linux/drivers/net/ethernet/qlogic/qed/qed_int.c

1481 lines
38 KiB
C
Raw Normal View History

/* QLogic qed NIC Driver
* Copyright (c) 2015 QLogic Corporation
*
* This software is available under the terms of the GNU General Public License
* (GPL) Version 2, available from the file COPYING in the main directory of
* this source tree.
*/
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "qed.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_int.h"
#include "qed_mcp.h"
#include "qed_reg_addr.h"
#include "qed_sp.h"
struct qed_pi_info {
qed_int_comp_cb_t comp_cb;
void *cookie;
};
struct qed_sb_sp_info {
struct qed_sb_info sb_info;
/* per protocol index data */
struct qed_pi_info pi_info_arr[PIS_PER_SB];
};
#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
struct aeu_invert_reg_bit {
char bit_name[30];
#define ATTENTION_PARITY (1 << 0)
#define ATTENTION_LENGTH_MASK (0x00000ff0)
#define ATTENTION_LENGTH_SHIFT (4)
#define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
ATTENTION_LENGTH_SHIFT)
#define ATTENTION_SINGLE (1 << ATTENTION_LENGTH_SHIFT)
#define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
#define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
ATTENTION_PARITY)
/* Multiple bits start with this offset */
#define ATTENTION_OFFSET_MASK (0x000ff000)
#define ATTENTION_OFFSET_SHIFT (12)
unsigned int flags;
};
struct aeu_invert_reg {
struct aeu_invert_reg_bit bits[32];
};
#define MAX_ATTN_GRPS (8)
#define NUM_ATTN_REGS (9)
/* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
{
{ /* After Invert 1 */
{"GPIO0 function%d",
(32 << ATTENTION_LENGTH_SHIFT)},
}
},
{
{ /* After Invert 2 */
{"PGLUE config_space", ATTENTION_SINGLE},
{"PGLUE misc_flr", ATTENTION_SINGLE},
{"PGLUE B RBC", ATTENTION_PAR_INT},
{"PGLUE misc_mctp", ATTENTION_SINGLE},
{"Flash event", ATTENTION_SINGLE},
{"SMB event", ATTENTION_SINGLE},
{"Main Power", ATTENTION_SINGLE},
{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
(1 << ATTENTION_OFFSET_SHIFT)},
{"PCIE glue/PXP VPD %d",
(16 << ATTENTION_LENGTH_SHIFT)},
}
},
{
{ /* After Invert 3 */
{"General Attention %d",
(32 << ATTENTION_LENGTH_SHIFT)},
}
},
{
{ /* After Invert 4 */
{"General Attention 32", ATTENTION_SINGLE},
{"General Attention %d",
(2 << ATTENTION_LENGTH_SHIFT) |
(33 << ATTENTION_OFFSET_SHIFT)},
{"General Attention 35", ATTENTION_SINGLE},
{"CNIG port %d", (4 << ATTENTION_LENGTH_SHIFT)},
{"MCP CPU", ATTENTION_SINGLE},
{"MCP Watchdog timer", ATTENTION_SINGLE},
{"MCP M2P", ATTENTION_SINGLE},
{"AVS stop status ready", ATTENTION_SINGLE},
{"MSTAT", ATTENTION_PAR_INT},
{"MSTAT per-path", ATTENTION_PAR_INT},
{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT)},
{"NIG", ATTENTION_PAR_INT},
{"BMB/OPTE/MCP", ATTENTION_PAR_INT},
{"BTB", ATTENTION_PAR_INT},
{"BRB", ATTENTION_PAR_INT},
{"PRS", ATTENTION_PAR_INT},
}
},
{
{ /* After Invert 5 */
{"SRC", ATTENTION_PAR_INT},
{"PB Client1", ATTENTION_PAR_INT},
{"PB Client2", ATTENTION_PAR_INT},
{"RPB", ATTENTION_PAR_INT},
{"PBF", ATTENTION_PAR_INT},
{"QM", ATTENTION_PAR_INT},
{"TM", ATTENTION_PAR_INT},
{"MCM", ATTENTION_PAR_INT},
{"MSDM", ATTENTION_PAR_INT},
{"MSEM", ATTENTION_PAR_INT},
{"PCM", ATTENTION_PAR_INT},
{"PSDM", ATTENTION_PAR_INT},
{"PSEM", ATTENTION_PAR_INT},
{"TCM", ATTENTION_PAR_INT},
{"TSDM", ATTENTION_PAR_INT},
{"TSEM", ATTENTION_PAR_INT},
}
},
{
{ /* After Invert 6 */
{"UCM", ATTENTION_PAR_INT},
{"USDM", ATTENTION_PAR_INT},
{"USEM", ATTENTION_PAR_INT},
{"XCM", ATTENTION_PAR_INT},
{"XSDM", ATTENTION_PAR_INT},
{"XSEM", ATTENTION_PAR_INT},
{"YCM", ATTENTION_PAR_INT},
{"YSDM", ATTENTION_PAR_INT},
{"YSEM", ATTENTION_PAR_INT},
{"XYLD", ATTENTION_PAR_INT},
{"TMLD", ATTENTION_PAR_INT},
{"MYLD", ATTENTION_PAR_INT},
{"YULD", ATTENTION_PAR_INT},
{"DORQ", ATTENTION_PAR_INT},
{"DBG", ATTENTION_PAR_INT},
{"IPC", ATTENTION_PAR_INT},
}
},
{
{ /* After Invert 7 */
{"CCFC", ATTENTION_PAR_INT},
{"CDU", ATTENTION_PAR_INT},
{"DMAE", ATTENTION_PAR_INT},
{"IGU", ATTENTION_PAR_INT},
{"ATC", ATTENTION_PAR_INT},
{"CAU", ATTENTION_PAR_INT},
{"PTU", ATTENTION_PAR_INT},
{"PRM", ATTENTION_PAR_INT},
{"TCFC", ATTENTION_PAR_INT},
{"RDIF", ATTENTION_PAR_INT},
{"TDIF", ATTENTION_PAR_INT},
{"RSS", ATTENTION_PAR_INT},
{"MISC", ATTENTION_PAR_INT},
{"MISCS", ATTENTION_PAR_INT},
{"PCIE", ATTENTION_PAR},
{"Vaux PCI core", ATTENTION_SINGLE},
{"PSWRQ", ATTENTION_PAR_INT},
}
},
{
{ /* After Invert 8 */
{"PSWRQ (pci_clk)", ATTENTION_PAR_INT},
{"PSWWR", ATTENTION_PAR_INT},
{"PSWWR (pci_clk)", ATTENTION_PAR_INT},
{"PSWRD", ATTENTION_PAR_INT},
{"PSWRD (pci_clk)", ATTENTION_PAR_INT},
{"PSWHST", ATTENTION_PAR_INT},
{"PSWHST (pci_clk)", ATTENTION_PAR_INT},
{"GRC", ATTENTION_PAR_INT},
{"CPMU", ATTENTION_PAR_INT},
{"NCSI", ATTENTION_PAR_INT},
{"MSEM PRAM", ATTENTION_PAR},
{"PSEM PRAM", ATTENTION_PAR},
{"TSEM PRAM", ATTENTION_PAR},
{"USEM PRAM", ATTENTION_PAR},
{"XSEM PRAM", ATTENTION_PAR},
{"YSEM PRAM", ATTENTION_PAR},
{"pxp_misc_mps", ATTENTION_PAR},
{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE},
{"PERST_B assertion", ATTENTION_SINGLE},
{"PERST_B deassertion", ATTENTION_SINGLE},
{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT)},
}
},
{
{ /* After Invert 9 */
{"MCP Latched memory", ATTENTION_PAR},
{"MCP Latched scratchpad cache", ATTENTION_SINGLE},
{"MCP Latched ump_tx", ATTENTION_PAR},
{"MCP Latched scratchpad", ATTENTION_PAR},
{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT)},
}
},
};
#define ATTN_STATE_BITS (0xfff)
#define ATTN_BITS_MASKABLE (0x3ff)
struct qed_sb_attn_info {
/* Virtual & Physical address of the SB */
struct atten_status_block *sb_attn;
dma_addr_t sb_phys;
/* Last seen running index */
u16 index;
/* A mask of the AEU bits resulting in a parity error */
u32 parity_mask[NUM_ATTN_REGS];
/* A pointer to the attention description structure */
struct aeu_invert_reg *p_aeu_desc;
/* Previously asserted attentions, which are still unasserted */
u16 known_attn;
/* Cleanup address for the link's general hw attention */
u32 mfw_attn_addr;
};
static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
struct qed_sb_attn_info *p_sb_desc)
{
u16 rc = 0;
u16 index;
/* Make certain HW write took affect */
mmiowb();
index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
if (p_sb_desc->index != index) {
p_sb_desc->index = index;
rc = QED_SB_ATT_IDX;
}
/* Make certain we got a consistent view with HW */
mmiowb();
return rc;
}
/**
* @brief qed_int_assertion - handles asserted attention bits
*
* @param p_hwfn
* @param asserted_bits newly asserted bits
* @return int
*/
static int qed_int_assertion(struct qed_hwfn *p_hwfn,
u16 asserted_bits)
{
struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
u32 igu_mask;
/* Mask the source of the attention in the IGU */
igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
IGU_REG_ATTENTION_ENABLE);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"inner known ATTN state: 0x%04x --> 0x%04x\n",
sb_attn_sw->known_attn,
sb_attn_sw->known_attn | asserted_bits);
sb_attn_sw->known_attn |= asserted_bits;
/* Handle MCP events */
if (asserted_bits & 0x100) {
qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
/* Clean the MCP attention */
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
sb_attn_sw->mfw_attn_addr, 0);
}
DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
GTT_BAR0_MAP_REG_IGU_CMD +
((IGU_CMD_ATTN_BIT_SET_UPPER -
IGU_CMD_INT_ACK_BASE) << 3),
(u32)asserted_bits);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
asserted_bits);
return 0;
}
/**
* @brief qed_int_deassertion_aeu_bit - handles the effects of a single
* cause of the attention
*
* @param p_hwfn
* @param p_aeu - descriptor of an AEU bit which caused the attention
* @param aeu_en_reg - register offset of the AEU enable reg. which configured
* this bit to this group.
* @param bit_index - index of this bit in the aeu_en_reg
*
* @return int
*/
static int
qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
struct aeu_invert_reg_bit *p_aeu,
u32 aeu_en_reg,
u32 bitmask)
{
int rc = -EINVAL;
u32 val, mask = ~bitmask;
DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
p_aeu->bit_name, bitmask);
/* Prevent this Attention from being asserted in the future */
val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
p_aeu->bit_name);
return rc;
}
/**
* @brief - handles deassertion of previously asserted attentions.
*
* @param p_hwfn
* @param deasserted_bits - newly deasserted bits
* @return int
*
*/
static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
u16 deasserted_bits)
{
struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask;
u8 i, j, k, bit_idx;
int rc = 0;
/* Read the attention registers in the AEU */
for (i = 0; i < NUM_ATTN_REGS; i++) {
aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
MISC_REG_AEU_AFTER_INVERT_1_IGU +
i * 0x4);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"Deasserted bits [%d]: %08x\n",
i, aeu_inv_arr[i]);
}
/* Find parity attentions first */
for (i = 0; i < NUM_ATTN_REGS; i++) {
struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
u32 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
i * sizeof(u32));
u32 parities;
/* Skip register in which no parity bit is currently set */
parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
if (!parities)
continue;
for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
if ((p_bit->flags & ATTENTION_PARITY) &&
!!(parities & (1 << bit_idx))) {
DP_INFO(p_hwfn,
"%s[%d] parity attention is set\n",
p_bit->bit_name, bit_idx);
}
bit_idx += ATTENTION_LENGTH(p_bit->flags);
}
}
/* Find non-parity cause for attention and act */
for (k = 0; k < MAX_ATTN_GRPS; k++) {
struct aeu_invert_reg_bit *p_aeu;
/* Handle only groups whose attention is currently deasserted */
if (!(deasserted_bits & (1 << k)))
continue;
for (i = 0; i < NUM_ATTN_REGS; i++) {
u32 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
i * sizeof(u32) +
k * sizeof(u32) * NUM_ATTN_REGS;
u32 en, bits;
en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
bits = aeu_inv_arr[i] & en;
/* Skip if no bit from this group is currently set */
if (!bits)
continue;
/* Find all set bits from current register which belong
* to current group, making them responsible for the
* previous assertion.
*/
for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
u8 bit, bit_len;
u32 bitmask;
p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
/* No need to handle parity-only bits */
if (p_aeu->flags == ATTENTION_PAR)
continue;
bit = bit_idx;
bit_len = ATTENTION_LENGTH(p_aeu->flags);
if (p_aeu->flags & ATTENTION_PAR_INT) {
/* Skip Parity */
bit++;
bit_len--;
}
bitmask = bits & (((1 << bit_len) - 1) << bit);
if (bitmask) {
/* Handle source of the attention */
qed_int_deassertion_aeu_bit(p_hwfn,
p_aeu,
aeu_en,
bitmask);
}
bit_idx += ATTENTION_LENGTH(p_aeu->flags);
}
}
}
/* Clear IGU indication for the deasserted bits */
DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
GTT_BAR0_MAP_REG_IGU_CMD +
((IGU_CMD_ATTN_BIT_CLR_UPPER -
IGU_CMD_INT_ACK_BASE) << 3),
~((u32)deasserted_bits));
/* Unmask deasserted attentions in IGU */
aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
IGU_REG_ATTENTION_ENABLE);
aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
/* Clear deassertion from inner state */
sb_attn_sw->known_attn &= ~deasserted_bits;
return rc;
}
static int qed_int_attentions(struct qed_hwfn *p_hwfn)
{
struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
u32 attn_bits = 0, attn_acks = 0;
u16 asserted_bits, deasserted_bits;
__le16 index;
int rc = 0;
/* Read current attention bits/acks - safeguard against attentions
* by guaranting work on a synchronized timeframe
*/
do {
index = p_sb_attn->sb_index;
attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
} while (index != p_sb_attn->sb_index);
p_sb_attn->sb_index = index;
/* Attention / Deassertion are meaningful (and in correct state)
* only when they differ and consistent with known state - deassertion
* when previous attention & current ack, and assertion when current
* attention with no previous attention
*/
asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
~p_sb_attn_sw->known_attn;
deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
p_sb_attn_sw->known_attn;
if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
DP_INFO(p_hwfn,
"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
index, attn_bits, attn_acks, asserted_bits,
deasserted_bits, p_sb_attn_sw->known_attn);
} else if (asserted_bits == 0x100) {
DP_INFO(p_hwfn,
"MFW indication via attention\n");
} else {
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"MFW indication [deassertion]\n");
}
if (asserted_bits) {
rc = qed_int_assertion(p_hwfn, asserted_bits);
if (rc)
return rc;
}
if (deasserted_bits) {
rc = qed_int_deassertion(p_hwfn, deasserted_bits);
if (rc)
return rc;
}
return rc;
}
static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
void __iomem *igu_addr,
u32 ack_cons)
{
struct igu_prod_cons_update igu_ack = { 0 };
igu_ack.sb_id_and_flags =
((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
(1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
(IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
(IGU_SEG_ACCESS_ATTN <<
IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
/* Both segments (interrupts & acks) are written to same place address;
* Need to guarantee all commands will be received (in-order) by HW.
*/
mmiowb();
barrier();
}
void qed_int_sp_dpc(unsigned long hwfn_cookie)
{
struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
struct qed_pi_info *pi_info = NULL;
struct qed_sb_attn_info *sb_attn;
struct qed_sb_info *sb_info;
int arr_size;
u16 rc = 0;
if (!p_hwfn->p_sp_sb) {
DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
return;
}
sb_info = &p_hwfn->p_sp_sb->sb_info;
arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
if (!sb_info) {
DP_ERR(p_hwfn->cdev,
"Status block is NULL - cannot ack interrupts\n");
return;
}
if (!p_hwfn->p_sb_attn) {
DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
return;
}
sb_attn = p_hwfn->p_sb_attn;
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
p_hwfn, p_hwfn->my_id);
/* Disable ack for def status block. Required both for msix +
* inta in non-mask mode, in inta does no harm.
*/
qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
/* Gather Interrupts/Attentions information */
if (!sb_info->sb_virt) {
DP_ERR(
p_hwfn->cdev,
"Interrupt Status block is NULL - cannot check for new interrupts!\n");
} else {
u32 tmp_index = sb_info->sb_ack;
rc = qed_sb_update_sb_idx(sb_info);
DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
"Interrupt indices: 0x%08x --> 0x%08x\n",
tmp_index, sb_info->sb_ack);
}
if (!sb_attn || !sb_attn->sb_attn) {
DP_ERR(
p_hwfn->cdev,
"Attentions Status block is NULL - cannot check for new attentions!\n");
} else {
u16 tmp_index = sb_attn->index;
rc |= qed_attn_update_idx(p_hwfn, sb_attn);
DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
"Attention indices: 0x%08x --> 0x%08x\n",
tmp_index, sb_attn->index);
}
/* Check if we expect interrupts at this time. if not just ack them */
if (!(rc & QED_SB_EVENT_MASK)) {
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
return;
}
/* Check the validity of the DPC ptt. If not ack interrupts and fail */
if (!p_hwfn->p_dpc_ptt) {
DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
return;
}
if (rc & QED_SB_ATT_IDX)
qed_int_attentions(p_hwfn);
if (rc & QED_SB_IDX) {
int pi;
/* Look for a free index */
for (pi = 0; pi < arr_size; pi++) {
pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
if (pi_info->comp_cb)
pi_info->comp_cb(p_hwfn, pi_info->cookie);
}
}
if (sb_attn && (rc & QED_SB_ATT_IDX))
/* This should be done before the interrupts are enabled,
* since otherwise a new attention will be generated.
*/
qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
}
static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
{
struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
if (!p_sb)
return;
if (p_sb->sb_attn)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
SB_ATTN_ALIGNED_SIZE(p_hwfn),
p_sb->sb_attn,
p_sb->sb_phys);
kfree(p_sb);
}
static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
sb_info->index = 0;
sb_info->known_attn = 0;
/* Configure Attention Status Block in IGU */
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
}
static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
void *sb_virt_addr,
dma_addr_t sb_phy_addr)
{
struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
int i, j, k;
sb_info->sb_attn = sb_virt_addr;
sb_info->sb_phys = sb_phy_addr;
/* Set the pointer to the AEU descriptors */
sb_info->p_aeu_desc = aeu_descs;
/* Calculate Parity Masks */
memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
for (i = 0; i < NUM_ATTN_REGS; i++) {
/* j is array index, k is bit index */
for (j = 0, k = 0; k < 32; j++) {
unsigned int flags = aeu_descs[i].bits[j].flags;
if (flags & ATTENTION_PARITY)
sb_info->parity_mask[i] |= 1 << k;
k += ATTENTION_LENGTH(flags);
}
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"Attn Mask [Reg %d]: 0x%08x\n",
i, sb_info->parity_mask[i]);
}
/* Set the address of cleanup for the mcp attention */
sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
MISC_REG_AEU_GENERAL_ATTN_0;
qed_int_sb_attn_setup(p_hwfn, p_ptt);
}
static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_dev *cdev = p_hwfn->cdev;
struct qed_sb_attn_info *p_sb;
void *p_virt;
dma_addr_t p_phys = 0;
/* SB struct */
p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
if (!p_sb) {
DP_NOTICE(cdev, "Failed to allocate `struct qed_sb_attn_info'\n");
return -ENOMEM;
}
/* SB ring */
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
SB_ATTN_ALIGNED_SIZE(p_hwfn),
&p_phys, GFP_KERNEL);
if (!p_virt) {
DP_NOTICE(cdev, "Failed to allocate status block (attentions)\n");
kfree(p_sb);
return -ENOMEM;
}
/* Attention setup */
p_hwfn->p_sb_attn = p_sb;
qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
return 0;
}
/* coalescing timeout = timeset << (timer_res + 1) */
#define QED_CAU_DEF_RX_USECS 24
#define QED_CAU_DEF_TX_USECS 48
void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
struct cau_sb_entry *p_sb_entry,
u8 pf_id,
u16 vf_number,
u8 vf_valid)
{
struct qed_dev *cdev = p_hwfn->cdev;
u32 cau_state;
memset(p_sb_entry, 0, sizeof(*p_sb_entry));
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
/* setting the time resultion to a fixed value ( = 1) */
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0,
QED_CAU_DEF_RX_TIMER_RES);
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1,
QED_CAU_DEF_TX_TIMER_RES);
cau_state = CAU_HC_DISABLE_STATE;
if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
cau_state = CAU_HC_ENABLE_STATE;
if (!cdev->rx_coalesce_usecs)
cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
if (!cdev->tx_coalesce_usecs)
cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
}
SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
}
void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
dma_addr_t sb_phys,
u16 igu_sb_id,
u16 vf_number,
u8 vf_valid)
{
struct cau_sb_entry sb_entry;
qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
vf_number, vf_valid);
if (p_hwfn->hw_init_done) {
/* Wide-bus, initialize via DMAE */
u64 phys_addr = (u64)sb_phys;
qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
CAU_REG_SB_ADDR_MEMORY +
igu_sb_id * sizeof(u64), 2, 0);
qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
CAU_REG_SB_VAR_MEMORY +
igu_sb_id * sizeof(u64), 2, 0);
} else {
/* Initialize Status Block Address */
STORE_RT_REG_AGG(p_hwfn,
CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
igu_sb_id * 2,
sb_phys);
STORE_RT_REG_AGG(p_hwfn,
CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
igu_sb_id * 2,
sb_entry);
}
/* Configure pi coalescing if set */
if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
u8 timeset = p_hwfn->cdev->rx_coalesce_usecs >>
(QED_CAU_DEF_RX_TIMER_RES + 1);
u8 num_tc = 1, i;
qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
QED_COAL_RX_STATE_MACHINE,
timeset);
timeset = p_hwfn->cdev->tx_coalesce_usecs >>
(QED_CAU_DEF_TX_TIMER_RES + 1);
for (i = 0; i < num_tc; i++) {
qed_int_cau_conf_pi(p_hwfn, p_ptt,
igu_sb_id, TX_PI(i),
QED_COAL_TX_STATE_MACHINE,
timeset);
}
}
}
void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 igu_sb_id,
u32 pi_index,
enum qed_coalescing_fsm coalescing_fsm,
u8 timeset)
{
struct cau_pi_entry pi_entry;
u32 sb_offset;
u32 pi_offset;
sb_offset = igu_sb_id * PIS_PER_SB;
memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
else
SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
pi_offset = sb_offset + pi_index;
if (p_hwfn->hw_init_done) {
qed_wr(p_hwfn, p_ptt,
CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
*((u32 *)&(pi_entry)));
} else {
STORE_RT_REG(p_hwfn,
CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
*((u32 *)&(pi_entry)));
}
}
void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_sb_info *sb_info)
{
/* zero status block and ack counter */
sb_info->sb_ack = 0;
memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
sb_info->igu_sb_id, 0, 0);
}
/**
* @brief qed_get_igu_sb_id - given a sw sb_id return the
* igu_sb_id
*
* @param p_hwfn
* @param sb_id
*
* @return u16
*/
static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn,
u16 sb_id)
{
u16 igu_sb_id;
/* Assuming continuous set of IGU SBs dedicated for given PF */
if (sb_id == QED_SP_SB_ID)
igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
else
igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "SB [%s] index is 0x%04x\n",
(sb_id == QED_SP_SB_ID) ? "DSB" : "non-DSB", igu_sb_id);
return igu_sb_id;
}
int qed_int_sb_init(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_sb_info *sb_info,
void *sb_virt_addr,
dma_addr_t sb_phy_addr,
u16 sb_id)
{
sb_info->sb_virt = sb_virt_addr;
sb_info->sb_phys = sb_phy_addr;
sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
if (sb_id != QED_SP_SB_ID) {
p_hwfn->sbs_info[sb_id] = sb_info;
p_hwfn->num_sbs++;
}
sb_info->cdev = p_hwfn->cdev;
/* The igu address will hold the absolute address that needs to be
* written to for a specific status block
*/
sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
GTT_BAR0_MAP_REG_IGU_CMD +
(sb_info->igu_sb_id << 3);
sb_info->flags |= QED_SB_INFO_INIT;
qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
return 0;
}
int qed_int_sb_release(struct qed_hwfn *p_hwfn,
struct qed_sb_info *sb_info,
u16 sb_id)
{
if (sb_id == QED_SP_SB_ID) {
DP_ERR(p_hwfn, "Do Not free sp sb using this function");
return -EINVAL;
}
/* zero status block and ack counter */
sb_info->sb_ack = 0;
memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
if (p_hwfn->sbs_info[sb_id] != NULL) {
p_hwfn->sbs_info[sb_id] = NULL;
p_hwfn->num_sbs--;
}
return 0;
}
static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
{
struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
if (!p_sb)
return;
if (p_sb->sb_info.sb_virt)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
SB_ALIGNED_SIZE(p_hwfn),
p_sb->sb_info.sb_virt,
p_sb->sb_info.sb_phys);
kfree(p_sb);
}
static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_sb_sp_info *p_sb;
dma_addr_t p_phys = 0;
void *p_virt;
/* SB struct */
p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
if (!p_sb) {
DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sb_info'\n");
return -ENOMEM;
}
/* SB ring */
p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
SB_ALIGNED_SIZE(p_hwfn),
&p_phys, GFP_KERNEL);
if (!p_virt) {
DP_NOTICE(p_hwfn, "Failed to allocate status block\n");
kfree(p_sb);
return -ENOMEM;
}
/* Status Block setup */
p_hwfn->p_sp_sb = p_sb;
qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
p_phys, QED_SP_SB_ID);
memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
return 0;
}
int qed_int_register_cb(struct qed_hwfn *p_hwfn,
qed_int_comp_cb_t comp_cb,
void *cookie,
u8 *sb_idx,
__le16 **p_fw_cons)
{
struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
int rc = -ENOMEM;
u8 pi;
/* Look for a free index */
for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
if (p_sp_sb->pi_info_arr[pi].comp_cb)
continue;
p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
p_sp_sb->pi_info_arr[pi].cookie = cookie;
*sb_idx = pi;
*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
rc = 0;
break;
}
return rc;
}
int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
{
struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
return -ENOMEM;
p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
p_sp_sb->pi_info_arr[pi].cookie = NULL;
return 0;
}
u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
{
return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
}
void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
enum qed_int_mode int_mode)
{
u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
p_hwfn->cdev->int_mode = int_mode;
switch (p_hwfn->cdev->int_mode) {
case QED_INT_MODE_INTA:
igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
break;
case QED_INT_MODE_MSI:
igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
break;
case QED_INT_MODE_MSIX:
igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
break;
case QED_INT_MODE_POLL:
break;
}
qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
}
int qed_int_igu_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
enum qed_int_mode int_mode)
{
int rc;
/* Configure AEU signal change to produce attentions */
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
/* Flush the writes to IGU */
mmiowb();
/* Unmask AEU signals toward IGU */
qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
rc = qed_slowpath_irq_req(p_hwfn);
if (rc != 0) {
DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
return -EINVAL;
}
p_hwfn->b_int_requested = true;
}
/* Enable interrupt Generation */
qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
p_hwfn->b_int_enabled = 1;
return rc;
}
void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
p_hwfn->b_int_enabled = 0;
qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
}
#define IGU_CLEANUP_SLEEP_LENGTH (1000)
void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 sb_id,
bool cleanup_set,
u16 opaque_fid
)
{
u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
u32 data = 0;
u32 cmd_ctrl = 0;
u32 val = 0;
u32 sb_bit = 0;
u32 sb_bit_addr = 0;
/* Set the data field */
SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
/* Set the control register */
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
barrier();
qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
/* Flush the write to IGU */
mmiowb();
/* calculate where to read the status bit from */
sb_bit = 1 << (sb_id % 32);
sb_bit_addr = sb_id / 32 * sizeof(u32);
sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
/* Now wait for the command to complete */
do {
val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
break;
usleep_range(5000, 10000);
} while (--sleep_cnt);
if (!sleep_cnt)
DP_NOTICE(p_hwfn,
"Timeout waiting for clear status 0x%08x [for sb %d]\n",
val, sb_id);
}
void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 sb_id,
u16 opaque,
bool b_set)
{
int pi;
/* Set */
if (b_set)
qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
/* Clear */
qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
/* Clear the CAU for the SB */
for (pi = 0; pi < 12; pi++)
qed_wr(p_hwfn, p_ptt,
CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
}
void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
bool b_set,
bool b_slowpath)
{
u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
u32 sb_id = 0;
u32 val = 0;
val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"IGU cleaning SBs [%d,...,%d]\n",
igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
p_hwfn->hw_info.opaque_fid,
b_set);
if (b_slowpath) {
sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"IGU cleaning slowpath SB [%d]\n", sb_id);
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
p_hwfn->hw_info.opaque_fid,
b_set);
}
}
static u32 qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 sb_id)
{
u32 val = qed_rd(p_hwfn, p_ptt,
IGU_REG_MAPPING_MEMORY +
sizeof(u32) * sb_id);
struct qed_igu_block *p_block;
p_block = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
/* stop scanning when hit first invalid PF entry */
if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
goto out;
/* Fill the block information */
p_block->status = QED_IGU_STATUS_VALID;
p_block->function_id = GET_FIELD(val,
IGU_MAPPING_LINE_FUNCTION_NUMBER);
p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
p_block->vector_number = GET_FIELD(val,
IGU_MAPPING_LINE_VECTOR_NUMBER);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"IGU_BLOCK: [SB 0x%04x, Value in CAM 0x%08x] func_id = %d is_pf = %d vector_num = 0x%x\n",
sb_id, val, p_block->function_id,
p_block->is_pf, p_block->vector_number);
out:
return val;
}
int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_igu_info *p_igu_info;
struct qed_igu_block *blk;
u32 val;
u16 sb_id;
u16 prev_sb_id = 0xFF;
p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
if (!p_hwfn->hw_info.p_igu_info)
return -ENOMEM;
p_igu_info = p_hwfn->hw_info.p_igu_info;
/* Initialize base sb / sb cnt for PFs */
p_igu_info->igu_base_sb = 0xffff;
p_igu_info->igu_sb_cnt = 0;
p_igu_info->igu_dsb_id = 0xffff;
p_igu_info->igu_base_sb_iov = 0xffff;
for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
sb_id++) {
blk = &p_igu_info->igu_map.igu_blocks[sb_id];
val = qed_int_igu_read_cam_block(p_hwfn, p_ptt, sb_id);
/* stop scanning when hit first invalid PF entry */
if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
break;
if (blk->is_pf) {
if (blk->function_id == p_hwfn->rel_pf_id) {
blk->status |= QED_IGU_STATUS_PF;
if (blk->vector_number == 0) {
if (p_igu_info->igu_dsb_id == 0xffff)
p_igu_info->igu_dsb_id = sb_id;
} else {
if (p_igu_info->igu_base_sb ==
0xffff) {
p_igu_info->igu_base_sb = sb_id;
} else if (prev_sb_id != sb_id - 1) {
DP_NOTICE(p_hwfn->cdev,
"consecutive igu vectors for HWFN %x broken",
p_hwfn->rel_pf_id);
break;
}
prev_sb_id = sb_id;
/* we don't count the default */
(p_igu_info->igu_sb_cnt)++;
}
}
}
}
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"IGU igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
p_igu_info->igu_base_sb,
p_igu_info->igu_sb_cnt,
p_igu_info->igu_dsb_id);
if (p_igu_info->igu_base_sb == 0xffff ||
p_igu_info->igu_dsb_id == 0xffff ||
p_igu_info->igu_sb_cnt == 0) {
DP_NOTICE(p_hwfn,
"IGU CAM returned invalid values igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
p_igu_info->igu_base_sb,
p_igu_info->igu_sb_cnt,
p_igu_info->igu_dsb_id);
return -EINVAL;
}
return 0;
}
/**
* @brief Initialize igu runtime registers
*
* @param p_hwfn
*/
void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
{
u32 igu_pf_conf = 0;
igu_pf_conf |= IGU_PF_CONF_FUNC_EN;
STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
}
u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
{
u64 intr_status = 0;
u32 intr_status_lo = 0;
u32 intr_status_hi = 0;
u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
IGU_CMD_INT_ACK_BASE;
u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
IGU_CMD_INT_ACK_BASE;
intr_status_lo = REG_RD(p_hwfn,
GTT_BAR0_MAP_REG_IGU_CMD +
lsb_igu_cmd_addr * 8);
intr_status_hi = REG_RD(p_hwfn,
GTT_BAR0_MAP_REG_IGU_CMD +
msb_igu_cmd_addr * 8);
intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
return intr_status;
}
static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
{
tasklet_init(p_hwfn->sp_dpc,
qed_int_sp_dpc, (unsigned long)p_hwfn);
p_hwfn->b_sp_dpc_enabled = true;
}
static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
{
p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
if (!p_hwfn->sp_dpc)
return -ENOMEM;
return 0;
}
static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
{
kfree(p_hwfn->sp_dpc);
}
int qed_int_alloc(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
int rc = 0;
rc = qed_int_sp_dpc_alloc(p_hwfn);
if (rc) {
DP_ERR(p_hwfn->cdev, "Failed to allocate sp dpc mem\n");
return rc;
}
rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
if (rc) {
DP_ERR(p_hwfn->cdev, "Failed to allocate sp sb mem\n");
return rc;
}
rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
if (rc) {
DP_ERR(p_hwfn->cdev, "Failed to allocate sb attn mem\n");
return rc;
}
return rc;
}
void qed_int_free(struct qed_hwfn *p_hwfn)
{
qed_int_sp_sb_free(p_hwfn);
qed_int_sb_attn_free(p_hwfn);
qed_int_sp_dpc_free(p_hwfn);
}
void qed_int_setup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
qed_int_sb_attn_setup(p_hwfn, p_ptt);
qed_int_sp_dpc_setup(p_hwfn);
}
void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
struct qed_sb_cnt_info *p_sb_cnt_info)
{
struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
if (!info || !p_sb_cnt_info)
return;
p_sb_cnt_info->sb_cnt = info->igu_sb_cnt;
p_sb_cnt_info->sb_iov_cnt = info->igu_sb_cnt_iov;
p_sb_cnt_info->sb_free_blk = info->free_blks;
}
void qed_int_disable_post_isr_release(struct qed_dev *cdev)
{
int i;
for_each_hwfn(cdev, i)
cdev->hwfns[i].b_int_requested = false;
}