forked from openkylin/z3
643 lines
20 KiB
C
643 lines
20 KiB
C
|
|
/*++
|
|
Copyright (c) 2015 Microsoft Corporation
|
|
|
|
--*/
|
|
|
|
/*
|
|
Simple MAXSAT solver on top of the Z3 API.
|
|
*/
|
|
#include<stdio.h>
|
|
#include<stdlib.h>
|
|
#include<memory.h>
|
|
#include<z3.h>
|
|
|
|
/**
|
|
\defgroup maxsat_ex MaxSAT/MaxSMT examples
|
|
*/
|
|
/*@{*/
|
|
|
|
/**
|
|
\brief Exit gracefully in case of error.
|
|
*/
|
|
void error(char * msg)
|
|
{
|
|
fprintf(stderr, "%s\n", msg);
|
|
exit(1);
|
|
}
|
|
|
|
/**
|
|
\brief Create a logical context.
|
|
Enable model construction only.
|
|
*/
|
|
Z3_context mk_context()
|
|
{
|
|
Z3_config cfg;
|
|
Z3_context ctx;
|
|
cfg = Z3_mk_config();
|
|
Z3_set_param_value(cfg, "MODEL", "true");
|
|
ctx = Z3_mk_context(cfg);
|
|
Z3_del_config(cfg);
|
|
return ctx;
|
|
}
|
|
|
|
/**
|
|
\brief Create a variable using the given name and type.
|
|
*/
|
|
Z3_ast mk_var(Z3_context ctx, const char * name, Z3_sort ty)
|
|
{
|
|
Z3_symbol s = Z3_mk_string_symbol(ctx, name);
|
|
return Z3_mk_const(ctx, s, ty);
|
|
}
|
|
|
|
/**
|
|
\brief Create a boolean variable using the given name.
|
|
*/
|
|
Z3_ast mk_bool_var(Z3_context ctx, const char * name)
|
|
{
|
|
Z3_sort ty = Z3_mk_bool_sort(ctx);
|
|
return mk_var(ctx, name, ty);
|
|
}
|
|
|
|
/**
|
|
\brief Create a fresh boolean variable.
|
|
*/
|
|
Z3_ast mk_fresh_bool_var(Z3_context ctx)
|
|
{
|
|
return Z3_mk_fresh_const(ctx, "k", Z3_mk_bool_sort(ctx));
|
|
}
|
|
|
|
/**
|
|
\brief Create an array with \c num_vars fresh boolean variables.
|
|
*/
|
|
Z3_ast * mk_fresh_bool_var_array(Z3_context ctx, unsigned num_vars)
|
|
{
|
|
Z3_ast * result = (Z3_ast *) malloc(sizeof(Z3_ast) * num_vars);
|
|
unsigned i;
|
|
for (i = 0; i < num_vars; i++) {
|
|
result[i] = mk_fresh_bool_var(ctx);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
\brief Delete array of boolean variables.
|
|
*/
|
|
void del_bool_var_array(Z3_ast * arr)
|
|
{
|
|
free(arr);
|
|
}
|
|
|
|
/**
|
|
\brief Create a binary OR.
|
|
*/
|
|
Z3_ast mk_binary_or(Z3_context ctx, Z3_ast in_1, Z3_ast in_2)
|
|
{
|
|
Z3_ast args[2] = { in_1, in_2 };
|
|
return Z3_mk_or(ctx, 2, args);
|
|
}
|
|
|
|
/**
|
|
\brief Create a ternary OR.
|
|
*/
|
|
Z3_ast mk_ternary_or(Z3_context ctx, Z3_ast in_1, Z3_ast in_2, Z3_ast in_3)
|
|
{
|
|
Z3_ast args[3] = { in_1, in_2, in_3 };
|
|
return Z3_mk_or(ctx, 3, args);
|
|
}
|
|
|
|
/**
|
|
\brief Create a binary AND.
|
|
*/
|
|
Z3_ast mk_binary_and(Z3_context ctx, Z3_ast in_1, Z3_ast in_2)
|
|
{
|
|
Z3_ast args[2] = { in_1, in_2 };
|
|
return Z3_mk_and(ctx, 2, args);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
\brief Free the given array of cnstrs that was allocated using get_hard_constraints or get_soft_constraints.
|
|
*/
|
|
void free_cnstr_array(Z3_ast * cnstrs)
|
|
{
|
|
free(cnstrs);
|
|
}
|
|
|
|
/**
|
|
\brief Assert hard constraints stored in the given array.
|
|
*/
|
|
void assert_hard_constraints(Z3_context ctx, Z3_solver s, unsigned num_cnstrs, Z3_ast * cnstrs)
|
|
{
|
|
unsigned i;
|
|
for (i = 0; i < num_cnstrs; i++) {
|
|
Z3_solver_assert(ctx, s, cnstrs[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Assert soft constraints stored in the given array.
|
|
This function will assert each soft-constraint C_i as (C_i or k_i) where k_i is a fresh boolean variable.
|
|
It will also return an array containing these fresh variables.
|
|
*/
|
|
Z3_ast * assert_soft_constraints(Z3_context ctx, Z3_solver s, unsigned num_cnstrs, Z3_ast * cnstrs)
|
|
{
|
|
unsigned i;
|
|
Z3_ast * aux_vars;
|
|
aux_vars = mk_fresh_bool_var_array(ctx, num_cnstrs);
|
|
for (i = 0; i < num_cnstrs; i++) {
|
|
Z3_ast assumption = cnstrs[i];
|
|
Z3_solver_assert(ctx, s, mk_binary_or(ctx, assumption, aux_vars[i]));
|
|
}
|
|
return aux_vars;
|
|
}
|
|
|
|
/**
|
|
\brief Create a full adder with inputs \c in_1, \c in_2 and \c cin.
|
|
The output of the full adder is stored in \c out, and the carry in \c c_out.
|
|
*/
|
|
void mk_full_adder(Z3_context ctx, Z3_ast in_1, Z3_ast in_2, Z3_ast cin, Z3_ast * out, Z3_ast * cout)
|
|
{
|
|
*cout = mk_ternary_or(ctx, mk_binary_and(ctx, in_1, in_2), mk_binary_and(ctx, in_1, cin), mk_binary_and(ctx, in_2, cin));
|
|
*out = Z3_mk_xor(ctx, Z3_mk_xor(ctx, in_1, in_2), cin);
|
|
}
|
|
|
|
/**
|
|
\brief Create an adder for inputs of size \c num_bits.
|
|
The arguments \c in1 and \c in2 are arrays of bits of size \c num_bits.
|
|
|
|
\remark \c result must be an array of size \c num_bits + 1.
|
|
*/
|
|
void mk_adder(Z3_context ctx, unsigned num_bits, Z3_ast * in_1, Z3_ast * in_2, Z3_ast * result)
|
|
{
|
|
Z3_ast cin, cout, out;
|
|
unsigned i;
|
|
cin = Z3_mk_false(ctx);
|
|
for (i = 0; i < num_bits; i++) {
|
|
mk_full_adder(ctx, in_1[i], in_2[i], cin, &out, &cout);
|
|
result[i] = out;
|
|
cin = cout;
|
|
}
|
|
result[num_bits] = cout;
|
|
}
|
|
|
|
/**
|
|
\brief Given \c num_ins "numbers" of size \c num_bits stored in \c in.
|
|
Create floor(num_ins/2) adder circuits. Each circuit is adding two consecutive "numbers".
|
|
The numbers are stored one after the next in the array \c in.
|
|
That is, the array \c in has size num_bits * num_ins.
|
|
Return an array of bits containing \c ceil(num_ins/2) numbers of size \c (num_bits + 1).
|
|
If num_ins/2 is not an integer, then the last "number" in the output, is the last "number" in \c in with an appended "zero".
|
|
*/
|
|
void mk_adder_pairs(Z3_context ctx, unsigned num_bits, unsigned num_ins, Z3_ast * in, unsigned * out_num_ins, Z3_ast * out)
|
|
{
|
|
unsigned out_num_bits = num_bits + 1;
|
|
unsigned i = 0;
|
|
Z3_ast * _in = in;
|
|
Z3_ast * _out = out;
|
|
*out_num_ins = (num_ins % 2 == 0) ? (num_ins / 2) : (num_ins / 2) + 1;
|
|
for (i = 0; i < num_ins / 2; i++) {
|
|
mk_adder(ctx, num_bits, _in, _in + num_bits, _out);
|
|
_in += num_bits;
|
|
_in += num_bits;
|
|
_out += out_num_bits;
|
|
}
|
|
if (num_ins % 2 != 0) {
|
|
for (i = 0; i < num_bits; i++) {
|
|
_out[i] = _in[i];
|
|
}
|
|
_out[num_bits] = Z3_mk_false(ctx);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Create a counter circuit to count the number of "ones" in lits.
|
|
The function returns an array of bits (i.e. boolean expressions) containing the output of the circuit.
|
|
The size of the array is stored in out_sz.
|
|
*/
|
|
Z3_ast * mk_counter_circuit(Z3_context ctx, unsigned n, Z3_ast * lits, unsigned * out_sz)
|
|
{
|
|
unsigned num_ins = n;
|
|
unsigned num_bits = 1;
|
|
Z3_ast * aux_1;
|
|
Z3_ast * aux_2;
|
|
if (n == 0)
|
|
return 0;
|
|
aux_1 = (Z3_ast *) malloc(sizeof(Z3_ast) * (n + 1));
|
|
aux_2 = (Z3_ast *) malloc(sizeof(Z3_ast) * (n + 1));
|
|
memcpy(aux_1, lits, sizeof(Z3_ast) * n);
|
|
while (num_ins > 1) {
|
|
unsigned new_num_ins;
|
|
Z3_ast * tmp;
|
|
mk_adder_pairs(ctx, num_bits, num_ins, aux_1, &new_num_ins, aux_2);
|
|
num_ins = new_num_ins;
|
|
num_bits++;
|
|
#ifdef MAXSAT_DEBUG
|
|
{
|
|
unsigned i;
|
|
printf("num_bits: %d, num_ins: %d \n", num_bits, num_ins);
|
|
for (i = 0; i < num_ins * num_bits; i++) {
|
|
printf("bit %d:\n%s\n", i, Z3_ast_to_string(ctx, aux_2[i]));
|
|
}
|
|
printf("-----------\n");
|
|
}
|
|
#endif
|
|
tmp = aux_1;
|
|
aux_1 = aux_2;
|
|
aux_2 = tmp;
|
|
}
|
|
*out_sz = num_bits;
|
|
free(aux_2);
|
|
return aux_1;
|
|
}
|
|
|
|
/**
|
|
\brief Return the \c idx bit of \c val.
|
|
*/
|
|
int get_bit(unsigned val, unsigned idx)
|
|
{
|
|
unsigned mask = 1 << (idx & 31);
|
|
return (val & mask) != 0;
|
|
}
|
|
|
|
/**
|
|
\brief Given an integer val encoded in n bits (boolean variables), assert the constraint that val <= k.
|
|
*/
|
|
void assert_le_k(Z3_context ctx, Z3_solver s, unsigned n, Z3_ast * val, unsigned k)
|
|
{
|
|
Z3_ast i1, i2, not_val, out;
|
|
unsigned idx;
|
|
not_val = Z3_mk_not(ctx, val[0]);
|
|
if (get_bit(k, 0))
|
|
out = Z3_mk_true(ctx);
|
|
else
|
|
out = not_val;
|
|
for (idx = 1; idx < n; idx++) {
|
|
not_val = Z3_mk_not(ctx, val[idx]);
|
|
if (get_bit(k, idx)) {
|
|
i1 = not_val;
|
|
i2 = out;
|
|
}
|
|
else {
|
|
i1 = Z3_mk_false(ctx);
|
|
i2 = Z3_mk_false(ctx);
|
|
}
|
|
out = mk_ternary_or(ctx, i1, i2, mk_binary_and(ctx, not_val, out));
|
|
}
|
|
// printf("at-most-k:\n%s\n", Z3_ast_to_string(ctx, out));
|
|
Z3_solver_assert(ctx, s, out);
|
|
}
|
|
|
|
/**
|
|
\brief Assert that at most \c k literals in \c lits can be true,
|
|
where \c n is the number of literals in lits.
|
|
|
|
We use a simple encoding using an adder (counter).
|
|
An interesting exercise consists in implementing more sophisticated encodings.
|
|
*/
|
|
void assert_at_most_k(Z3_context ctx, Z3_solver s, unsigned n, Z3_ast * lits, unsigned k)
|
|
{
|
|
Z3_ast * counter_bits;
|
|
unsigned counter_bits_sz;
|
|
if (k >= n || n <= 1)
|
|
return; /* nothing to be done */
|
|
counter_bits = mk_counter_circuit(ctx, n, lits, &counter_bits_sz);
|
|
assert_le_k(ctx, s, counter_bits_sz, counter_bits, k);
|
|
del_bool_var_array(counter_bits);
|
|
}
|
|
|
|
/**
|
|
\brief Assert that at most one literal in \c lits can be true,
|
|
where \c n is the number of literals in lits.
|
|
*/
|
|
void assert_at_most_one(Z3_context ctx, Z3_solver s, unsigned n, Z3_ast * lits)
|
|
{
|
|
assert_at_most_k(ctx, s, n, lits, 1);
|
|
}
|
|
|
|
|
|
Z3_solver mk_solver(Z3_context ctx)
|
|
{
|
|
Z3_solver r = Z3_mk_solver(ctx);
|
|
Z3_solver_inc_ref(ctx, r);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
\brief Small test for the at-most-one constraint.
|
|
*/
|
|
void tst_at_most_one()
|
|
{
|
|
Z3_context ctx = mk_context();
|
|
Z3_solver s = mk_solver(ctx);
|
|
Z3_ast k1 = mk_bool_var(ctx, "k1");
|
|
Z3_ast k2 = mk_bool_var(ctx, "k2");
|
|
Z3_ast k3 = mk_bool_var(ctx, "k3");
|
|
Z3_ast k4 = mk_bool_var(ctx, "k4");
|
|
Z3_ast k5 = mk_bool_var(ctx, "k5");
|
|
Z3_ast k6 = mk_bool_var(ctx, "k6");
|
|
Z3_ast args1[5] = { k1, k2, k3, k4, k5 };
|
|
Z3_ast args2[3] = { k4, k5, k6 };
|
|
Z3_model m = 0;
|
|
Z3_lbool result;
|
|
printf("testing at-most-one constraint\n");
|
|
assert_at_most_one(ctx, s, 5, args1);
|
|
assert_at_most_one(ctx, s, 3, args2);
|
|
printf("it must be sat...\n");
|
|
result = Z3_solver_check(ctx, s);
|
|
if (result != Z3_L_TRUE)
|
|
error("BUG");
|
|
m = Z3_solver_get_model(ctx, s);
|
|
Z3_model_inc_ref(ctx, m);
|
|
printf("model:\n%s\n", Z3_model_to_string(ctx, m));
|
|
Z3_model_dec_ref(ctx, m);
|
|
Z3_solver_assert(ctx, s, mk_binary_or(ctx, k2, k3));
|
|
Z3_solver_assert(ctx, s, mk_binary_or(ctx, k1, k6));
|
|
printf("it must be sat...\n");
|
|
result = Z3_solver_check(ctx, s);
|
|
if (result != Z3_L_TRUE)
|
|
error("BUG");
|
|
m = Z3_solver_get_model(ctx, s);
|
|
Z3_model_inc_ref(ctx, m);
|
|
printf("model:\n%s\n", Z3_model_to_string(ctx, m));
|
|
Z3_solver_assert(ctx, s, mk_binary_or(ctx, k4, k5));
|
|
printf("it must be unsat...\n");
|
|
result = Z3_solver_check(ctx, s);
|
|
if (result != Z3_L_FALSE)
|
|
error("BUG");
|
|
Z3_model_dec_ref(ctx, m);
|
|
Z3_solver_dec_ref(ctx, s);
|
|
Z3_del_context(ctx);
|
|
}
|
|
|
|
/**
|
|
\brief Return the number of soft-constraints that were disable by the given model.
|
|
A soft-constraint was disabled if the associated auxiliary variable was assigned to true.
|
|
*/
|
|
unsigned get_num_disabled_soft_constraints(Z3_context ctx, Z3_model m, unsigned num_soft_cnstrs, Z3_ast * aux_vars)
|
|
{
|
|
unsigned i;
|
|
unsigned num_disabled = 0;
|
|
Z3_ast t = Z3_mk_true(ctx);
|
|
for (i = 0; i < num_soft_cnstrs; i++) {
|
|
Z3_ast val;
|
|
if (Z3_model_eval(ctx, m, aux_vars[i], 1, &val) == true) {
|
|
// printf("%s", Z3_ast_to_string(ctx, aux_vars[i]));
|
|
// printf(" -> %s\n", Z3_ast_to_string(ctx, val));
|
|
if (Z3_is_eq_ast(ctx, val, t)) {
|
|
num_disabled++;
|
|
}
|
|
}
|
|
}
|
|
return num_disabled;
|
|
}
|
|
|
|
/**
|
|
\brief Naive maxsat procedure based on linear search and at-most-k
|
|
constraint. Return the number of soft-constraints that can be
|
|
satisfied. Return -1 if the hard-constraints cannot be
|
|
satisfied. That is, the formula cannot be satisfied even if all
|
|
soft-constraints are ignored.
|
|
|
|
Exercise: use binary search to implement MaxSAT.
|
|
Hint: you will need to use an answer literal to retract the at-most-k constraint.
|
|
*/
|
|
int naive_maxsat(Z3_context ctx, Z3_solver s, unsigned num_hard_cnstrs, Z3_ast * hard_cnstrs, unsigned num_soft_cnstrs, Z3_ast * soft_cnstrs)
|
|
{
|
|
Z3_ast * aux_vars;
|
|
Z3_lbool is_sat;
|
|
unsigned k;
|
|
assert_hard_constraints(ctx, s, num_hard_cnstrs, hard_cnstrs);
|
|
printf("checking whether hard constraints are satisfiable...\n");
|
|
is_sat = Z3_solver_check(ctx, s);
|
|
if (is_sat == Z3_L_FALSE) {
|
|
// It is not possible to make the formula satisfiable even when ignoring all soft constraints.
|
|
return -1;
|
|
}
|
|
if (num_soft_cnstrs == 0)
|
|
return 0; // nothing to be done...
|
|
aux_vars = assert_soft_constraints(ctx, s, num_soft_cnstrs, soft_cnstrs);
|
|
// Perform linear search.
|
|
k = num_soft_cnstrs - 1;
|
|
for (;;) {
|
|
Z3_model m;
|
|
unsigned num_disabled;
|
|
// at most k soft-constraints can be ignored.
|
|
printf("checking whether at-most %d soft-constraints can be ignored.\n", k);
|
|
assert_at_most_k(ctx, s, num_soft_cnstrs, aux_vars, k);
|
|
is_sat = Z3_solver_check(ctx, s);
|
|
if (is_sat == Z3_L_FALSE) {
|
|
printf("unsat\n");
|
|
return num_soft_cnstrs - k - 1;
|
|
}
|
|
m = Z3_solver_get_model(ctx, s);
|
|
Z3_model_inc_ref(ctx, m);
|
|
num_disabled = get_num_disabled_soft_constraints(ctx, m, num_soft_cnstrs, aux_vars);
|
|
Z3_model_dec_ref(ctx, m);
|
|
if (num_disabled > k) {
|
|
error("BUG");
|
|
}
|
|
printf("sat\n");
|
|
k = num_disabled;
|
|
if (k == 0) {
|
|
// it was possible to satisfy all soft-constraints.
|
|
return num_soft_cnstrs;
|
|
}
|
|
k--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Implement one step of the Fu&Malik algorithm.
|
|
See fu_malik_maxsat function for more details.
|
|
|
|
Input: soft constraints + aux-vars (aka answer literals)
|
|
Output: done/not-done when not done return updated set of soft-constraints and aux-vars.
|
|
- if SAT --> terminates
|
|
- if UNSAT
|
|
* compute unsat core
|
|
* add blocking variable to soft-constraints in the core
|
|
- replace soft-constraint with the one with the blocking variable
|
|
- we should also add an aux-var
|
|
- replace aux-var with a new one
|
|
* add at-most-one constraint with blocking
|
|
*/
|
|
int fu_malik_maxsat_step(Z3_context ctx, Z3_solver s, unsigned num_soft_cnstrs, Z3_ast * soft_cnstrs, Z3_ast * aux_vars)
|
|
{
|
|
// create assumptions
|
|
Z3_ast * assumptions = (Z3_ast*) malloc(sizeof(Z3_ast) * num_soft_cnstrs);
|
|
Z3_lbool is_sat;
|
|
Z3_ast_vector core;
|
|
unsigned core_size;
|
|
unsigned i = 0;
|
|
unsigned k = 0;
|
|
Z3_ast * block_vars;
|
|
for (i = 0; i < num_soft_cnstrs; i++) {
|
|
// Recall that we asserted (soft_cnstrs[i] \/ aux_vars[i])
|
|
// So using (NOT aux_vars[i]) as an assumption we are actually forcing the soft_cnstrs[i] to be considered.
|
|
assumptions[i] = Z3_mk_not(ctx, aux_vars[i]);
|
|
}
|
|
|
|
is_sat = Z3_solver_check_assumptions(ctx, s, num_soft_cnstrs, assumptions);
|
|
if (is_sat != Z3_L_FALSE) {
|
|
return 1; // done
|
|
}
|
|
else {
|
|
core = Z3_solver_get_unsat_core(ctx, s);
|
|
Z3_ast_vector_inc_ref(ctx, core);
|
|
core_size = Z3_ast_vector_size(ctx, core);
|
|
block_vars = (Z3_ast*) malloc(sizeof(Z3_ast) * core_size);
|
|
k = 0;
|
|
// update soft-constraints and aux_vars
|
|
for (i = 0; i < num_soft_cnstrs; i++) {
|
|
unsigned j;
|
|
// check whether assumption[i] is in the core or not
|
|
for (j = 0; j < core_size; j++) {
|
|
if (assumptions[i] == Z3_ast_vector_get(ctx, core, j))
|
|
break;
|
|
}
|
|
if (j < core_size) {
|
|
// assumption[i] is in the unsat core... so soft_cnstrs[i] is in the unsat core
|
|
Z3_ast block_var = mk_fresh_bool_var(ctx);
|
|
Z3_ast new_aux_var = mk_fresh_bool_var(ctx);
|
|
soft_cnstrs[i] = mk_binary_or(ctx, soft_cnstrs[i], block_var);
|
|
aux_vars[i] = new_aux_var;
|
|
block_vars[k] = block_var;
|
|
k++;
|
|
// Add new constraint containing the block variable.
|
|
// Note that we are using the new auxiliary variable to be able to use it as an assumption.
|
|
Z3_solver_assert(ctx, s, mk_binary_or(ctx, soft_cnstrs[i], new_aux_var));
|
|
}
|
|
}
|
|
assert_at_most_one(ctx, s, k, block_vars);
|
|
Z3_ast_vector_dec_ref(ctx, core);
|
|
return 0; // not done.
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Fu & Malik procedure for MaxSAT. This procedure is based on
|
|
unsat core extraction and the at-most-one constraint.
|
|
|
|
Return the number of soft-constraints that can be
|
|
satisfied. Return -1 if the hard-constraints cannot be
|
|
satisfied. That is, the formula cannot be satisfied even if all
|
|
soft-constraints are ignored.
|
|
|
|
For more information on the Fu & Malik procedure:
|
|
|
|
Z. Fu and S. Malik, On solving the partial MAX-SAT problem, in International
|
|
Conference on Theory and Applications of Satisfiability Testing, 2006.
|
|
*/
|
|
int fu_malik_maxsat(Z3_context ctx, Z3_solver s, unsigned num_hard_cnstrs, Z3_ast * hard_cnstrs, unsigned num_soft_cnstrs, Z3_ast * soft_cnstrs)
|
|
{
|
|
Z3_ast * aux_vars;
|
|
Z3_lbool is_sat;
|
|
unsigned k;
|
|
assert_hard_constraints(ctx, s, num_hard_cnstrs, hard_cnstrs);
|
|
printf("checking whether hard constraints are satisfiable...\n");
|
|
is_sat = Z3_solver_check(ctx, s);
|
|
if (is_sat == Z3_L_FALSE) {
|
|
// It is not possible to make the formula satisfiable even when ignoring all soft constraints.
|
|
return -1;
|
|
}
|
|
if (num_soft_cnstrs == 0)
|
|
return 0; // nothing to be done...
|
|
/*
|
|
Fu&Malik algorithm is based on UNSAT-core extraction.
|
|
We accomplish that using auxiliary variables (aka answer literals).
|
|
*/
|
|
aux_vars = assert_soft_constraints(ctx, s, num_soft_cnstrs, soft_cnstrs);
|
|
k = 0;
|
|
for (;;) {
|
|
printf("iteration %d\n", k);
|
|
if (fu_malik_maxsat_step(ctx, s, num_soft_cnstrs, soft_cnstrs, aux_vars)) {
|
|
return num_soft_cnstrs - k;
|
|
}
|
|
k++;
|
|
}
|
|
}
|
|
|
|
#define NAIVE_MAXSAT 0
|
|
#define FU_MALIK_MAXSAT 1
|
|
|
|
/**
|
|
\brief Finds the maximal number of assumptions that can be satisfied.
|
|
An assumption is any formula preceded with the :assumption keyword.
|
|
"Hard" constraints can be supported by using the :formula keyword.
|
|
|
|
Input: file in SMT-LIB format, and MaxSAT algorithm to be used: 0 - Naive, 1 - Fu&Malik's algo.
|
|
Output: the maximum number of assumptions that can be satisfied.
|
|
*/
|
|
int smtlib_maxsat(char * file_name, int approach)
|
|
{
|
|
Z3_context ctx;
|
|
Z3_solver s;
|
|
unsigned i;
|
|
Z3_optimize opt;
|
|
unsigned num_hard_cnstrs, num_soft_cnstrs;
|
|
Z3_ast * hard_cnstrs, * soft_cnstrs;
|
|
Z3_ast_vector hard, objs;
|
|
Z3_app soft;
|
|
unsigned result = 0;
|
|
ctx = mk_context();
|
|
s = mk_solver(ctx);
|
|
opt = Z3_mk_optimize(ctx);
|
|
Z3_optimize_inc_ref(ctx, opt);
|
|
Z3_optimize_from_file(ctx, opt, file_name);
|
|
hard = Z3_optimize_get_assertions(ctx, opt);
|
|
Z3_ast_vector_inc_ref(ctx, hard);
|
|
num_hard_cnstrs = Z3_ast_vector_size(ctx, hard);
|
|
hard_cnstrs = (Z3_ast *) malloc(sizeof(Z3_ast) * (num_hard_cnstrs));
|
|
for (i = 0; i < num_hard_cnstrs; i++) {
|
|
hard_cnstrs[i] = Z3_ast_vector_get(ctx, hard, i);
|
|
}
|
|
objs = Z3_optimize_get_objectives(ctx, opt);
|
|
Z3_ast_vector_inc_ref(ctx, objs);
|
|
|
|
// soft constraints are stored in a single objective which is a sum
|
|
// of if-then-else expressions.
|
|
soft = Z3_to_app(ctx, Z3_ast_vector_get(ctx, objs, 0));
|
|
num_soft_cnstrs = Z3_get_app_num_args(ctx, soft);
|
|
soft_cnstrs = (Z3_ast *) malloc(sizeof(Z3_ast) * (num_soft_cnstrs));
|
|
for (i = 0; i < num_soft_cnstrs; ++i) {
|
|
soft_cnstrs[i] = Z3_get_app_arg(ctx, Z3_to_app(ctx, Z3_get_app_arg(ctx, soft, i)), 0);
|
|
}
|
|
|
|
switch (approach) {
|
|
case NAIVE_MAXSAT:
|
|
result = naive_maxsat(ctx, s, num_hard_cnstrs, hard_cnstrs, num_soft_cnstrs, soft_cnstrs);
|
|
break;
|
|
case FU_MALIK_MAXSAT:
|
|
result = fu_malik_maxsat(ctx, s, num_hard_cnstrs, hard_cnstrs, num_soft_cnstrs, soft_cnstrs);
|
|
break;
|
|
default:
|
|
/* Exercise: implement your own MaxSAT algorithm.*/
|
|
error("Not implemented yet.");
|
|
break;
|
|
}
|
|
free_cnstr_array(hard_cnstrs);
|
|
free_cnstr_array(soft_cnstrs);
|
|
Z3_solver_dec_ref(ctx, s);
|
|
Z3_optimize_dec_ref(ctx, opt);
|
|
return result;
|
|
}
|
|
|
|
int main(int argc, char * argv[]) {
|
|
#if 1
|
|
int r;
|
|
if (argc != 2) {
|
|
error("usage: maxsat [filename.smt].");
|
|
}
|
|
r = smtlib_maxsat(argv[1], FU_MALIK_MAXSAT);
|
|
printf("result: %d\n", r);
|
|
#else
|
|
tst_at_most_one();
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*@}*/
|
|
|