forked from openkylin/rust-base64
195 lines
5.0 KiB
Rust
195 lines
5.0 KiB
Rust
extern crate base64;
|
|
extern crate rand;
|
|
|
|
use rand::{FromEntropy, Rng};
|
|
|
|
use base64::*;
|
|
|
|
mod helpers;
|
|
use self::helpers::*;
|
|
|
|
// generate random contents of the specified length and test encode/decode roundtrip
|
|
fn roundtrip_random(
|
|
byte_buf: &mut Vec<u8>,
|
|
str_buf: &mut String,
|
|
config: Config,
|
|
byte_len: usize,
|
|
approx_values_per_byte: u8,
|
|
max_rounds: u64,
|
|
) {
|
|
// let the short ones be short but don't let it get too crazy large
|
|
let num_rounds = calculate_number_of_rounds(byte_len, approx_values_per_byte, max_rounds);
|
|
let mut r = rand::rngs::SmallRng::from_entropy();
|
|
let mut decode_buf = Vec::new();
|
|
|
|
for _ in 0..num_rounds {
|
|
byte_buf.clear();
|
|
str_buf.clear();
|
|
decode_buf.clear();
|
|
while byte_buf.len() < byte_len {
|
|
byte_buf.push(r.gen::<u8>());
|
|
}
|
|
|
|
encode_config_buf(&byte_buf, config, str_buf);
|
|
decode_config_buf(&str_buf, config, &mut decode_buf).unwrap();
|
|
|
|
assert_eq!(byte_buf, &decode_buf);
|
|
}
|
|
}
|
|
|
|
fn calculate_number_of_rounds(byte_len: usize, approx_values_per_byte: u8, max: u64) -> u64 {
|
|
// don't overflow
|
|
let mut prod = approx_values_per_byte as u64;
|
|
|
|
for _ in 0..byte_len {
|
|
if prod > max {
|
|
return max;
|
|
}
|
|
|
|
prod = prod.saturating_mul(prod);
|
|
}
|
|
|
|
prod
|
|
}
|
|
|
|
fn no_pad_config() -> Config {
|
|
Config::new(CharacterSet::Standard, false)
|
|
}
|
|
|
|
#[test]
|
|
fn roundtrip_random_short_standard() {
|
|
let mut byte_buf: Vec<u8> = Vec::new();
|
|
let mut str_buf = String::new();
|
|
|
|
for input_len in 0..40 {
|
|
roundtrip_random(&mut byte_buf, &mut str_buf, STANDARD, input_len, 4, 10000);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn roundtrip_random_with_fast_loop_standard() {
|
|
let mut byte_buf: Vec<u8> = Vec::new();
|
|
let mut str_buf = String::new();
|
|
|
|
for input_len in 40..100 {
|
|
roundtrip_random(&mut byte_buf, &mut str_buf, STANDARD, input_len, 4, 1000);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn roundtrip_random_short_no_padding() {
|
|
let mut byte_buf: Vec<u8> = Vec::new();
|
|
let mut str_buf = String::new();
|
|
|
|
for input_len in 0..40 {
|
|
roundtrip_random(
|
|
&mut byte_buf,
|
|
&mut str_buf,
|
|
no_pad_config(),
|
|
input_len,
|
|
4,
|
|
10000,
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn roundtrip_random_no_padding() {
|
|
let mut byte_buf: Vec<u8> = Vec::new();
|
|
let mut str_buf = String::new();
|
|
|
|
for input_len in 40..100 {
|
|
roundtrip_random(
|
|
&mut byte_buf,
|
|
&mut str_buf,
|
|
no_pad_config(),
|
|
input_len,
|
|
4,
|
|
1000,
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn roundtrip_decode_trailing_10_bytes() {
|
|
// This is a special case because we decode 8 byte blocks of input at a time as much as we can,
|
|
// ideally unrolled to 32 bytes at a time, in stages 1 and 2. Since we also write a u64's worth
|
|
// of bytes (8) to the output, we always write 2 garbage bytes that then will be overwritten by
|
|
// the NEXT block. However, if the next block only contains 2 bytes, it will decode to 1 byte,
|
|
// and therefore be too short to cover up the trailing 2 garbage bytes. Thus, we have stage 3
|
|
// to handle that case.
|
|
|
|
for num_quads in 0..25 {
|
|
let mut s: String = std::iter::repeat("ABCD").take(num_quads).collect();
|
|
s.push_str("EFGHIJKLZg");
|
|
|
|
let decoded = decode(&s).unwrap();
|
|
assert_eq!(num_quads * 3 + 7, decoded.len());
|
|
|
|
assert_eq!(s, encode_config(&decoded, STANDARD_NO_PAD));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn display_wrapper_matches_normal_encode() {
|
|
let mut bytes = Vec::<u8>::with_capacity(256);
|
|
|
|
for i in 0..255 {
|
|
bytes.push(i);
|
|
}
|
|
bytes.push(255);
|
|
|
|
assert_eq!(
|
|
encode(&bytes),
|
|
format!(
|
|
"{}",
|
|
base64::display::Base64Display::with_config(&bytes, STANDARD)
|
|
)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn because_we_can() {
|
|
compare_decode("alice", "YWxpY2U=");
|
|
compare_decode("alice", &encode(b"alice"));
|
|
compare_decode("alice", &encode(&decode(&encode(b"alice")).unwrap()));
|
|
}
|
|
|
|
#[test]
|
|
fn encode_config_slice_can_use_inline_buffer() {
|
|
let mut buf: [u8; 22] = [0; 22];
|
|
let mut larger_buf: [u8; 24] = [0; 24];
|
|
let mut input: [u8; 16] = [0; 16];
|
|
|
|
let mut rng = rand::rngs::SmallRng::from_entropy();
|
|
for elt in &mut input {
|
|
*elt = rng.gen();
|
|
}
|
|
|
|
assert_eq!(22, encode_config_slice(&input, STANDARD_NO_PAD, &mut buf));
|
|
let decoded = decode_config(&buf, STANDARD_NO_PAD).unwrap();
|
|
|
|
assert_eq!(decoded, input);
|
|
|
|
// let's try it again with padding
|
|
|
|
assert_eq!(24, encode_config_slice(&input, STANDARD, &mut larger_buf));
|
|
let decoded = decode_config(&buf, STANDARD).unwrap();
|
|
|
|
assert_eq!(decoded, input);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "index 24 out of range for slice of length 22")]
|
|
fn encode_config_slice_panics_when_buffer_too_small() {
|
|
let mut buf: [u8; 22] = [0; 22];
|
|
let mut input: [u8; 16] = [0; 16];
|
|
|
|
let mut rng = rand::rngs::SmallRng::from_entropy();
|
|
for elt in &mut input {
|
|
*elt = rng.gen();
|
|
}
|
|
|
|
encode_config_slice(&input, STANDARD, &mut buf);
|
|
}
|