linux/drivers/gpu/drm/nouveau/dispnv04/hw.c

826 lines
27 KiB
C
Raw Normal View History

/*
* Copyright 2006 Dave Airlie
* Copyright 2007 Maarten Maathuis
* Copyright 2007-2009 Stuart Bennett
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "hw.h"
#include <subdev/bios/pll.h>
#define CHIPSET_NFORCE 0x01a0
#define CHIPSET_NFORCE2 0x01f0
/*
* misc hw access wrappers/control functions
*/
void
NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value)
{
NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value);
}
uint8_t
NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index)
{
NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
return NVReadPRMVIO(dev, head, NV_PRMVIO_SR);
}
void
NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value)
{
NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value);
}
uint8_t
NVReadVgaGr(struct drm_device *dev, int head, uint8_t index)
{
NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
return NVReadPRMVIO(dev, head, NV_PRMVIO_GX);
}
/* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied)
* it affects only the 8 bit vga io regs, which we access using mmio at
* 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d*
* in general, the set value of cr44 does not matter: reg access works as
* expected and values can be set for the appropriate head by using a 0x2000
* offset as required
* however:
* a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and
* cr44 must be set to 0 or 3 for accessing values on the correct head
* through the common 0xc03c* addresses
* b) in tied mode (4) head B is programmed to the values set on head A, and
* access using the head B addresses can have strange results, ergo we leave
* tied mode in init once we know to what cr44 should be restored on exit
*
* the owner parameter is slightly abused:
* 0 and 1 are treated as head values and so the set value is (owner * 3)
* other values are treated as literal values to set
*/
void
NVSetOwner(struct drm_device *dev, int owner)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (owner == 1)
owner *= 3;
if (drm->device.info.chipset == 0x11) {
/* This might seem stupid, but the blob does it and
* omitting it often locks the system up.
*/
NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX);
NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX);
}
/* CR44 is always changed on CRTC0 */
NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner);
if (drm->device.info.chipset == 0x11) { /* set me harder */
NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
}
}
void
NVBlankScreen(struct drm_device *dev, int head, bool blank)
{
unsigned char seq1;
if (nv_two_heads(dev))
NVSetOwner(dev, head);
seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX);
NVVgaSeqReset(dev, head, true);
if (blank)
NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20);
else
NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20);
NVVgaSeqReset(dev, head, false);
}
/*
* PLL getting
*/
static void
nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1,
uint32_t pll2, struct nvkm_pll_vals *pllvals)
{
struct nouveau_drm *drm = nouveau_drm(dev);
/* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */
/* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */
pllvals->log2P = (pll1 >> 16) & 0x7;
pllvals->N2 = pllvals->M2 = 1;
if (reg1 <= 0x405c) {
pllvals->NM1 = pll2 & 0xffff;
/* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */
if (!(pll1 & 0x1100))
pllvals->NM2 = pll2 >> 16;
} else {
pllvals->NM1 = pll1 & 0xffff;
if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2)
pllvals->NM2 = pll2 & 0xffff;
else if (drm->device.info.chipset == 0x30 || drm->device.info.chipset == 0x35) {
pllvals->M1 &= 0xf; /* only 4 bits */
if (pll1 & NV30_RAMDAC_ENABLE_VCO2) {
pllvals->M2 = (pll1 >> 4) & 0x7;
pllvals->N2 = ((pll1 >> 21) & 0x18) |
((pll1 >> 19) & 0x7);
}
}
}
}
int
nouveau_hw_get_pllvals(struct drm_device *dev, enum nvbios_pll_type plltype,
struct nvkm_pll_vals *pllvals)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvif_device *device = &drm->device;
struct nvkm_bios *bios = nvxx_bios(device);
uint32_t reg1, pll1, pll2 = 0;
struct nvbios_pll pll_lim;
int ret;
ret = nvbios_pll_parse(bios, plltype, &pll_lim);
if (ret || !(reg1 = pll_lim.reg))
return -ENOENT;
pll1 = nvif_rd32(device, reg1);
if (reg1 <= 0x405c)
pll2 = nvif_rd32(device, reg1 + 4);
else if (nv_two_reg_pll(dev)) {
uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70);
pll2 = nvif_rd32(device, reg2);
}
if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS && reg1 >= NV_PRAMDAC_VPLL_COEFF) {
uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580);
/* check whether vpll has been forced into single stage mode */
if (reg1 == NV_PRAMDAC_VPLL_COEFF) {
if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE)
pll2 = 0;
} else
if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE)
pll2 = 0;
}
nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals);
pllvals->refclk = pll_lim.refclk;
return 0;
}
int
nouveau_hw_pllvals_to_clk(struct nvkm_pll_vals *pv)
{
/* Avoid divide by zero if called at an inappropriate time */
if (!pv->M1 || !pv->M2)
return 0;
return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P;
}
int
nouveau_hw_get_clock(struct drm_device *dev, enum nvbios_pll_type plltype)
{
struct nvkm_pll_vals pllvals;
int ret;
if (plltype == PLL_MEMORY &&
(dev->pdev->device & 0x0ff0) == CHIPSET_NFORCE) {
uint32_t mpllP;
pci_read_config_dword(pci_get_bus_and_slot(0, 3), 0x6c, &mpllP);
if (!mpllP)
mpllP = 4;
return 400000 / mpllP;
} else
if (plltype == PLL_MEMORY &&
(dev->pdev->device & 0xff0) == CHIPSET_NFORCE2) {
uint32_t clock;
pci_read_config_dword(pci_get_bus_and_slot(0, 5), 0x4c, &clock);
return clock;
}
ret = nouveau_hw_get_pllvals(dev, plltype, &pllvals);
if (ret)
return ret;
return nouveau_hw_pllvals_to_clk(&pllvals);
}
static void
nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head)
{
/* the vpll on an unused head can come up with a random value, way
* beyond the pll limits. for some reason this causes the chip to
* lock up when reading the dac palette regs, so set a valid pll here
* when such a condition detected. only seen on nv11 to date
*/
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvif_device *device = &drm->device;
struct nvkm_clk *clk = nvxx_clk(device);
struct nvkm_bios *bios = nvxx_bios(device);
struct nvbios_pll pll_lim;
struct nvkm_pll_vals pv;
enum nvbios_pll_type pll = head ? PLL_VPLL1 : PLL_VPLL0;
if (nvbios_pll_parse(bios, pll, &pll_lim))
return;
nouveau_hw_get_pllvals(dev, pll, &pv);
if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m &&
pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n &&
pv.log2P <= pll_lim.max_p)
return;
NV_WARN(drm, "VPLL %d outwith limits, attempting to fix\n", head + 1);
/* set lowest clock within static limits */
pv.M1 = pll_lim.vco1.max_m;
pv.N1 = pll_lim.vco1.min_n;
pv.log2P = pll_lim.max_p_usable;
clk->pll_prog(clk, pll_lim.reg, &pv);
}
/*
* vga font save/restore
*/
static void nouveau_vga_font_io(struct drm_device *dev,
void __iomem *iovram,
bool save, unsigned plane)
{
unsigned i;
NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane);
NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane);
for (i = 0; i < 16384; i++) {
if (save) {
nv04_display(dev)->saved_vga_font[plane][i] =
ioread32_native(iovram + i * 4);
} else {
iowrite32_native(nv04_display(dev)->saved_vga_font[plane][i],
iovram + i * 4);
}
}
}
void
nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save)
{
struct nouveau_drm *drm = nouveau_drm(dev);
uint8_t misc, gr4, gr5, gr6, seq2, seq4;
bool graphicsmode;
unsigned plane;
void __iomem *iovram;
if (nv_two_heads(dev))
NVSetOwner(dev, 0);
NVSetEnablePalette(dev, 0, true);
graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1;
NVSetEnablePalette(dev, 0, false);
if (graphicsmode) /* graphics mode => framebuffer => no need to save */
return;
NV_INFO(drm, "%sing VGA fonts\n", save ? "Sav" : "Restor");
/* map first 64KiB of VRAM, holds VGA fonts etc */
iovram = ioremap(pci_resource_start(dev->pdev, 1), 65536);
if (!iovram) {
NV_ERROR(drm, "Failed to map VRAM, "
"cannot save/restore VGA fonts.\n");
return;
}
if (nv_two_heads(dev))
NVBlankScreen(dev, 1, true);
NVBlankScreen(dev, 0, true);
/* save control regs */
misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ);
seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX);
seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX);
gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX);
gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX);
gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX);
NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67);
NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6);
NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0);
NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5);
/* store font in planes 0..3 */
for (plane = 0; plane < 4; plane++)
nouveau_vga_font_io(dev, iovram, save, plane);
/* restore control regs */
NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc);
NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4);
NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5);
NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6);
NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2);
NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4);
if (nv_two_heads(dev))
NVBlankScreen(dev, 1, false);
NVBlankScreen(dev, 0, false);
iounmap(iovram);
}
/*
* mode state save/load
*/
static void
rd_cio_state(struct drm_device *dev, int head,
struct nv04_crtc_reg *crtcstate, int index)
{
crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index);
}
static void
wr_cio_state(struct drm_device *dev, int head,
struct nv04_crtc_reg *crtcstate, int index)
{
NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]);
}
static void
nv_save_state_ramdac(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
int i;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC);
nouveau_hw_get_pllvals(dev, head ? PLL_VPLL1 : PLL_VPLL0, &regp->pllvals);
state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT);
if (nv_two_heads(dev))
state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
if (drm->device.info.chipset == 0x11)
regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11);
regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL);
if (nv_gf4_disp_arch(dev))
regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630);
if (drm->device.info.chipset >= 0x30)
regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634);
regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP);
regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL);
regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW);
regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY);
regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL);
regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW);
regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY);
regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2);
for (i = 0; i < 7; i++) {
uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg);
regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20);
}
if (nv_gf4_disp_arch(dev)) {
regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER);
for (i = 0; i < 3; i++) {
regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4);
regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4);
}
}
regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0);
if (!nv_gf4_disp_arch(dev) && head == 0) {
/* early chips don't allow access to PRAMDAC_TMDS_* without
* the head A FPCLK on (nv11 even locks up) */
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 &
~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK);
}
regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1);
regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2);
regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR);
if (nv_gf4_disp_arch(dev))
regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0);
if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20);
regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24);
regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34);
for (i = 0; i < 38; i++)
regp->ctv_regs[i] = NVReadRAMDAC(dev, head,
NV_PRAMDAC_CTV + 4*i);
}
}
static void
nv_load_state_ramdac(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_clk *clk = nvxx_clk(&drm->device);
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF;
int i;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync);
clk->pll_prog(clk, pllreg, &regp->pllvals);
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel);
if (nv_two_heads(dev))
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk);
if (drm->device.info.chipset == 0x11)
NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl);
if (nv_gf4_disp_arch(dev))
NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630);
if (drm->device.info.chipset >= 0x30)
NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2);
for (i = 0; i < 7; i++) {
uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]);
NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]);
}
if (nv_gf4_disp_arch(dev)) {
NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither);
for (i = 0; i < 3; i++) {
NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]);
}
}
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color);
if (nv_gf4_disp_arch(dev))
NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0);
if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24);
NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34);
for (i = 0; i < 38; i++)
NVWriteRAMDAC(dev, head,
NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]);
}
}
static void
nv_save_state_vga(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
int i;
regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ);
for (i = 0; i < 25; i++)
rd_cio_state(dev, head, regp, i);
NVSetEnablePalette(dev, head, true);
for (i = 0; i < 21; i++)
regp->Attribute[i] = NVReadVgaAttr(dev, head, i);
NVSetEnablePalette(dev, head, false);
for (i = 0; i < 9; i++)
regp->Graphics[i] = NVReadVgaGr(dev, head, i);
for (i = 0; i < 5; i++)
regp->Sequencer[i] = NVReadVgaSeq(dev, head, i);
}
static void
nv_load_state_vga(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
int i;
NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg);
for (i = 0; i < 5; i++)
NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]);
nv_lock_vga_crtc_base(dev, head, false);
for (i = 0; i < 25; i++)
wr_cio_state(dev, head, regp, i);
nv_lock_vga_crtc_base(dev, head, true);
for (i = 0; i < 9; i++)
NVWriteVgaGr(dev, head, i, regp->Graphics[i]);
NVSetEnablePalette(dev, head, true);
for (i = 0; i < 21; i++)
NVWriteVgaAttr(dev, head, i, regp->Attribute[i]);
NVSetEnablePalette(dev, head, false);
}
static void
nv_save_state_ext(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
int i;
rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_21);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_KELVIN)
rd_cio_state(dev, head, regp, NV_CIO_CRE_47);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
rd_cio_state(dev, head, regp, 0x9f);
rd_cio_state(dev, head, regp, NV_CIO_CRE_49);
rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830);
regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT);
if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850);
if (nv_two_heads(dev))
regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL);
regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG);
}
regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG);
rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
rd_cio_state(dev, head, regp, NV_CIO_CRE_4B);
rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
}
/* NV11 and NV20 don't have this, they stop at 0x52. */
if (nv_gf4_disp_arch(dev)) {
rd_cio_state(dev, head, regp, NV_CIO_CRE_42);
rd_cio_state(dev, head, regp, NV_CIO_CRE_53);
rd_cio_state(dev, head, regp, NV_CIO_CRE_54);
for (i = 0; i < 0x10; i++)
regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i);
rd_cio_state(dev, head, regp, NV_CIO_CRE_59);
rd_cio_state(dev, head, regp, NV_CIO_CRE_5B);
rd_cio_state(dev, head, regp, NV_CIO_CRE_85);
rd_cio_state(dev, head, regp, NV_CIO_CRE_86);
}
regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START);
}
static void
nv_load_state_ext(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvif_device *device = &drm->device;
struct nvkm_timer *tmr = nvxx_timer(device);
struct nv04_crtc_reg *regp = &state->crtc_reg[head];
uint32_t reg900;
int i;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
if (nv_two_heads(dev))
/* setting ENGINE_CTRL (EC) *must* come before
* CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in
* EC that should not be overwritten by writing stale EC
*/
NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl);
nvif_wr32(device, NV_PVIDEO_STOP, 1);
nvif_wr32(device, NV_PVIDEO_INTR_EN, 0);
nvif_wr32(device, NV_PVIDEO_OFFSET_BUFF(0), 0);
nvif_wr32(device, NV_PVIDEO_OFFSET_BUFF(1), 0);
nvif_wr32(device, NV_PVIDEO_LIMIT(0), device->info.ram_size - 1);
nvif_wr32(device, NV_PVIDEO_LIMIT(1), device->info.ram_size - 1);
nvif_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(0), device->info.ram_size - 1);
nvif_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(1), device->info.ram_size - 1);
nvif_wr32(device, NV_PBUS_POWERCTRL_2, 0);
NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg);
NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830);
NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext);
if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) {
NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850);
reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900);
if (regp->crtc_cfg == NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC)
NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000);
else
NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000);
}
}
NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg);
wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_KELVIN)
wr_cio_state(dev, head, regp, NV_CIO_CRE_47);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
wr_cio_state(dev, head, regp, 0x9f);
wr_cio_state(dev, head, regp, NV_CIO_CRE_49);
wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE)
nv_fix_nv40_hw_cursor(dev, head);
wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
wr_cio_state(dev, head, regp, NV_CIO_CRE_4B);
wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
}
/* NV11 and NV20 stop at 0x52. */
if (nv_gf4_disp_arch(dev)) {
if (drm->device.info.family < NV_DEVICE_INFO_V0_KELVIN) {
/* Not waiting for vertical retrace before modifying
CRE_53/CRE_54 causes lockups. */
nvkm_timer_wait_eq(tmr, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x8);
nvkm_timer_wait_eq(tmr, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x0);
}
wr_cio_state(dev, head, regp, NV_CIO_CRE_42);
wr_cio_state(dev, head, regp, NV_CIO_CRE_53);
wr_cio_state(dev, head, regp, NV_CIO_CRE_54);
for (i = 0; i < 0x10; i++)
NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]);
wr_cio_state(dev, head, regp, NV_CIO_CRE_59);
wr_cio_state(dev, head, regp, NV_CIO_CRE_5B);
wr_cio_state(dev, head, regp, NV_CIO_CRE_85);
wr_cio_state(dev, head, regp, NV_CIO_CRE_86);
}
NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start);
}
static void
nv_save_state_palette(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nvif_device *device = &nouveau_drm(dev)->device;
int head_offset = head * NV_PRMDIO_SIZE, i;
nvif_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset,
NV_PRMDIO_PIXEL_MASK_MASK);
nvif_wr08(device, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0);
for (i = 0; i < 768; i++) {
state->crtc_reg[head].DAC[i] = nvif_rd08(device,
NV_PRMDIO_PALETTE_DATA + head_offset);
}
NVSetEnablePalette(dev, head, false);
}
void
nouveau_hw_load_state_palette(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nvif_device *device = &nouveau_drm(dev)->device;
int head_offset = head * NV_PRMDIO_SIZE, i;
nvif_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset,
NV_PRMDIO_PIXEL_MASK_MASK);
nvif_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0);
for (i = 0; i < 768; i++) {
nvif_wr08(device, NV_PRMDIO_PALETTE_DATA + head_offset,
state->crtc_reg[head].DAC[i]);
}
NVSetEnablePalette(dev, head, false);
}
void nouveau_hw_save_state(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (drm->device.info.chipset == 0x11)
/* NB: no attempt is made to restore the bad pll later on */
nouveau_hw_fix_bad_vpll(dev, head);
nv_save_state_ramdac(dev, head, state);
nv_save_state_vga(dev, head, state);
nv_save_state_palette(dev, head, state);
nv_save_state_ext(dev, head, state);
}
void nouveau_hw_load_state(struct drm_device *dev, int head,
struct nv04_mode_state *state)
{
NVVgaProtect(dev, head, true);
nv_load_state_ramdac(dev, head, state);
nv_load_state_ext(dev, head, state);
nouveau_hw_load_state_palette(dev, head, state);
nv_load_state_vga(dev, head, state);
NVVgaProtect(dev, head, false);
}