob(-1,IOMode,0,(size_t)
|
||
matrix_info->length);
|
||
}
|
||
if (matrix_info->elements == (unsigned short *) NULL)
|
||
RelinquishMagickResource(MemoryResource,matrix_info->length);
|
||
}
|
||
}
|
||
matrix_info->file=(-1);
|
||
if (matrix_info->elements == (unsigned short *) NULL)
|
||
{
|
||
status=AcquireMagickResource(DiskResource,matrix_info->length);
|
||
if (status == MagickFalse)
|
||
{
|
||
(void) ThrowMagickException(exception,GetMagickModule(),CacheError,
|
||
"CacheResourcesExhausted","`%s'","matrix cache");
|
||
return(DestroyMatrixInfo(matrix_info));
|
||
}
|
||
matrix_info->type=DiskCache;
|
||
matrix_info->file=AcquireUniqueFileResource(matrix_info->path);
|
||
if (matrix_info->file == -1)
|
||
return(DestroyMatrixInfo(matrix_info));
|
||
status=AcquireMagickResource(MapResource,matrix_info->length);
|
||
if (status != MagickFalse)
|
||
{
|
||
status=SetMatrixExtent(matrix_info,matrix_info->length);
|
||
if (status != MagickFalse)
|
||
matrix_info->elements=(void *) MapBlob(matrix_info->file,IOMode,0,
|
||
(size_t) matrix_info->length);
|
||
if (matrix_info->elements != NULL)
|
||
matrix_info->type=MapCache;
|
||
else
|
||
RelinquishMagickResource(MapResource,matrix_info->length);
|
||
}
|
||
}
|
||
return(matrix_info);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% A c q u i r e M a g i c k M a t r i x %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% AcquireMagickMatrix() allocates and returns a matrix in the form of an
|
||
% array of pointers to an array of doubles, with all values pre-set to zero.
|
||
%
|
||
% This used to generate the two dimensional matrix, and vectors required
|
||
% for the GaussJordanElimination() method below, solving some system of
|
||
% simultanious equations.
|
||
%
|
||
% The format of the AcquireMagickMatrix method is:
|
||
%
|
||
% double **AcquireMagickMatrix(const size_t number_rows,
|
||
% const size_t size)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o number_rows: the number pointers for the array of pointers
|
||
% (first dimension).
|
||
%
|
||
% o size: the size of the array of doubles each pointer points to
|
||
% (second dimension).
|
||
%
|
||
*/
|
||
MagickExport double **AcquireMagickMatrix(const size_t number_rows,
|
||
const size_t size)
|
||
{
|
||
double
|
||
**matrix;
|
||
|
||
ssize_t
|
||
i,
|
||
j;
|
||
|
||
matrix=(double **) AcquireQuantumMemory(number_rows,sizeof(*matrix));
|
||
if (matrix == (double **) NULL)
|
||
return((double **) NULL);
|
||
for (i=0; i < (ssize_t) number_rows; i++)
|
||
{
|
||
matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i]));
|
||
if (matrix[i] == (double *) NULL)
|
||
{
|
||
for (j=0; j < i; j++)
|
||
matrix[j]=(double *) RelinquishMagickMemory(matrix[j]);
|
||
matrix=(double **) RelinquishMagickMemory(matrix);
|
||
return((double **) NULL);
|
||
}
|
||
for (j=0; j < (ssize_t) size; j++)
|
||
matrix[i][j]=0.0;
|
||
}
|
||
return(matrix);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% D e s t r o y M a t r i x I n f o %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% DestroyMatrixInfo() dereferences a matrix, deallocating memory associated
|
||
% with the matrix.
|
||
%
|
||
% The format of the DestroyImage method is:
|
||
%
|
||
% MatrixInfo *DestroyMatrixInfo(MatrixInfo *matrix_info)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix_info: the matrix.
|
||
%
|
||
*/
|
||
MagickExport MatrixInfo *DestroyMatrixInfo(MatrixInfo *matrix_info)
|
||
{
|
||
assert(matrix_info != (MatrixInfo *) NULL);
|
||
assert(matrix_info->signature == MagickCoreSignature);
|
||
LockSemaphoreInfo(matrix_info->semaphore);
|
||
switch (matrix_info->type)
|
||
{
|
||
case MemoryCache:
|
||
{
|
||
if (matrix_info->mapped == MagickFalse)
|
||
matrix_info->elements=RelinquishMagickMemory(matrix_info->elements);
|
||
else
|
||
{
|
||
(void) UnmapBlob(matrix_info->elements,(size_t) matrix_info->length);
|
||
matrix_info->elements=(unsigned short *) NULL;
|
||
}
|
||
RelinquishMagickResource(MemoryResource,matrix_info->length);
|
||
break;
|
||
}
|
||
case MapCache:
|
||
{
|
||
(void) UnmapBlob(matrix_info->elements,(size_t) matrix_info->length);
|
||
matrix_info->elements=NULL;
|
||
RelinquishMagickResource(MapResource,matrix_info->length);
|
||
}
|
||
case DiskCache:
|
||
{
|
||
if (matrix_info->file != -1)
|
||
(void) close(matrix_info->file);
|
||
(void) RelinquishUniqueFileResource(matrix_info->path);
|
||
RelinquishMagickResource(DiskResource,matrix_info->length);
|
||
break;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
UnlockSemaphoreInfo(matrix_info->semaphore);
|
||
DestroySemaphoreInfo(&matrix_info->semaphore);
|
||
return((MatrixInfo *) RelinquishMagickMemory(matrix_info));
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% G a u s s J o r d a n E l i m i n a t i o n %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% GaussJordanElimination() returns a matrix in reduced row echelon form,
|
||
% while simultaneously reducing and thus solving the augumented results
|
||
% matrix.
|
||
%
|
||
% See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
|
||
%
|
||
% The format of the GaussJordanElimination method is:
|
||
%
|
||
% MagickBooleanType GaussJordanElimination(double **matrix,
|
||
% double **vectors,const size_t rank,const size_t number_vectors)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix: the matrix to be reduced, as an 'array of row pointers'.
|
||
%
|
||
% o vectors: the additional matrix argumenting the matrix for row reduction.
|
||
% Producing an 'array of column vectors'.
|
||
%
|
||
% o rank: The size of the matrix (both rows and columns). Also represents
|
||
% the number terms that need to be solved.
|
||
%
|
||
% o number_vectors: Number of vectors columns, argumenting the above matrix.
|
||
% Usually 1, but can be more for more complex equation solving.
|
||
%
|
||
% Note that the 'matrix' is given as a 'array of row pointers' of rank size.
|
||
% That is values can be assigned as matrix[row][column] where 'row' is
|
||
% typically the equation, and 'column' is the term of the equation.
|
||
% That is the matrix is in the form of a 'row first array'.
|
||
%
|
||
% However 'vectors' is a 'array of column pointers' which can have any number
|
||
% of columns, with each column array the same 'rank' size as 'matrix'.
|
||
%
|
||
% This allows for simpler handling of the results, especially is only one
|
||
% column 'vector' is all that is required to produce the desired solution.
|
||
%
|
||
% For example, the 'vectors' can consist of a pointer to a simple array of
|
||
% doubles. when only one set of simultanious equations is to be solved from
|
||
% the given set of coefficient weighted terms.
|
||
%
|
||
% double **matrix = AcquireMagickMatrix(8UL,8UL);
|
||
% double coefficents[8];
|
||
% ...
|
||
% GaussJordanElimination(matrix, &coefficents, 8UL, 1UL);
|
||
%
|
||
% However by specifing more 'columns' (as an 'array of vector columns', you
|
||
% can use this function to solve a set of 'separable' equations.
|
||
%
|
||
% For example a distortion function where u = U(x,y) v = V(x,y)
|
||
% And the functions U() and V() have separate coefficents, but are being
|
||
% generated from a common x,y->u,v data set.
|
||
%
|
||
% Another example is generation of a color gradient from a set of colors at
|
||
% specific coordients, such as a list x,y -> r,g,b,a.
|
||
%
|
||
% You can also use the 'vectors' to generate an inverse of the given 'matrix'
|
||
% though as a 'column first array' rather than a 'row first array'. For
|
||
% details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
|
||
%
|
||
*/
|
||
MagickExport MagickBooleanType GaussJordanElimination(double **matrix,
|
||
double **vectors,const size_t rank,const size_t number_vectors)
|
||
{
|
||
#define GaussJordanSwap(x,y) \
|
||
{ \
|
||
if ((x) != (y)) \
|
||
{ \
|
||
(x)+=(y); \
|
||
(y)=(x)-(y); \
|
||
(x)=(x)-(y); \
|
||
} \
|
||
}
|
||
|
||
double
|
||
max,
|
||
scale;
|
||
|
||
ssize_t
|
||
i,
|
||
j,
|
||
k;
|
||
|
||
ssize_t
|
||
column,
|
||
*columns,
|
||
*pivots,
|
||
row,
|
||
*rows;
|
||
|
||
columns=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*columns));
|
||
rows=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*rows));
|
||
pivots=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*pivots));
|
||
if ((rows == (ssize_t *) NULL) || (columns == (ssize_t *) NULL) ||
|
||
(pivots == (ssize_t *) NULL))
|
||
{
|
||
if (pivots != (ssize_t *) NULL)
|
||
pivots=(ssize_t *) RelinquishMagickMemory(pivots);
|
||
if (columns != (ssize_t *) NULL)
|
||
columns=(ssize_t *) RelinquishMagickMemory(columns);
|
||
if (rows != (ssize_t *) NULL)
|
||
rows=(ssize_t *) RelinquishMagickMemory(rows);
|
||
return(MagickFalse);
|
||
}
|
||
(void) memset(columns,0,rank*sizeof(*columns));
|
||
(void) memset(rows,0,rank*sizeof(*rows));
|
||
(void) memset(pivots,0,rank*sizeof(*pivots));
|
||
column=0;
|
||
row=0;
|
||
for (i=0; i < (ssize_t) rank; i++)
|
||
{
|
||
max=0.0;
|
||
for (j=0; j < (ssize_t) rank; j++)
|
||
if (pivots[j] != 1)
|
||
{
|
||
for (k=0; k < (ssize_t) rank; k++)
|
||
if (pivots[k] != 0)
|
||
{
|
||
if (pivots[k] > 1)
|
||
return(MagickFalse);
|
||
}
|
||
else
|
||
if (fabs(matrix[j][k]) >= max)
|
||
{
|
||
max=fabs(matrix[j][k]);
|
||
row=j;
|
||
column=k;
|
||
}
|
||
}
|
||
pivots[column]++;
|
||
if (row != column)
|
||
{
|
||
for (k=0; k < (ssize_t) rank; k++)
|
||
GaussJordanSwap(matrix[row][k],matrix[column][k]);
|
||
for (k=0; k < (ssize_t) number_vectors; k++)
|
||
GaussJordanSwap(vectors[k][row],vectors[k][column]);
|
||
}
|
||
rows[i]=row;
|
||
columns[i]=column;
|
||
if (matrix[column][column] == 0.0)
|
||
return(MagickFalse); /* sigularity */
|
||
scale=PerceptibleReciprocal(matrix[column][column]);
|
||
matrix[column][column]=1.0;
|
||
for (j=0; j < (ssize_t) rank; j++)
|
||
matrix[column][j]*=scale;
|
||
for (j=0; j < (ssize_t) number_vectors; j++)
|
||
vectors[j][column]*=scale;
|
||
for (j=0; j < (ssize_t) rank; j++)
|
||
if (j != column)
|
||
{
|
||
scale=matrix[j][column];
|
||
matrix[j][column]=0.0;
|
||
for (k=0; k < (ssize_t) rank; k++)
|
||
matrix[j][k]-=scale*matrix[column][k];
|
||
for (k=0; k < (ssize_t) number_vectors; k++)
|
||
vectors[k][j]-=scale*vectors[k][column];
|
||
}
|
||
}
|
||
for (j=(ssize_t) rank-1; j >= 0; j--)
|
||
if (columns[j] != rows[j])
|
||
for (i=0; i < (ssize_t) rank; i++)
|
||
GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]);
|
||
pivots=(ssize_t *) RelinquishMagickMemory(pivots);
|
||
rows=(ssize_t *) RelinquishMagickMemory(rows);
|
||
columns=(ssize_t *) RelinquishMagickMemory(columns);
|
||
return(MagickTrue);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% G e t M a t r i x C o l u m n s %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% GetMatrixColumns() returns the number of columns in the matrix.
|
||
%
|
||
% The format of the GetMatrixColumns method is:
|
||
%
|
||
% size_t GetMatrixColumns(const MatrixInfo *matrix_info)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix_info: the matrix.
|
||
%
|
||
*/
|
||
MagickExport size_t GetMatrixColumns(const MatrixInfo *matrix_info)
|
||
{
|
||
assert(matrix_info != (MatrixInfo *) NULL);
|
||
assert(matrix_info->signature == MagickCoreSignature);
|
||
return(matrix_info->columns);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% G e t M a t r i x E l e m e n t %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% GetMatrixElement() returns the specifed element in the matrix.
|
||
%
|
||
% The format of the GetMatrixElement method is:
|
||
%
|
||
% MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info,
|
||
% const ssize_t x,const ssize_t y,void *value)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix_info: the matrix columns.
|
||
%
|
||
% o x: the matrix x-offset.
|
||
%
|
||
% o y: the matrix y-offset.
|
||
%
|
||
% o value: return the matrix element in this buffer.
|
||
%
|
||
*/
|
||
|
||
static inline ssize_t EdgeX(const ssize_t x,const size_t columns)
|
||
{
|
||
if (x < 0L)
|
||
return(0L);
|
||
if (x >= (ssize_t) columns)
|
||
return((ssize_t) (columns-1));
|
||
return(x);
|
||
}
|
||
|
||
static inline ssize_t EdgeY(const ssize_t y,const size_t rows)
|
||
{
|
||
if (y < 0L)
|
||
return(0L);
|
||
if (y >= (ssize_t) rows)
|
||
return((ssize_t) (rows-1));
|
||
return(y);
|
||
}
|
||
|
||
static inline MagickOffsetType ReadMatrixElements(
|
||
const MatrixInfo *magick_restrict matrix_info,const MagickOffsetType offset,
|
||
const MagickSizeType length,unsigned char *magick_restrict buffer)
|
||
{
|
||
MagickOffsetType
|
||
i;
|
||
|
||
ssize_t
|
||
count;
|
||
|
||
#if !defined(MAGICKCORE_HAVE_PREAD)
|
||
LockSemaphoreInfo(matrix_info->semaphore);
|
||
if (lseek(matrix_info->file,offset,SEEK_SET) < 0)
|
||
{
|
||
UnlockSemaphoreInfo(matrix_info->semaphore);
|
||
return((MagickOffsetType) -1);
|
||
}
|
||
#endif
|
||
count=0;
|
||
for (i=0; i < (MagickOffsetType) length; i+=count)
|
||
{
|
||
#if !defined(MAGICKCORE_HAVE_PREAD)
|
||
count=read(matrix_info->file,buffer+i,(size_t) MagickMin(length-i,
|
||
(MagickSizeType) MAGICK_SSIZE_MAX));
|
||
#else
|
||
count=pread(matrix_info->file,buffer+i,(size_t) MagickMin(length-i,
|
||
(MagickSizeType) MAGICK_SSIZE_MAX),(off_t) (offset+i));
|
||
#endif
|
||
if (count <= 0)
|
||
{
|
||
count=0;
|
||
if (errno != EINTR)
|
||
break;
|
||
}
|
||
}
|
||
#if !defined(MAGICKCORE_HAVE_PREAD)
|
||
UnlockSemaphoreInfo(matrix_info->semaphore);
|
||
#endif
|
||
return(i);
|
||
}
|
||
|
||
MagickExport MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info,
|
||
const ssize_t x,const ssize_t y,void *value)
|
||
{
|
||
MagickOffsetType
|
||
count,
|
||
i;
|
||
|
||
assert(matrix_info != (const MatrixInfo *) NULL);
|
||
assert(matrix_info->signature == MagickCoreSignature);
|
||
i=(MagickOffsetType) EdgeY(y,matrix_info->rows)*matrix_info->columns+
|
||
EdgeX(x,matrix_info->columns);
|
||
if (matrix_info->type != DiskCache)
|
||
{
|
||
(void) memcpy(value,(unsigned char *) matrix_info->elements+i*
|
||
matrix_info->stride,matrix_info->stride);
|
||
return(MagickTrue);
|
||
}
|
||
count=ReadMatrixElements(matrix_info,i*matrix_info->stride,
|
||
matrix_info->stride,(unsigned char *) value);
|
||
if (count != (MagickOffsetType) matrix_info->stride)
|
||
return(MagickFalse);
|
||
return(MagickTrue);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% G e t M a t r i x R o w s %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% GetMatrixRows() returns the number of rows in the matrix.
|
||
%
|
||
% The format of the GetMatrixRows method is:
|
||
%
|
||
% size_t GetMatrixRows(const MatrixInfo *matrix_info)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix_info: the matrix.
|
||
%
|
||
*/
|
||
MagickExport size_t GetMatrixRows(const MatrixInfo *matrix_info)
|
||
{
|
||
assert(matrix_info != (const MatrixInfo *) NULL);
|
||
assert(matrix_info->signature == MagickCoreSignature);
|
||
return(matrix_info->rows);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% L e a s t S q u a r e s A d d T e r m s %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% LeastSquaresAddTerms() adds one set of terms and associate results to the
|
||
% given matrix and vectors for solving using least-squares function fitting.
|
||
%
|
||
% The format of the AcquireMagickMatrix method is:
|
||
%
|
||
% void LeastSquaresAddTerms(double **matrix,double **vectors,
|
||
% const double *terms,const double *results,const size_t rank,
|
||
% const size_t number_vectors);
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix: the square matrix to add given terms/results to.
|
||
%
|
||
% o vectors: the result vectors to add terms/results to.
|
||
%
|
||
% o terms: the pre-calculated terms (without the unknown coefficent
|
||
% weights) that forms the equation being added.
|
||
%
|
||
% o results: the result(s) that should be generated from the given terms
|
||
% weighted by the yet-to-be-solved coefficents.
|
||
%
|
||
% o rank: the rank or size of the dimensions of the square matrix.
|
||
% Also the length of vectors, and number of terms being added.
|
||
%
|
||
% o number_vectors: Number of result vectors, and number or results being
|
||
% added. Also represents the number of separable systems of equations
|
||
% that is being solved.
|
||
%
|
||
% Example of use...
|
||
%
|
||
% 2 dimensional Affine Equations (which are separable)
|
||
% c0*x + c2*y + c4*1 => u
|
||
% c1*x + c3*y + c5*1 => v
|
||
%
|
||
% double **matrix = AcquireMagickMatrix(3UL,3UL);
|
||
% double **vectors = AcquireMagickMatrix(2UL,3UL);
|
||
% double terms[3], results[2];
|
||
% ...
|
||
% for each given x,y -> u,v
|
||
% terms[0] = x;
|
||
% terms[1] = y;
|
||
% terms[2] = 1;
|
||
% results[0] = u;
|
||
% results[1] = v;
|
||
% LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL);
|
||
% ...
|
||
% if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) {
|
||
% c0 = vectors[0][0];
|
||
% c2 = vectors[0][1];
|
||
% c4 = vectors[0][2];
|
||
% c1 = vectors[1][0];
|
||
% c3 = vectors[1][1];
|
||
% c5 = vectors[1][2];
|
||
% }
|
||
% else
|
||
% printf("Matrix unsolvable\n);
|
||
% RelinquishMagickMatrix(matrix,3UL);
|
||
% RelinquishMagickMatrix(vectors,2UL);
|
||
%
|
||
*/
|
||
MagickExport void LeastSquaresAddTerms(double **matrix,double **vectors,
|
||
const double *terms,const double *results,const size_t rank,
|
||
const size_t number_vectors)
|
||
{
|
||
ssize_t
|
||
i,
|
||
j;
|
||
|
||
for (j=0; j < (ssize_t) rank; j++)
|
||
{
|
||
for (i=0; i < (ssize_t) rank; i++)
|
||
matrix[i][j]+=terms[i]*terms[j];
|
||
for (i=0; i < (ssize_t) number_vectors; i++)
|
||
vectors[i][j]+=results[i]*terms[j];
|
||
}
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% M a t r i x T o I m a g e %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% MatrixToImage() returns a matrix as an image. The matrix elements must be
|
||
% of type double otherwise nonsense is returned.
|
||
%
|
||
% The format of the MatrixToImage method is:
|
||
%
|
||
% Image *MatrixToImage(const MatrixInfo *matrix_info,
|
||
% ExceptionInfo *exception)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix_info: the matrix.
|
||
%
|
||
% o exception: return any errors or warnings in this structure.
|
||
%
|
||
*/
|
||
MagickExport Image *MatrixToImage(const MatrixInfo *matrix_info,
|
||
ExceptionInfo *exception)
|
||
{
|
||
CacheView
|
||
*image_view;
|
||
|
||
double
|
||
max_value,
|
||
min_value,
|
||
scale_factor,
|
||
value;
|
||
|
||
Image
|
||
*image;
|
||
|
||
MagickBooleanType
|
||
status;
|
||
|
||
ssize_t
|
||
y;
|
||
|
||
assert(matrix_info != (const MatrixInfo *) NULL);
|
||
assert(matrix_info->signature == MagickCoreSignature);
|
||
assert(exception != (ExceptionInfo *) NULL);
|
||
assert(exception->signature == MagickCoreSignature);
|
||
if (matrix_info->stride < sizeof(double))
|
||
return((Image *) NULL);
|
||
/*
|
||
Determine range of matrix.
|
||
*/
|
||
(void) GetMatrixElement(matrix_info,0,0,&value);
|
||
min_value=value;
|
||
max_value=value;
|
||
for (y=0; y < (ssize_t) matrix_info->rows; y++)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
for (x=0; x < (ssize_t) matrix_info->columns; x++)
|
||
{
|
||
if (GetMatrixElement(matrix_info,x,y,&value) == MagickFalse)
|
||
continue;
|
||
if (value < min_value)
|
||
min_value=value;
|
||
else
|
||
if (value > max_value)
|
||
max_value=value;
|
||
}
|
||
}
|
||
if ((min_value == 0.0) && (max_value == 0.0))
|
||
scale_factor=0;
|
||
else
|
||
if (min_value == max_value)
|
||
{
|
||
scale_factor=(double) QuantumRange/min_value;
|
||
min_value=0;
|
||
}
|
||
else
|
||
scale_factor=(double) QuantumRange/(max_value-min_value);
|
||
/*
|
||
Convert matrix to image.
|
||
*/
|
||
image=AcquireImage((ImageInfo *) NULL);
|
||
image->columns=matrix_info->columns;
|
||
image->rows=matrix_info->rows;
|
||
image->colorspace=GRAYColorspace;
|
||
status=MagickTrue;
|
||
image_view=AcquireAuthenticCacheView(image,exception);
|
||
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
||
#pragma omp parallel for schedule(static) shared(status) \
|
||
magick_number_threads(image,image,image->rows,1)
|
||
#endif
|
||
for (y=0; y < (ssize_t) image->rows; y++)
|
||
{
|
||
double
|
||
value;
|
||
|
||
PixelPacket
|
||
*q;
|
||
|
||
ssize_t
|
||
x;
|
||
|
||
if (status == MagickFalse)
|
||
continue;
|
||
q=QueueCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
|
||
if (q == (PixelPacket *) NULL)
|
||
{
|
||
status=MagickFalse;
|
||
continue;
|
||
}
|
||
for (x=0; x < (ssize_t) image->columns; x++)
|
||
{
|
||
if (GetMatrixElement(matrix_info,x,y,&value) == MagickFalse)
|
||
continue;
|
||
value=scale_factor*(value-min_value);
|
||
q->red=ClampToQuantum(value);
|
||
q->green=q->red;
|
||
q->blue=q->red;
|
||
q++;
|
||
}
|
||
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
|
||
status=MagickFalse;
|
||
}
|
||
image_view=DestroyCacheView(image_view);
|
||
if (status == MagickFalse)
|
||
image=DestroyImage(image);
|
||
return(image);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% N u l l M a t r i x %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% NullMatrix() sets all elements of the matrix to zero.
|
||
%
|
||
% The format of the memset method is:
|
||
%
|
||
% MagickBooleanType *NullMatrix(MatrixInfo *matrix_info)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix_info: the matrix.
|
||
%
|
||
*/
|
||
MagickExport MagickBooleanType NullMatrix(MatrixInfo *matrix_info)
|
||
{
|
||
ssize_t
|
||
x;
|
||
|
||
ssize_t
|
||
count,
|
||
y;
|
||
|
||
unsigned char
|
||
value;
|
||
|
||
assert(matrix_info != (const MatrixInfo *) NULL);
|
||
assert(matrix_info->signature == MagickCoreSignature);
|
||
if (matrix_info->type != DiskCache)
|
||
{
|
||
(void) memset(matrix_info->elements,0,(size_t)
|
||
matrix_info->length);
|
||
return(MagickTrue);
|
||
}
|
||
value=0;
|
||
(void) lseek(matrix_info->file,0,SEEK_SET);
|
||
for (y=0; y < (ssize_t) matrix_info->rows; y++)
|
||
{
|
||
for (x=0; x < (ssize_t) matrix_info->length; x++)
|
||
{
|
||
count=write(matrix_info->file,&value,sizeof(value));
|
||
if (count != (ssize_t) sizeof(value))
|
||
break;
|
||
}
|
||
if (x < (ssize_t) matrix_info->length)
|
||
break;
|
||
}
|
||
return(y < (ssize_t) matrix_info->rows ? MagickFalse : MagickTrue);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% R e l i n q u i s h M a g i c k M a t r i x %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% RelinquishMagickMatrix() frees the previously acquired matrix (array of
|
||
% pointers to arrays of doubles).
|
||
%
|
||
% The format of the RelinquishMagickMatrix method is:
|
||
%
|
||
% double **RelinquishMagickMatrix(double **matrix,
|
||
% const size_t number_rows)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix: the matrix to relinquish
|
||
%
|
||
% o number_rows: the first dimension of the acquired matrix (number of
|
||
% pointers)
|
||
%
|
||
*/
|
||
MagickExport double **RelinquishMagickMatrix(double **matrix,
|
||
const size_t number_rows)
|
||
{
|
||
ssize_t
|
||
i;
|
||
|
||
if (matrix == (double **) NULL )
|
||
return(matrix);
|
||
for (i=0; i < (ssize_t) number_rows; i++)
|
||
matrix[i]=(double *) RelinquishMagickMemory(matrix[i]);
|
||
matrix=(double **) RelinquishMagickMemory(matrix);
|
||
return(matrix);
|
||
}
|
||
|
||
/*
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
% %
|
||
% %
|
||
% %
|
||
% S e t M a t r i x E l e m e n t %
|
||
% %
|
||
% %
|
||
% %
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
%
|
||
% SetMatrixElement() sets the specifed element in the matrix.
|
||
%
|
||
% The format of the SetMatrixElement method is:
|
||
%
|
||
% MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info,
|
||
% const ssize_t x,const ssize_t y,void *value)
|
||
%
|
||
% A description of each parameter follows:
|
||
%
|
||
% o matrix_info: the matrix columns.
|
||
%
|
||
% o x: the matrix x-offset.
|
||
%
|
||
% o y: the matrix y-offset.
|
||
%
|
||
% o value: set the matrix element to this value.
|
||
%
|
||
*/
|
||
|
||
MagickExport MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info,
|
||
const ssize_t x,const ssize_t y,const void *value)
|
||
{
|
||
MagickOffsetType
|
||
count,
|
||
i;
|
||
|
||
assert(matrix_info != (const MatrixInfo *) NULL);
|
||
assert(matrix_info->signature == MagickCoreSignature);
|
||
i=(MagickOffsetType) y*matrix_info->columns+x;
|
||
if ((i < 0) ||
|
||
((MagickSizeType) (i*matrix_info->stride) >= matrix_info->length))
|
||
return(MagickFalse);
|
||
if (matrix_info->type != DiskCache)
|
||
{
|
||
(void) memcpy((unsigned char *) matrix_info->elements+i*
|
||
matrix_info->stride,value,matrix_info->stride);
|
||
return(MagickTrue);
|
||
}
|
||
count=WriteMatrixElements(matrix_info,i*matrix_info->stride,
|
||
matrix_info->stride,(unsigned char *) value);
|
||
if (count != (MagickOffsetType) matrix_info->stride)
|
||
return(MagickFalse);
|
||
return(MagickTrue);
|
||
}
|