z3/examples/c/test_capi.c

2996 lines
90 KiB
C

/*++
Copyright (c) 2015 Microsoft Corporation
--*/
#include<stdio.h>
#include<stdlib.h>
#include<stdarg.h>
#include<memory.h>
#include<setjmp.h>
#include<z3.h>
#define LOG_Z3_CALLS
#ifdef LOG_Z3_CALLS
#define LOG_MSG(msg) Z3_append_log(msg)
#else
#define LOG_MSG(msg) ((void)0)
#endif
/**
\defgroup capi_ex C API examples
*/
/*@{*/
/**
@name Auxiliary Functions
*/
/*@{*/
/**
\brief exit gracefully in case of error.
*/
void exitf(const char* message)
{
fprintf(stderr,"BUG: %s.\n", message);
exit(1);
}
/**
\brief exit if unreachable code was reached.
*/
void unreachable()
{
exitf("unreachable code was reached");
}
/**
\brief Simpler error handler.
*/
void error_handler(Z3_context c, Z3_error_code e)
{
printf("Error code: %d\n", e);
exitf("incorrect use of Z3");
}
static jmp_buf g_catch_buffer;
/**
\brief Low tech exceptions.
In high-level programming languages, an error handler can throw an exception.
*/
void throw_z3_error(Z3_context c, Z3_error_code e)
{
longjmp(g_catch_buffer, e);
}
/**
\brief Error handling that depends on checking an error code on the context.
*/
void nothrow_z3_error(Z3_context c, Z3_error_code e) {
// no-op
}
/**
\brief Create a logical context.
Enable model construction. Other configuration parameters can be passed in the cfg variable.
Also enable tracing to stderr and register custom error handler.
*/
Z3_context mk_context_custom(Z3_config cfg, Z3_error_handler err)
{
Z3_context ctx;
Z3_set_param_value(cfg, "model", "true");
ctx = Z3_mk_context(cfg);
Z3_set_error_handler(ctx, err);
return ctx;
}
Z3_solver mk_solver(Z3_context ctx)
{
Z3_solver s = Z3_mk_solver(ctx);
Z3_solver_inc_ref(ctx, s);
return s;
}
void del_solver(Z3_context ctx, Z3_solver s)
{
Z3_solver_dec_ref(ctx, s);
}
/**
\brief Create a logical context.
Enable model construction only.
Also enable tracing to stderr and register standard error handler.
*/
Z3_context mk_context()
{
Z3_config cfg;
Z3_context ctx;
cfg = Z3_mk_config();
ctx = mk_context_custom(cfg, error_handler);
Z3_del_config(cfg);
return ctx;
}
/**
\brief Create a logical context.
Enable fine-grained proof construction.
Enable model construction.
Also enable tracing to stderr and register standard error handler.
*/
Z3_context mk_proof_context() {
Z3_config cfg = Z3_mk_config();
Z3_context ctx;
Z3_set_param_value(cfg, "proof", "true");
ctx = mk_context_custom(cfg, throw_z3_error);
Z3_del_config(cfg);
return ctx;
}
/**
\brief Create a variable using the given name and type.
*/
Z3_ast mk_var(Z3_context ctx, const char * name, Z3_sort ty)
{
Z3_symbol s = Z3_mk_string_symbol(ctx, name);
return Z3_mk_const(ctx, s, ty);
}
/**
\brief Create a boolean variable using the given name.
*/
Z3_ast mk_bool_var(Z3_context ctx, const char * name)
{
Z3_sort ty = Z3_mk_bool_sort(ctx);
return mk_var(ctx, name, ty);
}
/**
\brief Create an integer variable using the given name.
*/
Z3_ast mk_int_var(Z3_context ctx, const char * name)
{
Z3_sort ty = Z3_mk_int_sort(ctx);
return mk_var(ctx, name, ty);
}
/**
\brief Create a Z3 integer node using a C int.
*/
Z3_ast mk_int(Z3_context ctx, int v)
{
Z3_sort ty = Z3_mk_int_sort(ctx);
return Z3_mk_int(ctx, v, ty);
}
/**
\brief Create a real variable using the given name.
*/
Z3_ast mk_real_var(Z3_context ctx, const char * name)
{
Z3_sort ty = Z3_mk_real_sort(ctx);
return mk_var(ctx, name, ty);
}
/**
\brief Create the unary function application: <tt>(f x)</tt>.
*/
Z3_ast mk_unary_app(Z3_context ctx, Z3_func_decl f, Z3_ast x)
{
Z3_ast args[1] = {x};
return Z3_mk_app(ctx, f, 1, args);
}
/**
\brief Create the binary function application: <tt>(f x y)</tt>.
*/
Z3_ast mk_binary_app(Z3_context ctx, Z3_func_decl f, Z3_ast x, Z3_ast y)
{
Z3_ast args[2] = {x, y};
return Z3_mk_app(ctx, f, 2, args);
}
/**
\brief Check whether the logical context is satisfiable, and compare the result with the expected result.
If the context is satisfiable, then display the model.
*/
void check(Z3_context ctx, Z3_solver s, Z3_lbool expected_result)
{
Z3_model m = 0;
Z3_lbool result = Z3_solver_check(ctx, s);
switch (result) {
case Z3_L_FALSE:
printf("unsat\n");
break;
case Z3_L_UNDEF:
printf("unknown\n");
m = Z3_solver_get_model(ctx, s);
if (m) Z3_model_inc_ref(ctx, m);
printf("potential model:\n%s\n", Z3_model_to_string(ctx, m));
break;
case Z3_L_TRUE:
m = Z3_solver_get_model(ctx, s);
if (m) Z3_model_inc_ref(ctx, m);
printf("sat\n%s\n", Z3_model_to_string(ctx, m));
break;
}
if (result != expected_result) {
exitf("unexpected result");
}
if (m) Z3_model_dec_ref(ctx, m);
}
/**
\brief Prove that the constraints already asserted into the logical
context implies the given formula. The result of the proof is
displayed.
Z3 is a satisfiability checker. So, one can prove \c f by showing
that <tt>(not f)</tt> is unsatisfiable.
The context \c ctx is not modified by this function.
*/
void prove(Z3_context ctx, Z3_solver s, Z3_ast f, bool is_valid)
{
Z3_model m = 0;
Z3_ast not_f;
/* save the current state of the context */
Z3_solver_push(ctx, s);
not_f = Z3_mk_not(ctx, f);
Z3_solver_assert(ctx, s, not_f);
switch (Z3_solver_check(ctx, s)) {
case Z3_L_FALSE:
/* proved */
printf("valid\n");
if (!is_valid) {
exitf("unexpected result");
}
break;
case Z3_L_UNDEF:
/* Z3 failed to prove/disprove f. */
printf("unknown\n");
m = Z3_solver_get_model(ctx, s);
if (m != 0) {
Z3_model_inc_ref(ctx, m);
/* m should be viewed as a potential counterexample. */
printf("potential counterexample:\n%s\n", Z3_model_to_string(ctx, m));
}
if (is_valid) {
exitf("unexpected result");
}
break;
case Z3_L_TRUE:
/* disproved */
printf("invalid\n");
m = Z3_solver_get_model(ctx, s);
if (m) {
Z3_model_inc_ref(ctx, m);
/* the model returned by Z3 is a counterexample */
printf("counterexample:\n%s\n", Z3_model_to_string(ctx, m));
}
if (is_valid) {
exitf("unexpected result");
}
break;
}
if (m) Z3_model_dec_ref(ctx, m);
/* restore scope */
Z3_solver_pop(ctx, s, 1);
}
/**
\brief Assert the axiom: function f is injective in the i-th argument.
The following axiom is asserted into the logical context:
\code
forall (x_0, ..., x_n) finv(f(x_0, ..., x_i, ..., x_{n-1})) = x_i
\endcode
Where, \c finv is a fresh function declaration.
*/
void assert_inj_axiom(Z3_context ctx, Z3_solver s, Z3_func_decl f, unsigned i)
{
unsigned sz, j;
Z3_sort finv_domain, finv_range;
Z3_func_decl finv;
Z3_sort * types; /* types of the quantified variables */
Z3_symbol * names; /* names of the quantified variables */
Z3_ast * xs; /* arguments for the application f(x_0, ..., x_i, ..., x_{n-1}) */
Z3_ast x_i, fxs, finv_fxs, eq;
Z3_pattern p;
Z3_ast q;
sz = Z3_get_domain_size(ctx, f);
if (i >= sz) {
exitf("failed to create inj axiom");
}
/* declare the i-th inverse of f: finv */
finv_domain = Z3_get_range(ctx, f);
finv_range = Z3_get_domain(ctx, f, i);
finv = Z3_mk_fresh_func_decl(ctx, "inv", 1, &finv_domain, finv_range);
/* allocate temporary arrays */
types = (Z3_sort *) malloc(sizeof(Z3_sort) * sz);
names = (Z3_symbol *) malloc(sizeof(Z3_symbol) * sz);
xs = (Z3_ast *) malloc(sizeof(Z3_ast) * sz);
/* fill types, names and xs */
for (j = 0; j < sz; j++) { types[j] = Z3_get_domain(ctx, f, j); };
for (j = 0; j < sz; j++) { names[j] = Z3_mk_int_symbol(ctx, j); };
for (j = 0; j < sz; j++) { xs[j] = Z3_mk_bound(ctx, j, types[j]); };
x_i = xs[i];
/* create f(x_0, ..., x_i, ..., x_{n-1}) */
fxs = Z3_mk_app(ctx, f, sz, xs);
/* create f_inv(f(x_0, ..., x_i, ..., x_{n-1})) */
finv_fxs = mk_unary_app(ctx, finv, fxs);
/* create finv(f(x_0, ..., x_i, ..., x_{n-1})) = x_i */
eq = Z3_mk_eq(ctx, finv_fxs, x_i);
/* use f(x_0, ..., x_i, ..., x_{n-1}) as the pattern for the quantifier */
p = Z3_mk_pattern(ctx, 1, &fxs);
printf("pattern: %s\n", Z3_pattern_to_string(ctx, p));
printf("\n");
/* create & assert quantifier */
q = Z3_mk_forall(ctx,
0, /* using default weight */
1, /* number of patterns */
&p, /* address of the "array" of patterns */
sz, /* number of quantified variables */
types,
names,
eq);
printf("assert axiom:\n%s\n", Z3_ast_to_string(ctx, q));
Z3_solver_assert(ctx, s, q);
/* free temporary arrays */
free(types);
free(names);
free(xs);
}
/**
\brief Assert the axiom: function f is commutative.
This example uses the SMT-LIB parser to simplify the axiom construction.
*/
void assert_comm_axiom(Z3_context ctx, Z3_solver s, Z3_func_decl f)
{
Z3_sort t;
Z3_symbol f_name, t_name;
Z3_ast_vector q;
unsigned i;
t = Z3_get_range(ctx, f);
if (Z3_get_domain_size(ctx, f) != 2 ||
Z3_get_domain(ctx, f, 0) != t ||
Z3_get_domain(ctx, f, 1) != t) {
exitf("function must be binary, and argument types must be equal to return type");
}
/* Inside the parser, function f will be referenced using the symbol 'f'. */
f_name = Z3_mk_string_symbol(ctx, "f");
/* Inside the parser, type t will be referenced using the symbol 'T'. */
t_name = Z3_mk_string_symbol(ctx, "T");
q = Z3_parse_smtlib2_string(ctx,
"(assert (forall ((x T) (y T)) (= (f x y) (f y x))))",
1, &t_name, &t,
1, &f_name, &f);
printf("assert axiom:\n%s\n", Z3_ast_vector_to_string(ctx, q));
for (i = 0; i < Z3_ast_vector_size(ctx, q); ++i) {
Z3_solver_assert(ctx, s, Z3_ast_vector_get(ctx, q, i));
}
}
/**
\brief Z3 does not support explicitly tuple updates. They can be easily implemented
as macros. The argument \c t must have tuple type.
A tuple update is a new tuple where field \c i has value \c new_val, and all
other fields have the value of the respective field of \c t.
<tt>update(t, i, new_val)</tt> is equivalent to
<tt>mk_tuple(proj_0(t), ..., new_val, ..., proj_n(t))</tt>
*/
Z3_ast mk_tuple_update(Z3_context c, Z3_ast t, unsigned i, Z3_ast new_val)
{
Z3_sort ty;
Z3_func_decl mk_tuple_decl;
unsigned num_fields, j;
Z3_ast * new_fields;
Z3_ast result;
ty = Z3_get_sort(c, t);
if (Z3_get_sort_kind(c, ty) != Z3_DATATYPE_SORT) {
exitf("argument must be a tuple");
}
num_fields = Z3_get_tuple_sort_num_fields(c, ty);
if (i >= num_fields) {
exitf("invalid tuple update, index is too big");
}
new_fields = (Z3_ast*) malloc(sizeof(Z3_ast) * num_fields);
for (j = 0; j < num_fields; j++) {
if (i == j) {
/* use new_val at position i */
new_fields[j] = new_val;
}
else {
/* use field j of t */
Z3_func_decl proj_decl = Z3_get_tuple_sort_field_decl(c, ty, j);
new_fields[j] = mk_unary_app(c, proj_decl, t);
}
}
mk_tuple_decl = Z3_get_tuple_sort_mk_decl(c, ty);
result = Z3_mk_app(c, mk_tuple_decl, num_fields, new_fields);
free(new_fields);
return result;
}
/**
\brief Display a symbol in the given output stream.
*/
void display_symbol(Z3_context c, FILE * out, Z3_symbol s)
{
switch (Z3_get_symbol_kind(c, s)) {
case Z3_INT_SYMBOL:
fprintf(out, "#%d", Z3_get_symbol_int(c, s));
break;
case Z3_STRING_SYMBOL:
fprintf(out, "%s", Z3_get_symbol_string(c, s));
break;
default:
unreachable();
}
}
/**
\brief Display the given type.
*/
void display_sort(Z3_context c, FILE * out, Z3_sort ty)
{
switch (Z3_get_sort_kind(c, ty)) {
case Z3_UNINTERPRETED_SORT:
display_symbol(c, out, Z3_get_sort_name(c, ty));
break;
case Z3_BOOL_SORT:
fprintf(out, "bool");
break;
case Z3_INT_SORT:
fprintf(out, "int");
break;
case Z3_REAL_SORT:
fprintf(out, "real");
break;
case Z3_BV_SORT:
fprintf(out, "bv%d", Z3_get_bv_sort_size(c, ty));
break;
case Z3_ARRAY_SORT:
fprintf(out, "[");
display_sort(c, out, Z3_get_array_sort_domain(c, ty));
fprintf(out, "->");
display_sort(c, out, Z3_get_array_sort_range(c, ty));
fprintf(out, "]");
break;
case Z3_DATATYPE_SORT:
if (Z3_get_datatype_sort_num_constructors(c, ty) != 1)
{
fprintf(out, "%s", Z3_sort_to_string(c,ty));
break;
}
{
unsigned num_fields = Z3_get_tuple_sort_num_fields(c, ty);
unsigned i;
fprintf(out, "(");
for (i = 0; i < num_fields; i++) {
Z3_func_decl field = Z3_get_tuple_sort_field_decl(c, ty, i);
if (i > 0) {
fprintf(out, ", ");
}
display_sort(c, out, Z3_get_range(c, field));
}
fprintf(out, ")");
break;
}
default:
fprintf(out, "unknown[");
display_symbol(c, out, Z3_get_sort_name(c, ty));
fprintf(out, "]");
break;
}
}
/**
\brief Custom ast pretty printer.
This function demonstrates how to use the API to navigate terms.
*/
void display_ast(Z3_context c, FILE * out, Z3_ast v)
{
switch (Z3_get_ast_kind(c, v)) {
case Z3_NUMERAL_AST: {
Z3_sort t;
fprintf(out, "%s", Z3_get_numeral_string(c, v));
t = Z3_get_sort(c, v);
fprintf(out, ":");
display_sort(c, out, t);
break;
}
case Z3_APP_AST: {
unsigned i;
Z3_app app = Z3_to_app(c, v);
unsigned num_fields = Z3_get_app_num_args(c, app);
Z3_func_decl d = Z3_get_app_decl(c, app);
fprintf(out, "%s", Z3_func_decl_to_string(c, d));
if (num_fields > 0) {
fprintf(out, "[");
for (i = 0; i < num_fields; i++) {
if (i > 0) {
fprintf(out, ", ");
}
display_ast(c, out, Z3_get_app_arg(c, app, i));
}
fprintf(out, "]");
}
break;
}
case Z3_QUANTIFIER_AST: {
fprintf(out, "quantifier");
;
}
default:
fprintf(out, "#unknown");
}
}
/**
\brief Custom function interpretations pretty printer.
*/
void display_function_interpretations(Z3_context c, FILE * out, Z3_model m)
{
unsigned num_functions, i;
fprintf(out, "function interpretations:\n");
num_functions = Z3_model_get_num_funcs(c, m);
for (i = 0; i < num_functions; i++) {
Z3_func_decl fdecl;
Z3_symbol name;
Z3_ast func_else;
unsigned num_entries = 0, j;
Z3_func_interp_opt finterp;
fdecl = Z3_model_get_func_decl(c, m, i);
finterp = Z3_model_get_func_interp(c, m, fdecl);
Z3_func_interp_inc_ref(c, finterp);
name = Z3_get_decl_name(c, fdecl);
display_symbol(c, out, name);
fprintf(out, " = {");
if (finterp)
num_entries = Z3_func_interp_get_num_entries(c, finterp);
for (j = 0; j < num_entries; j++) {
unsigned num_args, k;
Z3_func_entry fentry = Z3_func_interp_get_entry(c, finterp, j);
Z3_func_entry_inc_ref(c, fentry);
if (j > 0) {
fprintf(out, ", ");
}
num_args = Z3_func_entry_get_num_args(c, fentry);
fprintf(out, "(");
for (k = 0; k < num_args; k++) {
if (k > 0) {
fprintf(out, ", ");
}
display_ast(c, out, Z3_func_entry_get_arg(c, fentry, k));
}
fprintf(out, "|->");
display_ast(c, out, Z3_func_entry_get_value(c, fentry));
fprintf(out, ")");
Z3_func_entry_dec_ref(c, fentry);
}
if (num_entries > 0) {
fprintf(out, ", ");
}
fprintf(out, "(else|->");
func_else = Z3_func_interp_get_else(c, finterp);
display_ast(c, out, func_else);
fprintf(out, ")}\n");
Z3_func_interp_dec_ref(c, finterp);
}
}
/**
\brief Custom model pretty printer.
*/
void display_model(Z3_context c, FILE * out, Z3_model m)
{
unsigned num_constants;
unsigned i;
if (!m) return;
num_constants = Z3_model_get_num_consts(c, m);
for (i = 0; i < num_constants; i++) {
Z3_symbol name;
Z3_func_decl cnst = Z3_model_get_const_decl(c, m, i);
Z3_ast a, v;
bool ok;
name = Z3_get_decl_name(c, cnst);
display_symbol(c, out, name);
fprintf(out, " = ");
a = Z3_mk_app(c, cnst, 0, 0);
v = a;
ok = Z3_model_eval(c, m, a, 1, &v);
(void)ok;
display_ast(c, out, v);
fprintf(out, "\n");
}
display_function_interpretations(c, out, m);
}
/**
\brief Similar to #check, but uses #display_model instead of #Z3_model_to_string.
*/
void check2(Z3_context ctx, Z3_solver s, Z3_lbool expected_result)
{
Z3_model m = 0;
Z3_lbool result = Z3_solver_check(ctx, s);
switch (result) {
case Z3_L_FALSE:
printf("unsat\n");
break;
case Z3_L_UNDEF:
printf("unknown\n");
printf("potential model:\n");
m = Z3_solver_get_model(ctx, s);
if (m) Z3_model_inc_ref(ctx, m);
display_model(ctx, stdout, m);
break;
case Z3_L_TRUE:
printf("sat\n");
m = Z3_solver_get_model(ctx, s);
if (m) Z3_model_inc_ref(ctx, m);
display_model(ctx, stdout, m);
break;
}
if (result != expected_result) {
exitf("unexpected result");
}
if (m) Z3_model_dec_ref(ctx, m);
}
/**
\brief Display Z3 version in the standard output.
*/
void display_version()
{
unsigned major, minor, build, revision;
Z3_get_version(&major, &minor, &build, &revision);
printf("Z3 %d.%d.%d.%d\n", major, minor, build, revision);
}
/*@}*/
/**
@name Examples
*/
/*@{*/
/**
\brief "Hello world" example: create a Z3 logical context, and delete it.
*/
void simple_example()
{
Z3_context ctx;
LOG_MSG("simple_example");
printf("\nsimple_example\n");
ctx = mk_context();
/* delete logical context */
Z3_del_context(ctx);
}
/**
Demonstration of how Z3 can be used to prove validity of
De Morgan's Duality Law: {e not(x and y) <-> (not x) or ( not y) }
*/
void demorgan()
{
Z3_config cfg;
Z3_context ctx;
Z3_solver s;
Z3_sort bool_sort;
Z3_symbol symbol_x, symbol_y;
Z3_ast x, y, not_x, not_y, x_and_y, ls, rs, conjecture, negated_conjecture;
Z3_ast args[2];
printf("\nDeMorgan\n");
LOG_MSG("DeMorgan");
cfg = Z3_mk_config();
ctx = Z3_mk_context(cfg);
Z3_del_config(cfg);
bool_sort = Z3_mk_bool_sort(ctx);
symbol_x = Z3_mk_int_symbol(ctx, 0);
symbol_y = Z3_mk_int_symbol(ctx, 1);
x = Z3_mk_const(ctx, symbol_x, bool_sort);
y = Z3_mk_const(ctx, symbol_y, bool_sort);
/* De Morgan - with a negation around */
/* !(!(x && y) <-> (!x || !y)) */
not_x = Z3_mk_not(ctx, x);
not_y = Z3_mk_not(ctx, y);
args[0] = x;
args[1] = y;
x_and_y = Z3_mk_and(ctx, 2, args);
ls = Z3_mk_not(ctx, x_and_y);
args[0] = not_x;
args[1] = not_y;
rs = Z3_mk_or(ctx, 2, args);
conjecture = Z3_mk_iff(ctx, ls, rs);
negated_conjecture = Z3_mk_not(ctx, conjecture);
s = mk_solver(ctx);
Z3_solver_assert(ctx, s, negated_conjecture);
switch (Z3_solver_check(ctx, s)) {
case Z3_L_FALSE:
/* The negated conjecture was unsatisfiable, hence the conjecture is valid */
printf("DeMorgan is valid\n");
break;
case Z3_L_UNDEF:
/* Check returned undef */
printf("Undef\n");
break;
case Z3_L_TRUE:
/* The negated conjecture was satisfiable, hence the conjecture is not valid */
printf("DeMorgan is not valid\n");
break;
}
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Find a model for <tt>x xor y</tt>.
*/
void find_model_example1()
{
Z3_context ctx;
Z3_ast x, y, x_xor_y;
Z3_solver s;
printf("\nfind_model_example1\n");
LOG_MSG("find_model_example1");
ctx = mk_context();
s = mk_solver(ctx);
x = mk_bool_var(ctx, "x");
y = mk_bool_var(ctx, "y");
x_xor_y = Z3_mk_xor(ctx, x, y);
Z3_solver_assert(ctx, s, x_xor_y);
printf("model for: x xor y\n");
check(ctx, s, Z3_L_TRUE);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Find a model for <tt>x < y + 1, x > 2</tt>.
Then, assert <tt>not(x = y)</tt>, and find another model.
*/
void find_model_example2()
{
Z3_context ctx;
Z3_ast x, y, one, two, y_plus_one;
Z3_ast x_eq_y;
Z3_ast args[2];
Z3_ast c1, c2, c3;
Z3_solver s;
printf("\nfind_model_example2\n");
LOG_MSG("find_model_example2");
ctx = mk_context();
s = mk_solver(ctx);
x = mk_int_var(ctx, "x");
y = mk_int_var(ctx, "y");
one = mk_int(ctx, 1);
two = mk_int(ctx, 2);
args[0] = y;
args[1] = one;
y_plus_one = Z3_mk_add(ctx, 2, args);
c1 = Z3_mk_lt(ctx, x, y_plus_one);
c2 = Z3_mk_gt(ctx, x, two);
Z3_solver_assert(ctx, s, c1);
Z3_solver_assert(ctx, s, c2);
printf("model for: x < y + 1, x > 2\n");
check(ctx, s, Z3_L_TRUE);
/* assert not(x = y) */
x_eq_y = Z3_mk_eq(ctx, x, y);
c3 = Z3_mk_not(ctx, x_eq_y);
Z3_solver_assert(ctx, s,c3);
printf("model for: x < y + 1, x > 2, not(x = y)\n");
check(ctx, s, Z3_L_TRUE);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Prove <tt>x = y implies g(x) = g(y)</tt>, and
disprove <tt>x = y implies g(g(x)) = g(y)</tt>.
This function demonstrates how to create uninterpreted types and
functions.
*/
void prove_example1()
{
Z3_context ctx;
Z3_solver s;
Z3_symbol U_name, g_name, x_name, y_name;
Z3_sort U;
Z3_sort g_domain[1];
Z3_func_decl g;
Z3_ast x, y, gx, ggx, gy;
Z3_ast eq, f;
printf("\nprove_example1\n");
LOG_MSG("prove_example1");
ctx = mk_context();
s = mk_solver(ctx);
/* create uninterpreted type. */
U_name = Z3_mk_string_symbol(ctx, "U");
U = Z3_mk_uninterpreted_sort(ctx, U_name);
/* declare function g */
g_name = Z3_mk_string_symbol(ctx, "g");
g_domain[0] = U;
g = Z3_mk_func_decl(ctx, g_name, 1, g_domain, U);
/* create x and y */
x_name = Z3_mk_string_symbol(ctx, "x");
y_name = Z3_mk_string_symbol(ctx, "y");
x = Z3_mk_const(ctx, x_name, U);
y = Z3_mk_const(ctx, y_name, U);
/* create g(x), g(y) */
gx = mk_unary_app(ctx, g, x);
gy = mk_unary_app(ctx, g, y);
/* assert x = y */
eq = Z3_mk_eq(ctx, x, y);
Z3_solver_assert(ctx, s, eq);
/* prove g(x) = g(y) */
f = Z3_mk_eq(ctx, gx, gy);
printf("prove: x = y implies g(x) = g(y)\n");
prove(ctx, s, f, true);
/* create g(g(x)) */
ggx = mk_unary_app(ctx, g, gx);
/* disprove g(g(x)) = g(y) */
f = Z3_mk_eq(ctx, ggx, gy);
printf("disprove: x = y implies g(g(x)) = g(y)\n");
prove(ctx, s, f, false);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Prove <tt>not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < 0 </tt>.
Then, show that <tt>z < -1</tt> is not implied.
This example demonstrates how to combine uninterpreted functions and arithmetic.
*/
void prove_example2()
{
Z3_context ctx;
Z3_solver s;
Z3_sort int_sort;
Z3_symbol g_name;
Z3_sort g_domain[1];
Z3_func_decl g;
Z3_ast x, y, z, zero, minus_one, x_plus_z, gx, gy, gz, gx_gy, ggx_gy;
Z3_ast args[2];
Z3_ast eq, c1, c2, c3, f;
printf("\nprove_example2\n");
LOG_MSG("prove_example2");
ctx = mk_context();
s = mk_solver(ctx);
/* declare function g */
int_sort = Z3_mk_int_sort(ctx);
g_name = Z3_mk_string_symbol(ctx, "g");
g_domain[0] = int_sort;
g = Z3_mk_func_decl(ctx, g_name, 1, g_domain, int_sort);
/* create x, y, and z */
x = mk_int_var(ctx, "x");
y = mk_int_var(ctx, "y");
z = mk_int_var(ctx, "z");
/* create gx, gy, gz */
gx = mk_unary_app(ctx, g, x);
gy = mk_unary_app(ctx, g, y);
gz = mk_unary_app(ctx, g, z);
/* create zero */
zero = mk_int(ctx, 0);
/* assert not(g(g(x) - g(y)) = g(z)) */
args[0] = gx;
args[1] = gy;
gx_gy = Z3_mk_sub(ctx, 2, args);
ggx_gy = mk_unary_app(ctx, g, gx_gy);
eq = Z3_mk_eq(ctx, ggx_gy, gz);
c1 = Z3_mk_not(ctx, eq);
Z3_solver_assert(ctx, s, c1);
/* assert x + z <= y */
args[0] = x;
args[1] = z;
x_plus_z = Z3_mk_add(ctx, 2, args);
c2 = Z3_mk_le(ctx, x_plus_z, y);
Z3_solver_assert(ctx, s, c2);
/* assert y <= x */
c3 = Z3_mk_le(ctx, y, x);
Z3_solver_assert(ctx, s, c3);
/* prove z < 0 */
f = Z3_mk_lt(ctx, z, zero);
printf("prove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < 0\n");
prove(ctx, s, f, true);
/* disprove z < -1 */
minus_one = mk_int(ctx, -1);
f = Z3_mk_lt(ctx, z, minus_one);
printf("disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1\n");
prove(ctx, s, f, false);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Show how push & pop can be used to create "backtracking"
points.
This example also demonstrates how big numbers can be created in Z3.
*/
void push_pop_example1()
{
Z3_context ctx;
Z3_solver s;
Z3_sort int_sort;
Z3_symbol x_sym, y_sym;
Z3_ast x, y, big_number, three;
Z3_ast c1, c2, c3;
printf("\npush_pop_example1\n");
LOG_MSG("push_pop_example1");
ctx = mk_context();
s = mk_solver(ctx);
/* create a big number */
int_sort = Z3_mk_int_sort(ctx);
big_number = Z3_mk_numeral(ctx, "1000000000000000000000000000000000000000000000000000000", int_sort);
/* create number 3 */
three = Z3_mk_numeral(ctx, "3", int_sort);
/* create x */
x_sym = Z3_mk_string_symbol(ctx, "x");
x = Z3_mk_const(ctx, x_sym, int_sort);
/* assert x >= "big number" */
c1 = Z3_mk_ge(ctx, x, big_number);
printf("assert: x >= 'big number'\n");
Z3_solver_assert(ctx, s, c1);
/* create a backtracking point */
printf("push\n");
Z3_solver_push(ctx, s);
printf("number of scopes: %d\n", Z3_solver_get_num_scopes(ctx, s));
/* assert x <= 3 */
c2 = Z3_mk_le(ctx, x, three);
printf("assert: x <= 3\n");
Z3_solver_assert(ctx, s, c2);
/* context is inconsistent at this point */
check2(ctx, s, Z3_L_FALSE);
/* backtrack: the constraint x <= 3 will be removed, since it was
asserted after the last Z3_solver_push. */
printf("pop\n");
Z3_solver_pop(ctx, s, 1);
printf("number of scopes: %d\n", Z3_solver_get_num_scopes(ctx, s));
/* the context is consistent again. */
check2(ctx, s, Z3_L_TRUE);
/* new constraints can be asserted... */
/* create y */
y_sym = Z3_mk_string_symbol(ctx, "y");
y = Z3_mk_const(ctx, y_sym, int_sort);
/* assert y > x */
c3 = Z3_mk_gt(ctx, y, x);
printf("assert: y > x\n");
Z3_solver_assert(ctx, s, c3);
/* the context is still consistent. */
check2(ctx, s, Z3_L_TRUE);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Prove that <tt>f(x, y) = f(w, v) implies y = v</tt> when
\c f is injective in the second argument.
\sa assert_inj_axiom.
*/
void quantifier_example1()
{
Z3_config cfg;
Z3_context ctx;
Z3_solver s;
Z3_sort int_sort;
Z3_symbol f_name;
Z3_sort f_domain[2];
Z3_func_decl f;
Z3_ast x, y, w, v, fxy, fwv;
Z3_ast p1, p2, p3, not_p3;
printf("\nquantifier_example1\n");
LOG_MSG("quantifier_example1");
cfg = Z3_mk_config();
/* If quantified formulas are asserted in a logical context, then
Z3 may return L_UNDEF. In this case, the model produced by Z3 should be viewed as a potential/candidate model.
*/
/*
The current model finder for quantified formulas cannot handle injectivity.
So, we are limiting the number of iterations to avoid a long "wait".
*/
Z3_global_param_set("smt.mbqi.max_iterations", "10");
ctx = mk_context_custom(cfg, error_handler);
Z3_del_config(cfg);
s = mk_solver(ctx);
/* declare function f */
int_sort = Z3_mk_int_sort(ctx);
f_name = Z3_mk_string_symbol(ctx, "f");
f_domain[0] = int_sort;
f_domain[1] = int_sort;
f = Z3_mk_func_decl(ctx, f_name, 2, f_domain, int_sort);
/* assert that f is injective in the second argument. */
assert_inj_axiom(ctx, s, f, 1);
/* create x, y, v, w, fxy, fwv */
x = mk_int_var(ctx, "x");
y = mk_int_var(ctx, "y");
v = mk_int_var(ctx, "v");
w = mk_int_var(ctx, "w");
fxy = mk_binary_app(ctx, f, x, y);
fwv = mk_binary_app(ctx, f, w, v);
/* assert f(x, y) = f(w, v) */
p1 = Z3_mk_eq(ctx, fxy, fwv);
Z3_solver_assert(ctx, s, p1);
/* prove f(x, y) = f(w, v) implies y = v */
p2 = Z3_mk_eq(ctx, y, v);
printf("prove: f(x, y) = f(w, v) implies y = v\n");
prove(ctx, s, p2, true);
/* disprove f(x, y) = f(w, v) implies x = w */
/* using check2 instead of prove */
p3 = Z3_mk_eq(ctx, x, w);
not_p3 = Z3_mk_not(ctx, p3);
Z3_solver_assert(ctx, s, not_p3);
printf("disprove: f(x, y) = f(w, v) implies x = w\n");
printf("that is: not(f(x, y) = f(w, v) implies x = w) is satisfiable\n");
check2(ctx, s, Z3_L_UNDEF);
printf("reason for last failure: %s\n", Z3_solver_get_reason_unknown(ctx, s));
del_solver(ctx, s);
Z3_del_context(ctx);
/* reset global parameters set by this function */
Z3_global_param_reset_all();
}
/**
\brief Prove <tt>store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3))</tt>.
This example demonstrates how to use the array theory.
*/
void array_example1()
{
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort int_sort, array_sort;
Z3_ast a1, a2, i1, v1, i2, v2, i3;
Z3_ast st1, st2, sel1, sel2;
Z3_ast antecedent, consequent;
Z3_ast ds[3];
Z3_ast thm;
printf("\narray_example1\n");
LOG_MSG("array_example1");
int_sort = Z3_mk_int_sort(ctx);
array_sort = Z3_mk_array_sort(ctx, int_sort, int_sort);
a1 = mk_var(ctx, "a1", array_sort);
a2 = mk_var(ctx, "a2", array_sort);
i1 = mk_var(ctx, "i1", int_sort);
i2 = mk_var(ctx, "i2", int_sort);
i3 = mk_var(ctx, "i3", int_sort);
v1 = mk_var(ctx, "v1", int_sort);
v2 = mk_var(ctx, "v2", int_sort);
st1 = Z3_mk_store(ctx, a1, i1, v1);
st2 = Z3_mk_store(ctx, a2, i2, v2);
sel1 = Z3_mk_select(ctx, a1, i3);
sel2 = Z3_mk_select(ctx, a2, i3);
/* create antecedent */
antecedent = Z3_mk_eq(ctx, st1, st2);
/* create consequent: i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3) */
ds[0] = Z3_mk_eq(ctx, i1, i3);
ds[1] = Z3_mk_eq(ctx, i2, i3);
ds[2] = Z3_mk_eq(ctx, sel1, sel2);
consequent = Z3_mk_or(ctx, 3, ds);
/* prove store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3)) */
thm = Z3_mk_implies(ctx, antecedent, consequent);
printf("prove: store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3))\n");
printf("%s\n", Z3_ast_to_string(ctx, thm));
prove(ctx, s, thm, true);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Show that <tt>distinct(a_0, ... , a_n)</tt> is
unsatisfiable when \c a_i's are arrays from boolean to
boolean and n > 4.
This example also shows how to use the \c distinct construct.
*/
void array_example2()
{
Z3_context ctx;
Z3_solver s;
Z3_sort bool_sort, array_sort;
Z3_ast a[5];
Z3_ast d;
unsigned i, n;
printf("\narray_example2\n");
LOG_MSG("array_example2");
for (n = 2; n <= 5; n++) {
printf("n = %d\n", n);
ctx = mk_context();
s = mk_solver(ctx);
bool_sort = Z3_mk_bool_sort(ctx);
array_sort = Z3_mk_array_sort(ctx, bool_sort, bool_sort);
/* create arrays */
for (i = 0; i < n; i++) {
Z3_symbol s = Z3_mk_int_symbol(ctx, i);
a[i] = Z3_mk_const(ctx, s, array_sort);
}
/* assert distinct(a[0], ..., a[n]) */
d = Z3_mk_distinct(ctx, n, a);
printf("%s\n", Z3_ast_to_string(ctx, d));
Z3_solver_assert(ctx, s, d);
/* context is satisfiable if n < 5 */
check2(ctx, s, n < 5 ? Z3_L_TRUE : Z3_L_FALSE);
del_solver(ctx, s);
Z3_del_context(ctx);
}
}
/**
\brief Simple array type construction/deconstruction example.
*/
void array_example3()
{
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort bool_sort, int_sort, array_sort;
Z3_sort domain, range;
printf("\narray_example3\n");
LOG_MSG("array_example3");
bool_sort = Z3_mk_bool_sort(ctx);
int_sort = Z3_mk_int_sort(ctx);
array_sort = Z3_mk_array_sort(ctx, int_sort, bool_sort);
if (Z3_get_sort_kind(ctx, array_sort) != Z3_ARRAY_SORT) {
exitf("type must be an array type");
}
domain = Z3_get_array_sort_domain(ctx, array_sort);
range = Z3_get_array_sort_range(ctx, array_sort);
printf("domain: ");
display_sort(ctx, stdout, domain);
printf("\n");
printf("range: ");
display_sort(ctx, stdout, range);
printf("\n");
if (int_sort != domain || bool_sort != range) {
exitf("invalid array type");
}
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Simple tuple type example. It creates a tuple that is a pair of real numbers.
*/
void tuple_example1()
{
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort real_sort, pair_sort;
Z3_symbol mk_tuple_name;
Z3_func_decl mk_tuple_decl;
Z3_symbol proj_names[2];
Z3_sort proj_sorts[2];
Z3_func_decl proj_decls[2];
Z3_func_decl get_x_decl, get_y_decl;
printf("\ntuple_example1\n");
LOG_MSG("tuple_example1");
real_sort = Z3_mk_real_sort(ctx);
/* Create pair (tuple) type */
mk_tuple_name = Z3_mk_string_symbol(ctx, "mk_pair");
proj_names[0] = Z3_mk_string_symbol(ctx, "get_x");
proj_names[1] = Z3_mk_string_symbol(ctx, "get_y");
proj_sorts[0] = real_sort;
proj_sorts[1] = real_sort;
/* Z3_mk_tuple_sort will set mk_tuple_decl and proj_decls */
pair_sort = Z3_mk_tuple_sort(ctx, mk_tuple_name, 2, proj_names, proj_sorts, &mk_tuple_decl, proj_decls);
get_x_decl = proj_decls[0]; /* function that extracts the first element of a tuple. */
get_y_decl = proj_decls[1]; /* function that extracts the second element of a tuple. */
printf("tuple_sort: ");
display_sort(ctx, stdout, pair_sort);
printf("\n");
{
/* prove that get_x(mk_pair(x,y)) == 1 implies x = 1*/
Z3_ast app1, app2, x, y, one;
Z3_ast eq1, eq2, eq3, thm;
x = mk_real_var(ctx, "x");
y = mk_real_var(ctx, "y");
app1 = mk_binary_app(ctx, mk_tuple_decl, x, y);
app2 = mk_unary_app(ctx, get_x_decl, app1);
one = Z3_mk_numeral(ctx, "1", real_sort);
eq1 = Z3_mk_eq(ctx, app2, one);
eq2 = Z3_mk_eq(ctx, x, one);
thm = Z3_mk_implies(ctx, eq1, eq2);
printf("prove: get_x(mk_pair(x, y)) = 1 implies x = 1\n");
prove(ctx, s, thm, true);
/* disprove that get_x(mk_pair(x,y)) == 1 implies y = 1*/
eq3 = Z3_mk_eq(ctx, y, one);
thm = Z3_mk_implies(ctx, eq1, eq3);
printf("disprove: get_x(mk_pair(x, y)) = 1 implies y = 1\n");
prove(ctx, s, thm, false);
}
{
/* prove that get_x(p1) = get_x(p2) and get_y(p1) = get_y(p2) implies p1 = p2 */
Z3_ast p1, p2, x1, x2, y1, y2;
Z3_ast antecedents[2];
Z3_ast antecedent, consequent, thm;
p1 = mk_var(ctx, "p1", pair_sort);
p2 = mk_var(ctx, "p2", pair_sort);
x1 = mk_unary_app(ctx, get_x_decl, p1);
y1 = mk_unary_app(ctx, get_y_decl, p1);
x2 = mk_unary_app(ctx, get_x_decl, p2);
y2 = mk_unary_app(ctx, get_y_decl, p2);
antecedents[0] = Z3_mk_eq(ctx, x1, x2);
antecedents[1] = Z3_mk_eq(ctx, y1, y2);
antecedent = Z3_mk_and(ctx, 2, antecedents);
consequent = Z3_mk_eq(ctx, p1, p2);
thm = Z3_mk_implies(ctx, antecedent, consequent);
printf("prove: get_x(p1) = get_x(p2) and get_y(p1) = get_y(p2) implies p1 = p2\n");
prove(ctx, s, thm, true);
/* disprove that get_x(p1) = get_x(p2) implies p1 = p2 */
thm = Z3_mk_implies(ctx, antecedents[0], consequent);
printf("disprove: get_x(p1) = get_x(p2) implies p1 = p2\n");
prove(ctx, s, thm, false);
}
{
/* demonstrate how to use the mk_tuple_update function */
/* prove that p2 = update(p1, 0, 10) implies get_x(p2) = 10 */
Z3_ast p1, p2, ten, updt, x, y;
Z3_ast antecedent, consequent, thm;
p1 = mk_var(ctx, "p1", pair_sort);
p2 = mk_var(ctx, "p2", pair_sort);
ten = Z3_mk_numeral(ctx, "10", real_sort);
updt = mk_tuple_update(ctx, p1, 0, ten);
antecedent = Z3_mk_eq(ctx, p2, updt);
x = mk_unary_app(ctx, get_x_decl, p2);
consequent = Z3_mk_eq(ctx, x, ten);
thm = Z3_mk_implies(ctx, antecedent, consequent);
printf("prove: p2 = update(p1, 0, 10) implies get_x(p2) = 10\n");
prove(ctx, s, thm, true);
/* disprove that p2 = update(p1, 0, 10) implies get_y(p2) = 10 */
y = mk_unary_app(ctx, get_y_decl, p2);
consequent = Z3_mk_eq(ctx, y, ten);
thm = Z3_mk_implies(ctx, antecedent, consequent);
printf("disprove: p2 = update(p1, 0, 10) implies get_y(p2) = 10\n");
prove(ctx, s, thm, false);
}
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Simple bit-vector example. This example disproves that x - 10 <= 0 IFF x <= 10 for (32-bit) machine integers
*/
void bitvector_example1()
{
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort bv_sort;
Z3_ast x, zero, ten, x_minus_ten, c1, c2, thm;
printf("\nbitvector_example1\n");
LOG_MSG("bitvector_example1");
bv_sort = Z3_mk_bv_sort(ctx, 32);
x = mk_var(ctx, "x", bv_sort);
zero = Z3_mk_numeral(ctx, "0", bv_sort);
ten = Z3_mk_numeral(ctx, "10", bv_sort);
x_minus_ten = Z3_mk_bvsub(ctx, x, ten);
/* bvsle is signed less than or equal to */
c1 = Z3_mk_bvsle(ctx, x, ten);
c2 = Z3_mk_bvsle(ctx, x_minus_ten, zero);
thm = Z3_mk_iff(ctx, c1, c2);
printf("disprove: x - 10 <= 0 IFF x <= 10 for (32-bit) machine integers\n");
prove(ctx, s, thm, false);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Find x and y such that: x ^ y - 103 == x * y
*/
void bitvector_example2()
{
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
/* construct x ^ y - 103 == x * y */
Z3_sort bv_sort = Z3_mk_bv_sort(ctx, 32);
Z3_ast x = mk_var(ctx, "x", bv_sort);
Z3_ast y = mk_var(ctx, "y", bv_sort);
Z3_ast x_xor_y = Z3_mk_bvxor(ctx, x, y);
Z3_ast c103 = Z3_mk_numeral(ctx, "103", bv_sort);
Z3_ast lhs = Z3_mk_bvsub(ctx, x_xor_y, c103);
Z3_ast rhs = Z3_mk_bvmul(ctx, x, y);
Z3_ast ctr = Z3_mk_eq(ctx, lhs, rhs);
printf("\nbitvector_example2\n");
LOG_MSG("bitvector_example2");
printf("find values of x and y, such that x ^ y - 103 == x * y\n");
/* add the constraint <tt>x ^ y - 103 == x * y<\tt> to the logical context */
Z3_solver_assert(ctx, s, ctr);
/* find a model (i.e., values for x an y that satisfy the constraint */
check(ctx, s, Z3_L_TRUE);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Demonstrate how to use #Z3_eval.
*/
void eval_example1()
{
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_ast x, y, two;
Z3_ast c1, c2;
Z3_model m = 0;
printf("\neval_example1\n");
LOG_MSG("eval_example1");
x = mk_int_var(ctx, "x");
y = mk_int_var(ctx, "y");
two = mk_int(ctx, 2);
/* assert x < y */
c1 = Z3_mk_lt(ctx, x, y);
Z3_solver_assert(ctx, s, c1);
/* assert x > 2 */
c2 = Z3_mk_gt(ctx, x, two);
Z3_solver_assert(ctx, s, c2);
/* find model for the constraints above */
if (Z3_solver_check(ctx, s) == Z3_L_TRUE) {
Z3_ast x_plus_y;
Z3_ast args[2] = {x, y};
Z3_ast v;
m = Z3_solver_get_model(ctx, s);
if (m) Z3_model_inc_ref(ctx, m);
printf("MODEL:\n%s", Z3_model_to_string(ctx, m));
x_plus_y = Z3_mk_add(ctx, 2, args);
printf("\nevaluating x+y\n");
if (Z3_model_eval(ctx, m, x_plus_y, 1, &v)) {
printf("result = ");
display_ast(ctx, stdout, v);
printf("\n");
}
else {
exitf("failed to evaluate: x+y");
}
}
else {
exitf("the constraints are satisfiable");
}
if (m) Z3_model_dec_ref(ctx, m);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Several logical context can be used simultaneously.
*/
void two_contexts_example1()
{
Z3_context ctx1, ctx2;
Z3_ast x1, x2;
printf("\ntwo_contexts_example1\n");
LOG_MSG("two_contexts_example1");
/* using the same (default) configuration to initialized both logical contexts. */
ctx1 = mk_context();
ctx2 = mk_context();
x1 = Z3_mk_const(ctx1, Z3_mk_int_symbol(ctx1,0), Z3_mk_bool_sort(ctx1));
x2 = Z3_mk_const(ctx2, Z3_mk_int_symbol(ctx2,0), Z3_mk_bool_sort(ctx2));
Z3_del_context(ctx1);
/* ctx2 can still be used. */
printf("%s\n", Z3_ast_to_string(ctx2, x2));
Z3_del_context(ctx2);
}
/**
\brief Demonstrates how error codes can be read instead of registering an error handler.
*/
void error_code_example1()
{
Z3_config cfg;
Z3_context ctx;
Z3_solver s;
Z3_ast x;
Z3_model m;
Z3_ast v;
const char * str;
printf("\nerror_code_example1\n");
LOG_MSG("error_code_example11");
/* Do not register an error handler, as we want to use Z3_get_error_code manually */
cfg = Z3_mk_config();
ctx = mk_context_custom(cfg, NULL);
Z3_del_config(cfg);
s = mk_solver(ctx);
x = mk_bool_var(ctx, "x");
Z3_solver_assert(ctx, s, x);
if (Z3_solver_check(ctx, s) != Z3_L_TRUE) {
exitf("unexpected result");
}
m = Z3_solver_get_model(ctx, s);
if (m) Z3_model_inc_ref(ctx, m);
if (!Z3_model_eval(ctx, m, x, 1, &v)) {
exitf("did not obtain value for declaration.\n");
}
if (Z3_get_error_code(ctx) == Z3_OK) {
printf("last call succeeded.\n");
}
/* The following call will fail since the value of x is a boolean */
str = Z3_get_numeral_string(ctx, v);
(void)str;
if (Z3_get_error_code(ctx) != Z3_OK) {
printf("last call failed.\n");
}
if (m) Z3_model_dec_ref(ctx, m);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Demonstrates how error handlers can be used.
*/
void error_code_example2() {
Z3_config cfg;
Z3_context ctx = NULL;
Z3_error_code e;
printf("\nerror_code_example2\n");
LOG_MSG("error_code_example2");
if (1) {
Z3_ast x, y, app;
cfg = Z3_mk_config();
ctx = mk_context_custom(cfg, nothrow_z3_error);
Z3_del_config(cfg);
x = mk_int_var(ctx, "x");
y = mk_bool_var(ctx, "y");
printf("before Z3_mk_iff\n");
/* the next call will produce an error */
app = Z3_mk_iff(ctx, x, y);
(void)app;
e = Z3_get_error_code(ctx);
if (e != Z3_OK) goto err;
unreachable();
Z3_del_context(ctx);
}
else {
err:
printf("Z3 error: %s.\n", Z3_get_error_msg(ctx, e));
if (ctx != NULL) {
Z3_del_context(ctx);
}
}
}
/**
\brief Demonstrates how to initialize the parser symbol table.
*/
void parser_example2()
{
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_ast x, y;
Z3_symbol names[2];
Z3_func_decl decls[2];
Z3_ast_vector f;
unsigned i;
printf("\nparser_example2\n");
LOG_MSG("parser_example2");
/* Z3_enable_arithmetic doesn't need to be invoked in this example
because it will be implicitly invoked by mk_int_var.
*/
x = mk_int_var(ctx, "x");
decls[0] = Z3_get_app_decl(ctx, Z3_to_app(ctx, x));
y = mk_int_var(ctx, "y");
decls[1] = Z3_get_app_decl(ctx, Z3_to_app(ctx, y));
names[0] = Z3_mk_string_symbol(ctx, "a");
names[1] = Z3_mk_string_symbol(ctx, "b");
f = Z3_parse_smtlib2_string(ctx,
"(assert (> a b))",
0, 0, 0,
/* 'x' and 'y' declarations are inserted as 'a' and 'b' into the parser symbol table. */
2, names, decls);
printf("formula: %s\n", Z3_ast_vector_to_string(ctx, f));
printf("assert axiom:\n%s\n", Z3_ast_vector_to_string(ctx, f));
for (i = 0; i < Z3_ast_vector_size(ctx, f); ++i) {
Z3_solver_assert(ctx, s, Z3_ast_vector_get(ctx, f, i));
}
check(ctx, s, Z3_L_TRUE);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Demonstrates how to initialize the parser symbol table.
*/
void parser_example3()
{
Z3_config cfg;
Z3_context ctx;
Z3_solver s;
Z3_sort int_sort;
Z3_symbol g_name;
Z3_sort g_domain[2];
Z3_func_decl g;
Z3_ast_vector thm;
printf("\nparser_example3\n");
LOG_MSG("parser_example3");
cfg = Z3_mk_config();
/* See quantifier_example1 */
Z3_set_param_value(cfg, "model", "true");
ctx = mk_context_custom(cfg, error_handler);
Z3_del_config(cfg);
s = mk_solver(ctx);
/* declare function g */
int_sort = Z3_mk_int_sort(ctx);
g_name = Z3_mk_string_symbol(ctx, "g");
g_domain[0] = int_sort;
g_domain[1] = int_sort;
g = Z3_mk_func_decl(ctx, g_name, 2, g_domain, int_sort);
assert_comm_axiom(ctx, s, g);
thm = Z3_parse_smtlib2_string(ctx,
"(assert (forall ((x Int) (y Int)) (=> (= x y) (= (g x 0) (g 0 y)))))",
0, 0, 0,
1, &g_name, &g);
printf("formula: %s\n", Z3_ast_vector_to_string(ctx, thm));
prove(ctx, s, Z3_ast_vector_get(ctx, thm, 0), true);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Demonstrates how to handle parser errors using Z3 error handling support.
*/
void parser_example5() {
Z3_config cfg;
Z3_context ctx = NULL;
Z3_solver s = NULL;
Z3_error_code e;
printf("\nparser_example5\n");
LOG_MSG("parser_example5");
if (1) {
cfg = Z3_mk_config();
ctx = mk_context_custom(cfg, nothrow_z3_error);
s = mk_solver(ctx);
Z3_del_config(cfg);
Z3_parse_smtlib2_string(ctx,
/* the following string has a parsing error: missing parenthesis */
"(declare-const x Int) declare-const y Int) (assert (and (> x y) (> x 0)))",
0, 0, 0,
0, 0, 0);
e = Z3_get_error_code(ctx);
if (e != Z3_OK) goto err;
unreachable();
del_solver(ctx, s);
Z3_del_context(ctx);
}
else {
err:
printf("Z3 error: %s.\n", Z3_get_error_msg(ctx, e));
if (ctx != NULL) {
del_solver(ctx, s);
Z3_del_context(ctx);
}
}
}
/**
\brief Demonstrate different ways of creating rational numbers: decimal and fractional representations.
*/
void numeral_example() {
Z3_context ctx;
Z3_solver s;
Z3_ast n1, n2;
Z3_sort real_ty;
printf("\nnumeral_example\n");
LOG_MSG("numeral_example");
ctx = mk_context();
s = mk_solver(ctx);
real_ty = Z3_mk_real_sort(ctx);
n1 = Z3_mk_numeral(ctx, "1/2", real_ty);
n2 = Z3_mk_numeral(ctx, "0.5", real_ty);
printf("Numerals n1:%s", Z3_ast_to_string(ctx, n1));
printf(" n2:%s\n", Z3_ast_to_string(ctx, n2));
prove(ctx, s, Z3_mk_eq(ctx, n1, n2), true);
n1 = Z3_mk_numeral(ctx, "-1/3", real_ty);
n2 = Z3_mk_numeral(ctx, "-0.33333333333333333333333333333333333333333333333333", real_ty);
printf("Numerals n1:%s", Z3_ast_to_string(ctx, n1));
printf(" n2:%s\n", Z3_ast_to_string(ctx, n2));
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, n1, n2)), true);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Test ite-term (if-then-else terms).
*/
void ite_example()
{
Z3_context ctx;
Z3_ast f, one, zero, ite;
printf("\nite_example\n");
LOG_MSG("ite_example");
ctx = mk_context();
f = Z3_mk_false(ctx);
one = mk_int(ctx, 1);
zero = mk_int(ctx, 0);
ite = Z3_mk_ite(ctx, f, one, zero);
printf("term: %s\n", Z3_ast_to_string(ctx, ite));
/* delete logical context */
Z3_del_context(ctx);
}
/**
\brief Create an enumeration data type.
*/
void enum_example() {
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort fruit;
Z3_symbol name = Z3_mk_string_symbol(ctx, "fruit");
Z3_symbol enum_names[3];
Z3_func_decl enum_consts[3];
Z3_func_decl enum_testers[3];
Z3_ast apple, orange, banana, fruity;
Z3_ast ors[3];
printf("\nenum_example\n");
LOG_MSG("enum_example");
enum_names[0] = Z3_mk_string_symbol(ctx,"apple");
enum_names[1] = Z3_mk_string_symbol(ctx,"banana");
enum_names[2] = Z3_mk_string_symbol(ctx,"orange");
fruit = Z3_mk_enumeration_sort(ctx, name, 3, enum_names, enum_consts, enum_testers);
printf("%s\n", Z3_func_decl_to_string(ctx, enum_consts[0]));
printf("%s\n", Z3_func_decl_to_string(ctx, enum_consts[1]));
printf("%s\n", Z3_func_decl_to_string(ctx, enum_consts[2]));
printf("%s\n", Z3_func_decl_to_string(ctx, enum_testers[0]));
printf("%s\n", Z3_func_decl_to_string(ctx, enum_testers[1]));
printf("%s\n", Z3_func_decl_to_string(ctx, enum_testers[2]));
apple = Z3_mk_app(ctx, enum_consts[0], 0, 0);
banana = Z3_mk_app(ctx, enum_consts[1], 0, 0);
orange = Z3_mk_app(ctx, enum_consts[2], 0, 0);
/* Apples are different from oranges */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, apple, orange)), true);
/* Apples pass the apple test */
prove(ctx, s, Z3_mk_app(ctx, enum_testers[0], 1, &apple), true);
/* Oranges fail the apple test */
prove(ctx, s, Z3_mk_app(ctx, enum_testers[0], 1, &orange), false);
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_app(ctx, enum_testers[0], 1, &orange)), true);
fruity = mk_var(ctx, "fruity", fruit);
/* If something is fruity, then it is an apple, banana, or orange */
ors[0] = Z3_mk_eq(ctx, fruity, apple);
ors[1] = Z3_mk_eq(ctx, fruity, banana);
ors[2] = Z3_mk_eq(ctx, fruity, orange);
prove(ctx, s, Z3_mk_or(ctx, 3, ors), true);
/* delete logical context */
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Create a list datatype.
*/
void list_example() {
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort int_ty, int_list;
Z3_func_decl nil_decl, is_nil_decl, cons_decl, is_cons_decl, head_decl, tail_decl;
Z3_ast nil, l1, l2, x, y, u, v, fml, fml1;
Z3_ast ors[2];
printf("\nlist_example\n");
LOG_MSG("list_example");
int_ty = Z3_mk_int_sort(ctx);
int_list = Z3_mk_list_sort(ctx, Z3_mk_string_symbol(ctx, "int_list"), int_ty,
&nil_decl, &is_nil_decl, &cons_decl, &is_cons_decl, &head_decl, &tail_decl);
nil = Z3_mk_app(ctx, nil_decl, 0, 0);
l1 = mk_binary_app(ctx, cons_decl, mk_int(ctx, 1), nil);
l2 = mk_binary_app(ctx, cons_decl, mk_int(ctx, 2), nil);
/* nil != cons(1, nil) */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil, l1)), true);
/* cons(2,nil) != cons(1, nil) */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, l1, l2)), true);
/* cons(x,nil) = cons(y, nil) => x = y */
x = mk_var(ctx, "x", int_ty);
y = mk_var(ctx, "y", int_ty);
l1 = mk_binary_app(ctx, cons_decl, x, nil);
l2 = mk_binary_app(ctx, cons_decl, y, nil);
prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, x, y)), true);
/* cons(x,u) = cons(x, v) => u = v */
u = mk_var(ctx, "u", int_list);
v = mk_var(ctx, "v", int_list);
l1 = mk_binary_app(ctx, cons_decl, x, u);
l2 = mk_binary_app(ctx, cons_decl, y, v);
prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, u, v)), true);
prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, x, y)), true);
/* is_nil(u) or is_cons(u) */
ors[0] = Z3_mk_app(ctx, is_nil_decl, 1, &u);
ors[1] = Z3_mk_app(ctx, is_cons_decl, 1, &u);
prove(ctx, s, Z3_mk_or(ctx, 2, ors), true);
/* occurs check u != cons(x,u) */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, u, l1)), true);
/* destructors: is_cons(u) => u = cons(head(u),tail(u)) */
fml1 = Z3_mk_eq(ctx, u, mk_binary_app(ctx, cons_decl, mk_unary_app(ctx, head_decl, u), mk_unary_app(ctx, tail_decl, u)));
fml = Z3_mk_implies(ctx, Z3_mk_app(ctx, is_cons_decl, 1, &u), fml1);
printf("Formula %s\n", Z3_ast_to_string(ctx, fml));
prove(ctx, s, fml, true);
prove(ctx, s, fml1, false);
/* delete logical context */
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Create a binary tree datatype.
*/
void tree_example() {
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort cell;
Z3_func_decl nil_decl, is_nil_decl, cons_decl, is_cons_decl, car_decl, cdr_decl;
Z3_ast nil, l1, l2, x, y, u, v, fml, fml1;
Z3_symbol head_tail[2] = { Z3_mk_string_symbol(ctx, "car"), Z3_mk_string_symbol(ctx, "cdr") };
Z3_sort sorts[2] = { 0, 0 };
unsigned sort_refs[2] = { 0, 0 };
Z3_constructor nil_con, cons_con;
Z3_constructor constructors[2];
Z3_func_decl cons_accessors[2];
Z3_ast ors[2];
printf("\ntree_example\n");
LOG_MSG("tree_example");
nil_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "nil"), Z3_mk_string_symbol(ctx, "is_nil"), 0, 0, 0, 0);
cons_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "cons"), Z3_mk_string_symbol(ctx, "is_cons"), 2, head_tail, sorts, sort_refs);
constructors[0] = nil_con;
constructors[1] = cons_con;
cell = Z3_mk_datatype(ctx, Z3_mk_string_symbol(ctx, "cell"), 2, constructors);
Z3_query_constructor(ctx, nil_con, 0, &nil_decl, &is_nil_decl, 0);
Z3_query_constructor(ctx, cons_con, 2, &cons_decl, &is_cons_decl, cons_accessors);
car_decl = cons_accessors[0];
cdr_decl = cons_accessors[1];
Z3_del_constructor(ctx,nil_con);
Z3_del_constructor(ctx,cons_con);
nil = Z3_mk_app(ctx, nil_decl, 0, 0);
l1 = mk_binary_app(ctx, cons_decl, nil, nil);
l2 = mk_binary_app(ctx, cons_decl, l1, nil);
/* nil != cons(nil, nil) */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil, l1)), true);
/* cons(x,u) = cons(x, v) => u = v */
u = mk_var(ctx, "u", cell);
v = mk_var(ctx, "v", cell);
x = mk_var(ctx, "x", cell);
y = mk_var(ctx, "y", cell);
l1 = mk_binary_app(ctx, cons_decl, x, u);
l2 = mk_binary_app(ctx, cons_decl, y, v);
prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, u, v)), true);
prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, x, y)), true);
/* is_nil(u) or is_cons(u) */
ors[0] = Z3_mk_app(ctx, is_nil_decl, 1, &u);
ors[1] = Z3_mk_app(ctx, is_cons_decl, 1, &u);
prove(ctx, s, Z3_mk_or(ctx, 2, ors), true);
/* occurs check u != cons(x,u) */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, u, l1)), true);
/* destructors: is_cons(u) => u = cons(car(u),cdr(u)) */
fml1 = Z3_mk_eq(ctx, u, mk_binary_app(ctx, cons_decl, mk_unary_app(ctx, car_decl, u), mk_unary_app(ctx, cdr_decl, u)));
fml = Z3_mk_implies(ctx, Z3_mk_app(ctx, is_cons_decl, 1, &u), fml1);
printf("Formula %s\n", Z3_ast_to_string(ctx, fml));
prove(ctx, s, fml, true);
prove(ctx, s, fml1, false);
/* delete logical context */
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Create a forest of trees.
forest ::= nil | cons(tree, forest)
tree ::= nil | cons(forest, forest)
*/
void forest_example() {
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort tree, forest;
Z3_func_decl nil1_decl, is_nil1_decl, cons1_decl, is_cons1_decl, car1_decl, cdr1_decl;
Z3_func_decl nil2_decl, is_nil2_decl, cons2_decl, is_cons2_decl, car2_decl, cdr2_decl;
Z3_ast nil1, nil2, t1, t2, t3, t4, f1, f2, f3, l1, l2, x, y, u, v;
Z3_symbol head_tail[2] = { Z3_mk_string_symbol(ctx, "car"), Z3_mk_string_symbol(ctx, "cdr") };
Z3_sort sorts[2] = { 0, 0 };
unsigned sort_refs[2] = { 0, 0 };
Z3_constructor nil1_con, cons1_con, nil2_con, cons2_con;
Z3_constructor constructors1[2], constructors2[2];
Z3_func_decl cons_accessors[2];
Z3_ast ors[2];
Z3_constructor_list clist1, clist2;
Z3_constructor_list clists[2];
Z3_symbol sort_names[2] = { Z3_mk_string_symbol(ctx, "forest"), Z3_mk_string_symbol(ctx, "tree") };
printf("\nforest_example\n");
LOG_MSG("forest_example");
/* build a forest */
nil1_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "nil1"), Z3_mk_string_symbol(ctx, "is_nil1"), 0, 0, 0, 0);
sort_refs[0] = 1; /* the car of a forest is a tree */
sort_refs[1] = 0;
cons1_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "cons1"), Z3_mk_string_symbol(ctx, "is_cons1"), 2, head_tail, sorts, sort_refs);
constructors1[0] = nil1_con;
constructors1[1] = cons1_con;
/* build a tree */
nil2_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "nil2"), Z3_mk_string_symbol(ctx, "is_nil2"),0, 0, 0, 0);
sort_refs[0] = 0; /* both branches of a tree are forests */
sort_refs[1] = 0;
cons2_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "cons2"), Z3_mk_string_symbol(ctx, "is_cons2"),2, head_tail, sorts, sort_refs);
constructors2[0] = nil2_con;
constructors2[1] = cons2_con;
clist1 = Z3_mk_constructor_list(ctx, 2, constructors1);
clist2 = Z3_mk_constructor_list(ctx, 2, constructors2);
clists[0] = clist1;
clists[1] = clist2;
Z3_mk_datatypes(ctx, 2, sort_names, sorts, clists);
forest = sorts[0];
tree = sorts[1];
Z3_query_constructor(ctx, nil1_con, 0, &nil1_decl, &is_nil1_decl, 0);
Z3_query_constructor(ctx, cons1_con, 2, &cons1_decl, &is_cons1_decl, cons_accessors);
car1_decl = cons_accessors[0];
cdr1_decl = cons_accessors[1];
Z3_query_constructor(ctx, nil2_con, 0, &nil2_decl, &is_nil2_decl, 0);
Z3_query_constructor(ctx, cons2_con, 2, &cons2_decl, &is_cons2_decl, cons_accessors);
car2_decl = cons_accessors[0];
cdr2_decl = cons_accessors[1];
(void)cdr2_decl;
(void)car2_decl;
(void)car1_decl;
(void)cdr1_decl;
Z3_del_constructor_list(ctx, clist1);
Z3_del_constructor_list(ctx, clist2);
Z3_del_constructor(ctx,nil1_con);
Z3_del_constructor(ctx,cons1_con);
Z3_del_constructor(ctx,nil2_con);
Z3_del_constructor(ctx,cons2_con);
nil1 = Z3_mk_app(ctx, nil1_decl, 0, 0);
nil2 = Z3_mk_app(ctx, nil2_decl, 0, 0);
f1 = mk_binary_app(ctx, cons1_decl, nil2, nil1);
t1 = mk_binary_app(ctx, cons2_decl, nil1, nil1);
t2 = mk_binary_app(ctx, cons2_decl, f1, nil1);
t3 = mk_binary_app(ctx, cons2_decl, f1, f1);
t4 = mk_binary_app(ctx, cons2_decl, nil1, f1);
f2 = mk_binary_app(ctx, cons1_decl, t1, nil1);
f3 = mk_binary_app(ctx, cons1_decl, t1, f1);
(void)f3;
(void)f2;
(void)t4;
(void)t2;
/* nil != cons(nil,nil) */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil1, f1)), true);
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil2, t1)), true);
/* cons(x,u) = cons(x, v) => u = v */
u = mk_var(ctx, "u", forest);
v = mk_var(ctx, "v", forest);
x = mk_var(ctx, "x", tree);
y = mk_var(ctx, "y", tree);
l1 = mk_binary_app(ctx, cons1_decl, x, u);
l2 = mk_binary_app(ctx, cons1_decl, y, v);
prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, u, v)), true);
prove(ctx, s, Z3_mk_implies(ctx, Z3_mk_eq(ctx,l1,l2), Z3_mk_eq(ctx, x, y)), true);
/* is_nil(u) or is_cons(u) */
ors[0] = Z3_mk_app(ctx, is_nil1_decl, 1, &u);
ors[1] = Z3_mk_app(ctx, is_cons1_decl, 1, &u);
prove(ctx, s, Z3_mk_or(ctx, 2, ors), true);
/* occurs check u != cons(x,u) */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, u, l1)), true);
/* delete logical context */
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Create a binary tree datatype of the form
BinTree ::= nil
| node(value : Int, left : BinTree, right : BinTree)
*/
void binary_tree_example() {
Z3_context ctx = mk_context();
Z3_solver s = mk_solver(ctx);
Z3_sort cell;
Z3_func_decl
nil_decl, /* nil : BinTree (constructor) */
is_nil_decl, /* is_nil : BinTree -> Bool (tester, return true if the given BinTree is a nil) */
node_decl, /* node : Int, BinTree, BinTree -> BinTree (constructor) */
is_node_decl, /* is_node : BinTree -> Bool (tester, return true if the given BinTree is a node) */
value_decl, /* value : BinTree -> Int (accessor for nodes) */
left_decl, /* left : BinTree -> BinTree (accessor for nodes, retrieves the left child of a node) */
right_decl; /* right : BinTree -> BinTree (accessor for nodes, retrieves the right child of a node) */
Z3_symbol node_accessor_names[3] = { Z3_mk_string_symbol(ctx, "value"), Z3_mk_string_symbol(ctx, "left"), Z3_mk_string_symbol(ctx, "right") };
Z3_sort node_accessor_sorts[3] = { Z3_mk_int_sort(ctx), 0, 0 };
unsigned node_accessor_sort_refs[3] = { 0, 0, 0 };
Z3_constructor nil_con, node_con;
Z3_constructor constructors[2];
Z3_func_decl node_accessors[3];
printf("\nbinary_tree_example\n");
LOG_MSG("binary_tree_example");
/* nil_con and node_con are auxiliary datastructures used to create the new recursive datatype BinTree */
nil_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "nil"), Z3_mk_string_symbol(ctx, "is-nil"), 0, 0, 0, 0);
node_con = Z3_mk_constructor(ctx, Z3_mk_string_symbol(ctx, "node"), Z3_mk_string_symbol(ctx, "is-cons"),
3, node_accessor_names, node_accessor_sorts, node_accessor_sort_refs);
constructors[0] = nil_con;
constructors[1] = node_con;
/* create the new recursive datatype */
cell = Z3_mk_datatype(ctx, Z3_mk_string_symbol(ctx, "BinTree"), 2, constructors);
(void)cell;
/* retrieve the new declarations: constructors (nil_decl, node_decl), testers (is_nil_decl, is_cons_del), and
accessors (value_decl, left_decl, right_decl */
Z3_query_constructor(ctx, nil_con, 0, &nil_decl, &is_nil_decl, 0);
Z3_query_constructor(ctx, node_con, 3, &node_decl, &is_node_decl, node_accessors);
value_decl = node_accessors[0];
left_decl = node_accessors[1];
right_decl = node_accessors[2];
/* delete auxiliary/helper structures */
Z3_del_constructor(ctx, nil_con);
Z3_del_constructor(ctx, node_con);
/* small example using the recursive datatype BinTree */
{
/* create nil */
Z3_ast nil = Z3_mk_app(ctx, nil_decl, 0, 0);
/* create node1 ::= node(10, nil, nil) */
Z3_ast args1[3] = { mk_int(ctx, 10), nil, nil };
Z3_ast node1 = Z3_mk_app(ctx, node_decl, 3, args1);
/* create node2 ::= node(30, node1, nil) */
Z3_ast args2[3] = { mk_int(ctx, 30), node1, nil };
Z3_ast node2 = Z3_mk_app(ctx, node_decl, 3, args2);
/* create node3 ::= node(20, node2, node1); */
Z3_ast args3[3] = { mk_int(ctx, 20), node2, node1 };
Z3_ast node3 = Z3_mk_app(ctx, node_decl, 3, args3);
/* prove that nil != node1 */
prove(ctx, s, Z3_mk_not(ctx, Z3_mk_eq(ctx, nil, node1)), true);
/* prove that nil = left(node1) */
prove(ctx, s, Z3_mk_eq(ctx, nil, mk_unary_app(ctx, left_decl, node1)), true);
/* prove that node1 = right(node3) */
prove(ctx, s, Z3_mk_eq(ctx, node1, mk_unary_app(ctx, right_decl, node3)), true);
/* prove that !is-nil(node2) */
prove(ctx, s, Z3_mk_not(ctx, mk_unary_app(ctx, is_nil_decl, node2)), true);
/* prove that value(node2) >= 0 */
prove(ctx, s, Z3_mk_ge(ctx, mk_unary_app(ctx, value_decl, node2), mk_int(ctx, 0)), true);
}
/* delete logical context */
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Prove a theorem and extract, and print the proof.
This example illustrates the use of #Z3_check_assumptions.
*/
void unsat_core_and_proof_example() {
Z3_context ctx = mk_proof_context();
Z3_solver s = mk_solver(ctx);
Z3_ast pa = mk_bool_var(ctx, "PredA");
Z3_ast pb = mk_bool_var(ctx, "PredB");
Z3_ast pc = mk_bool_var(ctx, "PredC");
Z3_ast pd = mk_bool_var(ctx, "PredD");
Z3_ast p1 = mk_bool_var(ctx, "P1");
Z3_ast p2 = mk_bool_var(ctx, "P2");
Z3_ast p3 = mk_bool_var(ctx, "P3");
Z3_ast p4 = mk_bool_var(ctx, "P4");
Z3_ast assumptions[4] = { Z3_mk_not(ctx, p1), Z3_mk_not(ctx, p2), Z3_mk_not(ctx, p3), Z3_mk_not(ctx, p4) };
Z3_ast args1[3] = { pa, pb, pc };
Z3_ast f1 = Z3_mk_and(ctx, 3, args1);
Z3_ast args2[3] = { pa, Z3_mk_not(ctx, pb), pc };
Z3_ast f2 = Z3_mk_and(ctx, 3, args2);
Z3_ast args3[2] = { Z3_mk_not(ctx, pa), Z3_mk_not(ctx, pc) };
Z3_ast f3 = Z3_mk_or(ctx, 2, args3);
Z3_ast f4 = pd;
Z3_ast g1[2] = { f1, p1 };
Z3_ast g2[2] = { f2, p2 };
Z3_ast g3[2] = { f3, p3 };
Z3_ast g4[2] = { f4, p4 };
Z3_lbool result;
Z3_ast proof;
Z3_model m = 0;
unsigned i;
Z3_ast_vector core;
printf("\nunsat_core_and_proof_example\n");
LOG_MSG("unsat_core_and_proof_example");
Z3_solver_assert(ctx, s, Z3_mk_or(ctx, 2, g1));
Z3_solver_assert(ctx, s, Z3_mk_or(ctx, 2, g2));
Z3_solver_assert(ctx, s, Z3_mk_or(ctx, 2, g3));
Z3_solver_assert(ctx, s, Z3_mk_or(ctx, 2, g4));
result = Z3_solver_check_assumptions(ctx, s, 4, assumptions);
switch (result) {
case Z3_L_FALSE:
core = Z3_solver_get_unsat_core(ctx, s);
proof = Z3_solver_get_proof(ctx, s);
printf("unsat\n");
printf("proof: %s\n", Z3_ast_to_string(ctx, proof));
printf("\ncore:\n");
for (i = 0; i < Z3_ast_vector_size(ctx, core); ++i) {
printf("%s\n", Z3_ast_to_string(ctx, Z3_ast_vector_get(ctx, core, i)));
}
printf("\n");
break;
case Z3_L_UNDEF:
printf("unknown\n");
printf("potential model:\n");
m = Z3_solver_get_model(ctx, s);
if (m) Z3_model_inc_ref(ctx, m);
display_model(ctx, stdout, m);
break;
case Z3_L_TRUE:
printf("sat\n");
m = Z3_solver_get_model(ctx, s);
if (m) Z3_model_inc_ref(ctx, m);
display_model(ctx, stdout, m);
break;
}
/* delete logical context */
if (m) Z3_model_dec_ref(ctx, m);
del_solver(ctx, s);
Z3_del_context(ctx);
}
#define MAX_RETRACTABLE_ASSERTIONS 1024
/**
\brief Very simple logical context wrapper with support for retractable constraints.
A retractable constraint can be "removed" without using push/pop.
*/
typedef struct {
Z3_context m_context;
Z3_solver m_solver;
// IMPORTANT: the fields m_answer_literals, m_retracted and m_num_answer_literals must be saved/restored
// if push/pop operations are performed on m_context.
Z3_ast m_answer_literals[MAX_RETRACTABLE_ASSERTIONS];
bool m_retracted[MAX_RETRACTABLE_ASSERTIONS]; // true if the assertion was retracted.
unsigned m_num_answer_literals;
} Z3_ext_context_struct;
typedef Z3_ext_context_struct * Z3_ext_context;
/**
\brief Create a logical context wrapper with support for retractable constraints.
*/
Z3_ext_context mk_ext_context() {
Z3_ext_context ctx = (Z3_ext_context) malloc(sizeof(Z3_ext_context_struct));
ctx->m_context = mk_context();
ctx->m_solver = mk_solver(ctx->m_context);
ctx->m_num_answer_literals = 0;
return ctx;
}
/**
\brief Delete the given logical context wrapper.
*/
void del_ext_context(Z3_ext_context ctx) {
del_solver(ctx->m_context, ctx->m_solver);
Z3_del_context(ctx->m_context);
free(ctx);
}
/**
\brief Create a retractable constraint.
\return An id that can be used to retract/reassert the constraint.
*/
unsigned assert_retractable_cnstr(Z3_ext_context ctx, Z3_ast c) {
unsigned result;
Z3_sort ty;
Z3_ast ans_lit;
Z3_ast args[2];
if (ctx->m_num_answer_literals == MAX_RETRACTABLE_ASSERTIONS) {
exitf("maximum number of retractable constraints was exceeded.");
}
ty = Z3_mk_bool_sort(ctx->m_context);
ans_lit = Z3_mk_fresh_const(ctx->m_context, "k", ty);
result = ctx->m_num_answer_literals;
ctx->m_answer_literals[result] = ans_lit;
ctx->m_retracted[result] = false;
ctx->m_num_answer_literals++;
// assert: c OR (not ans_lit)
args[0] = c;
args[1] = Z3_mk_not(ctx->m_context, ans_lit);
Z3_solver_assert(ctx->m_context, ctx->m_solver, Z3_mk_or(ctx->m_context, 2, args));
return result;
}
/**
\brief Retract an constraint asserted using #assert_retractable_cnstr.
*/
void retract_cnstr(Z3_ext_context ctx, unsigned id) {
if (id >= ctx->m_num_answer_literals) {
exitf("invalid constraint id.");
}
ctx->m_retracted[id] = true;
}
/**
\brief Reassert a constraint retracted using #retract_cnstr.
*/
void reassert_cnstr(Z3_ext_context ctx, unsigned id) {
if (id >= ctx->m_num_answer_literals) {
exitf("invalid constraint id.");
}
ctx->m_retracted[id] = false;
}
/**
\brief Check whether the logical context wrapper with support for retractable assertions is feasible or not.
*/
Z3_lbool ext_check(Z3_ext_context ctx) {
Z3_lbool result;
unsigned num_assumptions = 0;
Z3_ast assumptions[MAX_RETRACTABLE_ASSERTIONS];
Z3_ast_vector core;
unsigned core_size;
unsigned i;
for (i = 0; i < ctx->m_num_answer_literals; i++) {
if (ctx->m_retracted[i] == false) {
// Since the answer literal was not retracted, we added it as an assumption.
// Recall that we assert (C \/ (not ans_lit)). Therefore, adding ans_lit as an assumption has the effect of "asserting" C.
// If the constraint was "retracted" (ctx->m_retracted[i] == Z3_true), then we don't really need to add (not ans_lit) as an assumption.
assumptions[num_assumptions] = ctx->m_answer_literals[i];
num_assumptions ++;
}
}
result = Z3_solver_check_assumptions(ctx->m_context, ctx->m_solver, num_assumptions, assumptions);
if (result == Z3_L_FALSE) {
// Display the UNSAT core
printf("unsat core: ");
core = Z3_solver_get_unsat_core(ctx->m_context, ctx->m_solver);
core_size = Z3_ast_vector_size(ctx->m_context, core);
for (i = 0; i < core_size; i++) {
// In this example, we display the core based on the assertion ids.
unsigned j;
for (j = 0; j < ctx->m_num_answer_literals; j++) {
if (Z3_ast_vector_get(ctx->m_context, core, i) == ctx->m_answer_literals[j]) {
printf("%d ", j);
break;
}
}
if (j == ctx->m_num_answer_literals) {
exitf("bug in Z3, the core contains something that is not an assumption.");
}
}
printf("\n");
}
return result;
}
/**
\brief Simple example using the functions: #mk_ext_context, #assert_retractable_cnstr, #retract_cnstr, #reassert_cnstr and #del_ext_context.
*/
void incremental_example1() {
Z3_ext_context ext_ctx = mk_ext_context();
Z3_context ctx = ext_ctx->m_context;
Z3_ast x, y, z, two, one;
unsigned c1, c2, c3, c4;
Z3_lbool result;
printf("\nincremental_example1\n");
LOG_MSG("incremental_example1");
x = mk_int_var(ctx, "x");
y = mk_int_var(ctx, "y");
z = mk_int_var(ctx, "z");
two = mk_int(ctx, 2);
one = mk_int(ctx, 1);
/* assert x < y */
c1 = assert_retractable_cnstr(ext_ctx, Z3_mk_lt(ctx, x, y));
/* assert x = z */
c2 = assert_retractable_cnstr(ext_ctx, Z3_mk_eq(ctx, x, z));
/* assert x > 2 */
c3 = assert_retractable_cnstr(ext_ctx, Z3_mk_gt(ctx, x, two));
/* assert y < 1 */
c4 = assert_retractable_cnstr(ext_ctx, Z3_mk_lt(ctx, y, one));
(void)c1;
result = ext_check(ext_ctx);
if (result != Z3_L_FALSE)
exitf("bug in Z3");
printf("unsat\n");
retract_cnstr(ext_ctx, c4);
result = ext_check(ext_ctx);
if (result != Z3_L_TRUE)
exitf("bug in Z3");
printf("sat\n");
reassert_cnstr(ext_ctx, c4);
result = ext_check(ext_ctx);
if (result != Z3_L_FALSE)
exitf("bug in Z3");
printf("unsat\n");
retract_cnstr(ext_ctx, c2);
result = ext_check(ext_ctx);
if (result != Z3_L_FALSE)
exitf("bug in Z3");
printf("unsat\n");
retract_cnstr(ext_ctx, c3);
result = ext_check(ext_ctx);
if (result != Z3_L_TRUE)
exitf("bug in Z3");
printf("sat\n");
del_ext_context(ext_ctx);
}
/**
\brief Simple example showing how to use reference counters in Z3
to manage memory efficiently.
*/
void reference_counter_example() {
Z3_config cfg;
Z3_context ctx;
Z3_solver s;
Z3_sort ty;
Z3_ast x, y, x_xor_y;
Z3_symbol sx, sy;
printf("\nreference_counter_example\n");
LOG_MSG("reference_counter_example");
cfg = Z3_mk_config();
Z3_set_param_value(cfg, "model", "true");
// Create a Z3 context where the user is responsible for managing
// Z3_ast reference counters.
ctx = Z3_mk_context_rc(cfg);
Z3_del_config(cfg);
s = mk_solver(ctx);
Z3_solver_inc_ref(ctx, s);
ty = Z3_mk_bool_sort(ctx);
Z3_inc_ref(ctx, Z3_sort_to_ast(ctx, ty)); // Z3_sort_to_ast(ty) is just syntax sugar for ((Z3_ast) ty)
sx = Z3_mk_string_symbol(ctx, "x");
// Z3_symbol is not a Z3_ast. No reference counting is needed.
x = Z3_mk_const(ctx, sx, ty);
Z3_inc_ref(ctx, x);
sy = Z3_mk_string_symbol(ctx, "y");
y = Z3_mk_const(ctx, sy, ty);
Z3_inc_ref(ctx, y);
// ty is not needed anymore.
Z3_dec_ref(ctx, Z3_sort_to_ast(ctx, ty));
x_xor_y = Z3_mk_xor(ctx, x, y);
Z3_inc_ref(ctx, x_xor_y);
// x and y are not needed anymore.
Z3_dec_ref(ctx, x);
Z3_dec_ref(ctx, y);
Z3_solver_assert(ctx, s, x_xor_y);
// x_or_y is not needed anymore.
Z3_dec_ref(ctx, x_xor_y);
printf("model for: x xor y\n");
check(ctx, s, Z3_L_TRUE);
// Test push & pop
Z3_solver_push(ctx, s);
Z3_solver_pop(ctx, s, 1);
Z3_solver_dec_ref(ctx, s);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Demonstrates how to use SMT2 parser.
*/
void smt2parser_example() {
Z3_context ctx;
Z3_ast_vector fs;
printf("\nsmt2parser_example\n");
LOG_MSG("smt2parser_example");
ctx = mk_context();
fs = Z3_parse_smtlib2_string(ctx, "(declare-fun a () (_ BitVec 8)) (assert (bvuge a #x10)) (assert (bvule a #xf0))", 0, 0, 0, 0, 0, 0);
Z3_ast_vector_inc_ref(ctx, fs);
printf("formulas: %s\n", Z3_ast_vector_to_string(ctx, fs));
Z3_ast_vector_dec_ref(ctx, fs);
Z3_del_context(ctx);
}
/**
\brief Demonstrates how to use the function \c Z3_substitute to replace subexpressions in a Z3 AST.
*/
void substitute_example() {
Z3_context ctx;
Z3_sort int_ty;
Z3_ast a, b;
Z3_func_decl f;
Z3_func_decl g;
Z3_ast fab, ga, ffabga, r;
printf("\nsubstitute_example\n");
LOG_MSG("substitute_example");
ctx = mk_context();
int_ty = Z3_mk_int_sort(ctx);
a = mk_int_var(ctx,"a");
b = mk_int_var(ctx,"b");
{
Z3_sort f_domain[2] = { int_ty, int_ty };
f = Z3_mk_func_decl(ctx, Z3_mk_string_symbol(ctx, "f"), 2, f_domain, int_ty);
}
g = Z3_mk_func_decl(ctx, Z3_mk_string_symbol(ctx, "g"), 1, &int_ty, int_ty);
{
Z3_ast args[2] = { a, b };
fab = Z3_mk_app(ctx, f, 2, args);
}
ga = Z3_mk_app(ctx, g, 1, &a);
{
Z3_ast args[2] = { fab, ga };
ffabga = Z3_mk_app(ctx, f, 2, args);
}
// Replace b -> 0, g(a) -> 1 in f(f(a, b), g(a))
{
Z3_ast zero = Z3_mk_numeral(ctx, "0", int_ty);
Z3_ast one = Z3_mk_numeral(ctx, "1", int_ty);
Z3_ast from[2] = { b, ga };
Z3_ast to[2] = { zero, one };
r = Z3_substitute(ctx, ffabga, 2, from, to);
}
// Display r
printf("substitution result: %s\n", Z3_ast_to_string(ctx, r));
Z3_del_context(ctx);
}
/**
\brief Demonstrates how to use the function \c Z3_substitute_vars to replace (free) variables with expressions in a Z3 AST.
*/
void substitute_vars_example() {
Z3_context ctx;
Z3_sort int_ty;
Z3_ast x0, x1;
Z3_ast a, b, gb;
Z3_func_decl f;
Z3_func_decl g;
Z3_ast f01, ff010, r;
printf("\nsubstitute_vars_example\n");
LOG_MSG("substitute_vars_example");
ctx = mk_context();
int_ty = Z3_mk_int_sort(ctx);
x0 = Z3_mk_bound(ctx, 0, int_ty);
x1 = Z3_mk_bound(ctx, 1, int_ty);
{
Z3_sort f_domain[2] = { int_ty, int_ty };
f = Z3_mk_func_decl(ctx, Z3_mk_string_symbol(ctx, "f"), 2, f_domain, int_ty);
}
g = Z3_mk_func_decl(ctx, Z3_mk_string_symbol(ctx, "g"), 1, &int_ty, int_ty);
{
Z3_ast args[2] = { x0, x1 };
f01 = Z3_mk_app(ctx, f, 2, args);
}
{
Z3_ast args[2] = { f01, x0 };
ff010 = Z3_mk_app(ctx, f, 2, args);
}
a = mk_int_var(ctx, "a");
b = mk_int_var(ctx, "b");
gb = Z3_mk_app(ctx, g, 1, &b);
// Replace x0 -> a, x1 -> g(b) in f(f(x0,x1),x0)
{
Z3_ast to[2] = { a, gb };
r = Z3_substitute_vars(ctx, ff010, 2, to);
}
// Display r
printf("substitution result: %s\n", Z3_ast_to_string(ctx, r));
Z3_del_context(ctx);
}
/**
\brief Demonstrates some basic features of the FloatingPoint theory.
*/
void fpa_example() {
Z3_config cfg;
Z3_context ctx;
Z3_solver s;
Z3_sort double_sort, rm_sort;
Z3_symbol s_rm, s_x, s_y, s_x_plus_y;
Z3_ast rm, x, y, n, x_plus_y, c1, c2, c3, c4, c5;
Z3_ast args[2], args2[2], and_args[3], args3[3];
printf("\nFPA-example\n");
LOG_MSG("FPA-example");
cfg = Z3_mk_config();
ctx = Z3_mk_context(cfg);
s = mk_solver(ctx);
Z3_del_config(cfg);
double_sort = Z3_mk_fpa_sort(ctx, 11, 53);
rm_sort = Z3_mk_fpa_rounding_mode_sort(ctx);
// Show that there are x, y s.t. (x + y) = 42.0 (with rounding mode).
s_rm = Z3_mk_string_symbol(ctx, "rm");
rm = Z3_mk_const(ctx, s_rm, rm_sort);
s_x = Z3_mk_string_symbol(ctx, "x");
s_y = Z3_mk_string_symbol(ctx, "y");
x = Z3_mk_const(ctx, s_x, double_sort);
y = Z3_mk_const(ctx, s_y, double_sort);
n = Z3_mk_fpa_numeral_double(ctx, 42.0, double_sort);
s_x_plus_y = Z3_mk_string_symbol(ctx, "x_plus_y");
x_plus_y = Z3_mk_const(ctx, s_x_plus_y, double_sort);
c1 = Z3_mk_eq(ctx, x_plus_y, Z3_mk_fpa_add(ctx, rm, x, y));
args[0] = c1;
args[1] = Z3_mk_eq(ctx, x_plus_y, n);
c2 = Z3_mk_and(ctx, 2, (Z3_ast*)&args);
args2[0] = c2;
args2[1] = Z3_mk_not(ctx, Z3_mk_eq(ctx, rm, Z3_mk_fpa_rtz(ctx)));
c3 = Z3_mk_and(ctx, 2, (Z3_ast*)&args2);
and_args[0] = Z3_mk_not(ctx, Z3_mk_fpa_is_zero(ctx, y));
and_args[1] = Z3_mk_not(ctx, Z3_mk_fpa_is_nan(ctx, y));
and_args[2] = Z3_mk_not(ctx, Z3_mk_fpa_is_infinite(ctx, y));
args3[0] = c3;
args3[1] = Z3_mk_and(ctx, 3, and_args);
c4 = Z3_mk_and(ctx, 2, (Z3_ast*)&args3);
printf("c4: %s\n", Z3_ast_to_string(ctx, c4));
Z3_solver_push(ctx, s);
Z3_solver_assert(ctx, s, c4);
check(ctx, s, Z3_L_TRUE);
Z3_solver_pop(ctx, s, 1);
// Show that the following are equal:
// (fp #b0 #b10000000001 #xc000000000000)
// ((_ to_fp 11 53) #x401c000000000000))
// ((_ to_fp 11 53) RTZ 1.75 2)))
// ((_ to_fp 11 53) RTZ 7.0)))
Z3_solver_push(ctx, s);
c1 = Z3_mk_fpa_fp(ctx,
Z3_mk_numeral(ctx, "0", Z3_mk_bv_sort(ctx, 1)),
Z3_mk_numeral(ctx, "1025", Z3_mk_bv_sort(ctx, 11)),
Z3_mk_numeral(ctx, "3377699720527872", Z3_mk_bv_sort(ctx, 52)));
c2 = Z3_mk_fpa_to_fp_bv(ctx,
Z3_mk_numeral(ctx, "4619567317775286272", Z3_mk_bv_sort(ctx, 64)),
Z3_mk_fpa_sort(ctx, 11, 53));
c3 = Z3_mk_fpa_to_fp_int_real(ctx,
Z3_mk_fpa_rtz(ctx),
Z3_mk_numeral(ctx, "2", Z3_mk_int_sort(ctx)), /* exponent */
Z3_mk_numeral(ctx, "1.75", Z3_mk_real_sort(ctx)), /* significand */
Z3_mk_fpa_sort(ctx, 11, 53));
c4 = Z3_mk_fpa_to_fp_real(ctx,
Z3_mk_fpa_rtz(ctx),
Z3_mk_numeral(ctx, "7.0", Z3_mk_real_sort(ctx)),
Z3_mk_fpa_sort(ctx, 11, 53));
args3[0] = Z3_mk_eq(ctx, c1, c2);
args3[1] = Z3_mk_eq(ctx, c1, c3);
args3[2] = Z3_mk_eq(ctx, c1, c4);
c5 = Z3_mk_and(ctx, 3, args3);
printf("c5: %s\n", Z3_ast_to_string(ctx, c5));
Z3_solver_assert(ctx, s, c5);
check(ctx, s, Z3_L_TRUE);
Z3_solver_pop(ctx, s, 1);
del_solver(ctx, s);
Z3_del_context(ctx);
}
/**
\brief Demonstrates some basic features of model construction
*/
void mk_model_example() {
Z3_context ctx;
Z3_model m;
Z3_sort intSort;
Z3_symbol aSymbol, bSymbol, cSymbol;
Z3_func_decl aFuncDecl, bFuncDecl, cFuncDecl;
Z3_ast aApp, bApp, cApp;
Z3_sort int2intArraySort;
Z3_ast zeroNumeral, oneNumeral, twoNumeral, threeNumeral, fourNumeral;
Z3_sort arrayDomain[1];
Z3_func_decl cAsFuncDecl;
Z3_func_interp cAsFuncInterp;
Z3_ast_vector zeroArgs;
Z3_ast_vector oneArgs;
Z3_ast cFuncDeclAsArray;
Z3_string modelAsString;
printf("\nmk_model_example\n");
ctx = mk_context();
// Construct empty model
m = Z3_mk_model(ctx);
Z3_model_inc_ref(ctx, m);
// Create constants "a" and "b"
intSort = Z3_mk_int_sort(ctx);
aSymbol = Z3_mk_string_symbol(ctx, "a");
aFuncDecl = Z3_mk_func_decl(ctx, aSymbol,
/*domain_size=*/0,
/*domain=*/NULL,
/*range=*/intSort);
aApp = Z3_mk_app(ctx, aFuncDecl,
/*num_args=*/0,
/*args=*/NULL);
bSymbol = Z3_mk_string_symbol(ctx, "b");
bFuncDecl = Z3_mk_func_decl(ctx, bSymbol,
/*domain_size=*/0,
/*domain=*/NULL,
/*range=*/intSort);
bApp = Z3_mk_app(ctx, bFuncDecl,
/*num_args=*/0,
/*args=*/NULL);
// Create array "c" that maps int to int.
cSymbol = Z3_mk_string_symbol(ctx, "c");
int2intArraySort = Z3_mk_array_sort(ctx,
/*domain=*/intSort,
/*range=*/intSort);
cFuncDecl = Z3_mk_func_decl(ctx, cSymbol,
/*domain_size=*/0,
/*domain=*/NULL,
/*range=*/int2intArraySort);
cApp = Z3_mk_app(ctx, cFuncDecl,
/*num_args=*/0,
/*args=*/NULL);
// Create numerals to be used in model
zeroNumeral = Z3_mk_int(ctx, 0, intSort);
oneNumeral = Z3_mk_int(ctx, 1, intSort);
twoNumeral = Z3_mk_int(ctx, 2, intSort);
threeNumeral = Z3_mk_int(ctx, 3, intSort);
fourNumeral = Z3_mk_int(ctx, 4, intSort);
// Add assignments to model
// a == 1
Z3_add_const_interp(ctx, m, aFuncDecl, oneNumeral);
// b == 2
Z3_add_const_interp(ctx, m, bFuncDecl, twoNumeral);
// Create a fresh function that represents
// reading from array.
arrayDomain[0] = intSort;
cAsFuncDecl = Z3_mk_fresh_func_decl(ctx,
/*prefix=*/"",
/*domain_size*/ 1,
/*domain=*/arrayDomain,
/*sort=*/intSort);
// Create function interpretation with default
// value of "0".
cAsFuncInterp =
Z3_add_func_interp(ctx, m, cAsFuncDecl,
/*default_value=*/zeroNumeral);
Z3_func_interp_inc_ref(ctx, cAsFuncInterp);
// Add [0] = 3
zeroArgs = Z3_mk_ast_vector(ctx);
Z3_ast_vector_inc_ref(ctx, zeroArgs);
Z3_ast_vector_push(ctx, zeroArgs, zeroNumeral);
Z3_func_interp_add_entry(ctx, cAsFuncInterp, zeroArgs, threeNumeral);
// Add [1] = 4
oneArgs = Z3_mk_ast_vector(ctx);
Z3_ast_vector_inc_ref(ctx, oneArgs);
Z3_ast_vector_push(ctx, oneArgs, oneNumeral);
Z3_func_interp_add_entry(ctx, cAsFuncInterp, oneArgs, fourNumeral);
// Now use the `(_ as_array)` to associate
// the `cAsFuncInterp` with the `cFuncDecl`
// in the model
cFuncDeclAsArray = Z3_mk_as_array(ctx, cAsFuncDecl);
Z3_add_const_interp(ctx, m, cFuncDecl, cFuncDeclAsArray);
// Print the model
modelAsString = Z3_model_to_string(ctx, m);
printf("Model:\n%s\n", modelAsString);
// Check the interpretations we expect to be present
// are.
{
Z3_func_decl expectedInterpretations[3] = {aFuncDecl, bFuncDecl, cFuncDecl};
int index;
for (index = 0;
index < sizeof(expectedInterpretations) / sizeof(Z3_func_decl);
++index) {
Z3_func_decl d = expectedInterpretations[index];
if (Z3_model_has_interp(ctx, m, d)) {
printf("Found interpretation for \"%s\"\n",
Z3_ast_to_string(ctx, Z3_func_decl_to_ast(ctx, d)));
} else {
printf("Missing interpretation");
exit(1);
}
}
}
{
// Evaluate a + b under model
Z3_ast addArgs[] = {aApp, bApp};
Z3_ast aPlusB = Z3_mk_add(ctx,
/*num_args=*/2,
/*args=*/addArgs);
Z3_ast aPlusBEval = NULL;
bool aPlusBEvalSuccess =
Z3_model_eval(ctx, m, aPlusB,
/*model_completion=*/false, &aPlusBEval);
if (aPlusBEvalSuccess != true) {
printf("Failed to evaluate model\n");
exit(1);
}
{
int aPlusBValue = 0;
bool getAPlusBValueSuccess =
Z3_get_numeral_int(ctx, aPlusBEval, &aPlusBValue);
if (getAPlusBValueSuccess != true) {
printf("Failed to get integer value for a+b\n");
exit(1);
}
printf("Evaluated a + b = %d\n", aPlusBValue);
if (aPlusBValue != 3) {
printf("a+b did not evaluate to expected value\n");
exit(1);
}
}
}
{
// Evaluate c[0] + c[1] + c[2] under model
Z3_ast c0 = Z3_mk_select(ctx, cApp, zeroNumeral);
Z3_ast c1 = Z3_mk_select(ctx, cApp, oneNumeral);
Z3_ast c2 = Z3_mk_select(ctx, cApp, twoNumeral);
Z3_ast arrayAddArgs[] = {c0, c1, c2};
Z3_ast arrayAdd = Z3_mk_add(ctx,
/*num_args=*/3,
/*args=*/arrayAddArgs);
Z3_ast arrayAddEval = NULL;
bool arrayAddEvalSuccess =
Z3_model_eval(ctx, m, arrayAdd,
/*model_completion=*/false, &arrayAddEval);
if (arrayAddEvalSuccess != true) {
printf("Failed to evaluate model\n");
exit(1);
}
{
int arrayAddValue = 0;
bool getArrayAddValueSuccess =
Z3_get_numeral_int(ctx, arrayAddEval, &arrayAddValue);
if (getArrayAddValueSuccess != true) {
printf("Failed to get integer value for c[0] + c[1] + c[2]\n");
exit(1);
}
printf("Evaluated c[0] + c[1] + c[2] = %d\n", arrayAddValue);
if (arrayAddValue != 7) {
printf("c[0] + c[1] + c[2] did not evaluate to expected value\n");
exit(1);
}
}
}
Z3_ast_vector_dec_ref(ctx, oneArgs);
Z3_ast_vector_dec_ref(ctx, zeroArgs);
Z3_func_interp_dec_ref(ctx, cAsFuncInterp);
Z3_model_dec_ref(ctx, m);
Z3_del_context(ctx);
}
/*@}*/
/*@}*/
int main() {
#ifdef LOG_Z3_CALLS
Z3_open_log("z3.log");
#endif
display_version();
simple_example();
demorgan();
find_model_example1();
find_model_example2();
prove_example1();
prove_example2();
push_pop_example1();
quantifier_example1();
array_example1();
array_example2();
array_example3();
tuple_example1();
bitvector_example1();
bitvector_example2();
eval_example1();
two_contexts_example1();
error_code_example1();
error_code_example2();
parser_example2();
parser_example3();
parser_example5();
numeral_example();
ite_example();
list_example();
tree_example();
forest_example();
binary_tree_example();
enum_example();
unsat_core_and_proof_example();
incremental_example1();
reference_counter_example();
smt2parser_example();
substitute_example();
substitute_vars_example();
fpa_example();
mk_model_example();
return 0;
}