z3/examples/msf/SolverFoundation.Plugin.Z3/Z3TermSolver.cs

389 lines
16 KiB
C#
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 2015 Microsoft Corporation
--*/
using System;
using System.Threading;
using System.Globalization;
using System.Collections.Generic;
using Microsoft.SolverFoundation.Common;
using Microsoft.SolverFoundation.Properties;
using Microsoft.SolverFoundation.Solvers;
using Microsoft.SolverFoundation.Services;
using Microsoft.Z3;
using System.Linq;
using System.Diagnostics;
using System.IO;
namespace Microsoft.SolverFoundation.Plugin.Z3
{
/// <summary>
/// The class is implementation of the MSF constraint solver
/// using the Microsoft Z3 solver as the backend.
/// This solver supports Int, Real constraints and their arbitrary boolean combinations.
/// </summary>
public class Z3TermSolver : TermModel, ITermSolver, INonlinearSolution, IReportProvider
{
private NonlinearResult _result;
private Z3BaseSolver _solver;
/// <summary>Constructor that initializes the base classes</summary>
public Z3TermSolver() : base(null)
{
_solver = new Z3BaseSolver(this);
}
/// <summary>Constructor that initializes the base classes</summary>
public Z3TermSolver(ISolverEnvironment context) : this() { }
/// <summary>
/// Shutdown can be called when when the solver is not active, i.e.
/// when it is done with Solve() or it has gracefully returns from Solve()
/// after an abort.
/// </summary>
public void Shutdown() { _solver.DestructSolver(true); }
private BoolExpr MkBool(int rid)
{
var context = _solver.Context;
if (IsConstant(rid))
{
Rational lower, upper;
GetBounds(rid, out lower, out upper);
Debug.Assert(lower == upper);
if (lower.IsZero) return context.MkFalse();
return context.MkTrue();
}
if (IsOperation(rid))
{
BoolExpr[] children;
ArithExpr[] operands;
TermModelOperation op = GetOperation(rid);
switch(op) {
case TermModelOperation.And:
Debug.Assert(GetOperandCount(rid) >= 2, "Conjunction requires at least two operands.");
children = (GetOperands(rid)).Select(x => MkBool(x)).ToArray();
return context.MkAnd(children);
case TermModelOperation.Or:
Debug.Assert(GetOperandCount(rid) >= 2, "Disjunction requires at least two operands.");
children = (GetOperands(rid)).Select(x => MkBool(x)).ToArray();
return context.MkOr(children);
case TermModelOperation.Not:
Debug.Assert(GetOperandCount(rid) == 1, "Negation is unary.");
return context.MkNot(MkBool(GetOperand(rid, 0)));
case TermModelOperation.If:
Debug.Assert(GetOperandCount(rid) == 3, "If is ternary.");
BoolExpr b = MkBool(GetOperand(rid, 0));
Expr x1 = MkBool(GetOperand(rid, 1));
Expr x2 = MkBool(GetOperand(rid, 2));
return (BoolExpr)context.MkITE(b, x1, x2);
case TermModelOperation.Unequal:
Debug.Assert(GetOperandCount(rid) >= 2, "Distinct should have at least two operands.");
return context.MkDistinct((GetOperands(rid)).Select(x => MkTerm(x)).ToArray());
case TermModelOperation.Greater:
case TermModelOperation.Less:
case TermModelOperation.GreaterEqual:
case TermModelOperation.LessEqual:
case TermModelOperation.Equal:
Debug.Assert(GetOperandCount(rid) >= 2, "Comparison should have at least two operands.");
operands = (GetOperands(rid)).Select(x => MkTerm(x)).ToArray();
return ReduceComparison(GetOperation(rid), operands);
case TermModelOperation.Identity:
Debug.Assert(GetOperandCount(rid) == 1, "Identity takes exactly one operand.");
return MkBool(GetOperand(rid, 0));
default:
return context.MkEq(MkTerm(rid), _solver.GetNumeral(Rational.One));
}
}
return context.MkEq(MkTerm(rid), _solver.GetNumeral(Rational.One));
}
private ArithExpr MkBoolToArith(BoolExpr e)
{
var context = _solver.Context;
return (ArithExpr)context.MkITE(e, _solver.GetNumeral(Rational.One), _solver.GetNumeral(Rational.Zero));
}
private ArithExpr MkTerm(int rid)
{
var context = _solver.Context;
if (IsConstant(rid))
{
Rational lower, upper;
GetBounds(rid, out lower, out upper);
Debug.Assert(lower == upper);
return _solver.GetNumeral(lower);
}
else if (IsOperation(rid))
{
ArithExpr[] operands;
TermModelOperation op = GetOperation(rid);
switch(op)
{
case TermModelOperation.And:
case TermModelOperation.Or:
case TermModelOperation.Not:
case TermModelOperation.Unequal:
case TermModelOperation.Greater:
case TermModelOperation.Less:
case TermModelOperation.GreaterEqual:
case TermModelOperation.LessEqual:
case TermModelOperation.Equal:
return MkBoolToArith(MkBool(rid));
case TermModelOperation.If:
Debug.Assert(GetOperandCount(rid) == 3, "If is ternary.");
BoolExpr b = MkBool(GetOperand(rid, 0));
Expr x1 = MkTerm(GetOperand(rid, 1));
Expr x2 = MkTerm(GetOperand(rid, 2));
return (ArithExpr)context.MkITE(b, x1, x2);
case TermModelOperation.Plus:
Debug.Assert(GetOperandCount(rid) >= 2, "Plus takes at least two operands.");
operands = (GetOperands(rid)).Select(x => MkTerm(x)).ToArray();
return context.MkAdd(operands);
case TermModelOperation.Minus:
Debug.Assert(GetOperandCount(rid) == 1, "Minus takes exactly one operand.");
return context.MkUnaryMinus(MkTerm(GetOperand(rid, 0)));
case TermModelOperation.Times:
Debug.Assert(GetOperandCount(rid) >= 2, "Times requires at least two operands.");
operands = (GetOperands(rid)).Select(x => MkTerm(x)).ToArray();
return context.MkMul(operands);
case TermModelOperation.Identity:
Debug.Assert(GetOperandCount(rid) == 1, "Identity takes exactly one operand.");
return MkTerm(GetOperand(rid, 0));
case TermModelOperation.Abs:
Debug.Assert(GetOperandCount(rid) == 1, "Abs takes exactly one operand.");
ArithExpr e = MkTerm(GetOperand(rid, 0));
ArithExpr minusE = context.MkUnaryMinus(e);
ArithExpr zero = _solver.GetNumeral(Rational.Zero);
return (ArithExpr)context.MkITE(context.MkGe(e, zero), e, minusE);
default:
Console.Error.WriteLine("{0} operation isn't supported.", op);
throw new NotSupportedException();
}
}
else
{
return _solver.GetVariable(rid);
}
}
private BoolExpr ReduceComparison(TermModelOperation type, ArithExpr[] operands)
{
var context = _solver.Context;
Debug.Assert(operands.Length >= 2);
Func<ArithExpr, ArithExpr, BoolExpr> mkComparison;
switch (type)
{
case TermModelOperation.Greater:
mkComparison = (x, y) => context.MkGt(x, y);
break;
case TermModelOperation.Less:
mkComparison = (x, y) => context.MkLt(x, y);
break;
case TermModelOperation.GreaterEqual:
mkComparison = (x, y) => context.MkGe(x, y);
break;
case TermModelOperation.LessEqual:
mkComparison = (x, y) => context.MkLe(x, y);
break;
case TermModelOperation.Equal:
mkComparison = (x, y) => context.MkEq(x, y);
break;
default:
throw new NotSupportedException();
}
BoolExpr current = mkComparison(operands[0], operands[1]);
for (int i = 1; i < operands.Length - 1; ++i)
current = context.MkAnd(current, mkComparison(operands[i], operands[i + 1]));
return current;
}
private bool IsBoolRow(int rid)
{
Rational lower, upper;
GetBounds(rid, out lower, out upper);
return lower == upper && lower.IsOne && IsBoolTerm(rid);
}
private bool IsBoolTerm(int rid)
{
if (IsConstant(rid))
{
Rational lower, upper;
GetBounds(rid, out lower, out upper);
Debug.Assert(lower == upper);
return lower.IsOne || lower.IsZero;
}
if (IsOperation(rid))
{
TermModelOperation op = GetOperation(rid);
switch (op)
{
case TermModelOperation.And:
case TermModelOperation.Or:
case TermModelOperation.Not:
case TermModelOperation.LessEqual:
case TermModelOperation.Less:
case TermModelOperation.Greater:
case TermModelOperation.GreaterEqual:
case TermModelOperation.Unequal:
case TermModelOperation.Equal:
return true;
case TermModelOperation.If:
return IsBoolTerm(GetOperand(rid, 1)) &&
IsBoolTerm(GetOperand(rid, 2));
case TermModelOperation.Identity:
return IsBoolTerm(GetOperand(rid, 0));
default:
return false;
}
}
return false;
}
/// <summary>
/// Adds a MSF row to the Z3 assertions.
/// </summary>
/// <param name="rid">The MSF row id</param>
private void AddRow(int rid)
{
if (IsConstant(rid))
return;
if (IsBoolRow(rid))
{
_solver.AssertBool(MkBool(rid));
return;
}
// Start with the 0 term
ArithExpr row = MkTerm(rid);
_solver.AssertArith(rid, row);
}
private TermModelOperation[] _supportedOperations =
{ TermModelOperation.And,
TermModelOperation.Or,
TermModelOperation.Not,
TermModelOperation.Unequal,
TermModelOperation.Greater,
TermModelOperation.Less,
TermModelOperation.GreaterEqual,
TermModelOperation.LessEqual,
TermModelOperation.Equal,
TermModelOperation.If,
TermModelOperation.Plus,
TermModelOperation.Minus,
TermModelOperation.Times,
TermModelOperation.Identity,
TermModelOperation.Abs };
/// <summary>
/// Gets the operations supported by the solver.
/// </summary>
/// <returns>All the TermModelOperations supported by the solver.</returns>
public IEnumerable<TermModelOperation> SupportedOperations
{
get { return _supportedOperations; }
}
/// <summary>
/// Set results based on internal solver status
/// </summary>
private void SetResult(Z3Result status)
{
switch (status)
{
case Z3Result.Optimal:
_result = NonlinearResult.Optimal;
break;
case Z3Result.LocalOptimal:
_result = NonlinearResult.LocalOptimal;
break;
case Z3Result.Feasible:
_result = NonlinearResult.Feasible;
break;
case Z3Result.Infeasible:
_result = NonlinearResult.Infeasible;
break;
case Z3Result.Interrupted:
_result = NonlinearResult.Interrupted;
break;
default:
Debug.Assert(false, "Unrecognized Z3 Result");
break;
}
}
/// <summary>
/// Starts solving the problem using the Z3 solver.
/// </summary>
/// <param name="parameters">Parameters to the solver</param>
/// <returns>The solution to the problem</returns>
public INonlinearSolution Solve(ISolverParameters parameters)
{
// Get the Z3 parameters
var z3Params = parameters as Z3BaseParams;
Debug.Assert(z3Params != null, "Parameters should be an instance of Z3BaseParams.");
_solver.Solve(z3Params, Goals, AddRow, MkTerm, SetResult);
return this;
}
double INonlinearSolution.GetValue(int vid)
{
Debug.Assert(_solver.Variables.ContainsKey(vid), "This index should correspond to a variable.");
return GetValue(vid).ToDouble();
}
public int SolvedGoalCount
{
get { return GoalCount; }
}
public double GetSolutionValue(int goalIndex)
{
var goal = Goals.ElementAt(goalIndex);
Debug.Assert(goal != null, "Goal should be an element of the goal list.");
return GetValue(goal.Index).ToDouble();
}
public void GetSolvedGoal(int goalIndex, out object key, out int vid, out bool minimize, out bool optimal)
{
var goal = Goals.ElementAt(goalIndex);
Debug.Assert(goal != null, "Goal should be an element of the goal list.");
key = goal.Key;
vid = goal.Index;
minimize = goal.Minimize;
optimal = _result == NonlinearResult.Optimal;
}
public NonlinearResult Result
{
get { return _result; }
}
public Report GetReport(SolverContext context, Solution solution, SolutionMapping solutionMapping)
{
PluginSolutionMapping pluginSolutionMapping = solutionMapping as PluginSolutionMapping;
if (pluginSolutionMapping == null && solutionMapping != null)
throw new ArgumentException("solutionMapping is not a LinearSolutionMapping", "solutionMapping");
return new Z3TermSolverReport(context, this, solution, pluginSolutionMapping);
}
}
public class Z3TermSolverReport : Report
{
public Z3TermSolverReport(SolverContext context, ISolver solver, Solution solution, PluginSolutionMapping pluginSolutionMapping)
: base(context, solver, solution, pluginSolutionMapping)
{
}
}
}