Update convert_hf_cpm.py

This commit is contained in:
p18457032 2024-08-09 10:20:09 +08:00
parent 3dfa6cac94
commit 37edc92094
1 changed files with 30 additions and 10 deletions

View File

@ -17,20 +17,34 @@ from collections import OrderedDict
import torch
import argparse
import os
parser = argparse.ArgumentParser(description='Load and save model weights with specified paths.')
parser.add_argument('--model_path', type=str, required=True, help='Path to the model directory.')
parser.add_argument('--output_path', type=str, required=True, help='Path to save the new weights.')
parser.add_argument('--layer_num', type=int, required=True, help='The layers of model')
parser.add_argument('--model_type',type=str,default='fm9g',help='The model type need to be one of "fm9g" or "9g-8b"')
parser.add_argument('--task',type=str,default='pt2bin',help='The task need to be one of "pt2bin" or "bin2pt"')
# parser.add_argument('--layer_num', type=int, required=True, help='The layers of model')
args = parser.parse_args()
src_path = args.model_path
dst_path = args.output_path
layer_num = args.layer_num
dst_path = args.output_path if args.output_path.endswith('/') else args.output_path + ('/')
model_type = args.model_type
task = args.task
assert model_type in ['fm9g'], 'The "model_type" must be one of "fm9g"!'
assert task in ['pt2bin','bin2pt'], 'The task need to be one of "pt2bin" or "bin2pt"!'
if model_type == 'fm9g':
layer_num = 40
if not os.path.exists(dst_path):
os.makedirs(dst_path)
def convert_hf_to_fm9g():
# 2B模型转换bin2pt
ckpt = torch.load(src_path)
new_ckpt = OrderedDict()
@ -48,14 +62,16 @@ def convert_hf_to_fm9g():
new_ckpt[f"encoder.layers.{i}.ffn.ffn.w_in.w_1.weight"] = ckpt[f'model.layers.{i}.mlp.up_proj.weight']
new_ckpt[f"encoder.layers.{i}.ffn.ffn.w_out.weight"] = ckpt[f'model.layers.{i}.mlp.down_proj.weight']
torch.save(new_ckpt, dst_path)
torch.save(new_ckpt, f"{dst_path}fm9g.pt")
def convert_fm9g_to_hf():
#2B模型转换pt2bin
state = torch.load(src_path)
new_state = {}
new_state["model.embed_tokens.weight"] = state["input_embedding.weight"]
new_state["model.norm.weight"] = state["encoder.output_layernorm.weight"]
for lid in range(40):
for lid in range(layer_num):
print(lid)
new_state[f"model.layers.{lid}.self_attn.q_proj.weight"] = state[f"encoder.layers.{lid}.self_att.self_attention.project_q.weight"]
new_state[f"model.layers.{lid}.self_attn.k_proj.weight"] = state[f"encoder.layers.{lid}.self_att.self_attention.project_k.weight"]
@ -70,9 +86,13 @@ def convert_fm9g_to_hf():
new_state[f"model.layers.{lid}.post_attention_layernorm.weight"] = state[f"encoder.layers.{lid}.ffn.layernorm_before_ffn.weight"]
del state
state = None
torch.save(new_state, f"{dst_path}pytorch_model.bin")
torch.save(new_state, f"{dst_path}fm9g.bin")
if __name__ == "__main__":
convert_hf_to_fm9g()
if model_type == 'fm9g' and task == 'bin2pt':
convert_hf_to_fm9g()
elif model_type == 'fm9g' and task == 'pt2bin':
convert_fm9g_to_hf()
else:
raise ValueError('Please check the model type and task!')