2019-06-04 16:11:32 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2011-11-23 22:30:32 +08:00
|
|
|
/*
|
|
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
|
|
* cpuid support routines
|
|
|
|
*
|
|
|
|
* derived from arch/x86/kvm/x86.c
|
|
|
|
*
|
|
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
|
|
|
|
* Copyright IBM Corporation, 2008
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kvm_host.h>
|
2016-07-14 08:19:00 +08:00
|
|
|
#include <linux/export.h>
|
2011-12-15 00:58:18 +08:00
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/uaccess.h>
|
2017-02-05 19:07:04 +08:00
|
|
|
#include <linux/sched/stat.h>
|
|
|
|
|
2016-11-07 14:03:20 +08:00
|
|
|
#include <asm/processor.h>
|
2011-11-23 22:30:32 +08:00
|
|
|
#include <asm/user.h>
|
2015-04-28 14:41:33 +08:00
|
|
|
#include <asm/fpu/xstate.h>
|
2011-11-23 22:30:32 +08:00
|
|
|
#include "cpuid.h"
|
|
|
|
#include "lapic.h"
|
|
|
|
#include "mmu.h"
|
|
|
|
#include "trace.h"
|
2015-06-19 19:54:23 +08:00
|
|
|
#include "pmu.h"
|
2011-11-23 22:30:32 +08:00
|
|
|
|
2014-12-03 21:38:01 +08:00
|
|
|
static u32 xstate_required_size(u64 xstate_bv, bool compacted)
|
2013-10-02 22:06:16 +08:00
|
|
|
{
|
|
|
|
int feature_bit = 0;
|
|
|
|
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
|
|
|
2015-09-03 07:31:26 +08:00
|
|
|
xstate_bv &= XFEATURE_MASK_EXTEND;
|
2013-10-02 22:06:16 +08:00
|
|
|
while (xstate_bv) {
|
|
|
|
if (xstate_bv & 0x1) {
|
2014-12-03 21:38:01 +08:00
|
|
|
u32 eax, ebx, ecx, edx, offset;
|
2013-10-02 22:06:16 +08:00
|
|
|
cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
|
2014-12-03 21:38:01 +08:00
|
|
|
offset = compacted ? ret : ebx;
|
|
|
|
ret = max(ret, offset + eax);
|
2013-10-02 22:06:16 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
xstate_bv >>= 1;
|
|
|
|
feature_bit++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-03-08 16:52:13 +08:00
|
|
|
bool kvm_mpx_supported(void)
|
|
|
|
{
|
|
|
|
return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
|
|
|
|
&& kvm_x86_ops->mpx_supported());
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_mpx_supported);
|
|
|
|
|
2014-02-24 19:15:16 +08:00
|
|
|
u64 kvm_supported_xcr0(void)
|
|
|
|
{
|
|
|
|
u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
|
|
|
|
|
2016-03-08 16:52:13 +08:00
|
|
|
if (!kvm_mpx_supported())
|
2015-09-03 07:31:26 +08:00
|
|
|
xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
|
2014-02-24 19:15:16 +08:00
|
|
|
|
|
|
|
return xcr0;
|
|
|
|
}
|
|
|
|
|
2014-12-03 21:34:47 +08:00
|
|
|
#define F(x) bit(X86_FEATURE_##x)
|
|
|
|
|
2014-09-16 20:10:03 +08:00
|
|
|
int kvm_update_cpuid(struct kvm_vcpu *vcpu)
|
2011-11-23 22:30:32 +08:00
|
|
|
{
|
|
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
|
|
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1, 0);
|
|
|
|
if (!best)
|
2014-09-16 20:10:03 +08:00
|
|
|
return 0;
|
2011-11-23 22:30:32 +08:00
|
|
|
|
|
|
|
/* Update OSXSAVE bit */
|
2016-04-05 04:25:02 +08:00
|
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
|
2014-12-03 21:34:47 +08:00
|
|
|
best->ecx &= ~F(OSXSAVE);
|
2011-11-23 22:30:32 +08:00
|
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
|
2014-12-03 21:34:47 +08:00
|
|
|
best->ecx |= F(OSXSAVE);
|
2011-11-23 22:30:32 +08:00
|
|
|
}
|
|
|
|
|
2016-11-10 01:50:11 +08:00
|
|
|
best->edx &= ~F(APIC);
|
|
|
|
if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
|
|
|
|
best->edx |= F(APIC);
|
|
|
|
|
2011-11-23 22:30:32 +08:00
|
|
|
if (apic) {
|
2014-12-03 21:34:47 +08:00
|
|
|
if (best->ecx & F(TSC_DEADLINE_TIMER))
|
2011-11-23 22:30:32 +08:00
|
|
|
apic->lapic_timer.timer_mode_mask = 3 << 17;
|
|
|
|
else
|
|
|
|
apic->lapic_timer.timer_mode_mask = 1 << 17;
|
|
|
|
}
|
2011-11-10 20:57:22 +08:00
|
|
|
|
2016-03-22 16:51:21 +08:00
|
|
|
best = kvm_find_cpuid_entry(vcpu, 7, 0);
|
|
|
|
if (best) {
|
|
|
|
/* Update OSPKE bit */
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
|
|
|
|
best->ecx &= ~F(OSPKE);
|
|
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
|
|
|
|
best->ecx |= F(OSPKE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-10-02 22:06:15 +08:00
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
|
2013-10-02 22:06:16 +08:00
|
|
|
if (!best) {
|
2013-10-02 22:06:15 +08:00
|
|
|
vcpu->arch.guest_supported_xcr0 = 0;
|
2013-10-02 22:06:16 +08:00
|
|
|
vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
|
|
} else {
|
2013-10-02 22:06:15 +08:00
|
|
|
vcpu->arch.guest_supported_xcr0 =
|
|
|
|
(best->eax | ((u64)best->edx << 32)) &
|
2014-02-24 19:15:16 +08:00
|
|
|
kvm_supported_xcr0();
|
2014-02-22 01:39:02 +08:00
|
|
|
vcpu->arch.guest_xstate_size = best->ebx =
|
2014-12-03 21:38:01 +08:00
|
|
|
xstate_required_size(vcpu->arch.xcr0, false);
|
2013-10-02 22:06:16 +08:00
|
|
|
}
|
2013-10-02 22:06:15 +08:00
|
|
|
|
2014-12-03 21:38:01 +08:00
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
|
|
|
|
if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
|
|
|
|
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
|
|
|
|
|
2014-09-16 20:10:03 +08:00
|
|
|
/*
|
2017-08-24 20:27:56 +08:00
|
|
|
* The existing code assumes virtual address is 48-bit or 57-bit in the
|
|
|
|
* canonical address checks; exit if it is ever changed.
|
2014-09-16 20:10:03 +08:00
|
|
|
*/
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
|
2017-08-24 20:27:56 +08:00
|
|
|
if (best) {
|
|
|
|
int vaddr_bits = (best->eax & 0xff00) >> 8;
|
|
|
|
|
|
|
|
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2014-09-16 20:10:03 +08:00
|
|
|
|
2018-03-12 19:53:03 +08:00
|
|
|
best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
|
|
|
|
if (kvm_hlt_in_guest(vcpu->kvm) && best &&
|
|
|
|
(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
|
|
|
|
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
|
|
|
|
|
2019-05-21 14:06:54 +08:00
|
|
|
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
|
|
|
|
if (best) {
|
|
|
|
if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
|
|
|
|
best->ecx |= F(MWAIT);
|
|
|
|
else
|
|
|
|
best->ecx &= ~F(MWAIT);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-30 04:56:12 +08:00
|
|
|
/* Update physical-address width */
|
|
|
|
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
|
2017-08-24 20:27:55 +08:00
|
|
|
kvm_mmu_reset_context(vcpu);
|
2015-03-30 04:56:12 +08:00
|
|
|
|
2015-06-19 19:44:45 +08:00
|
|
|
kvm_pmu_refresh(vcpu);
|
2014-09-16 20:10:03 +08:00
|
|
|
return 0;
|
2011-11-23 22:30:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int is_efer_nx(void)
|
|
|
|
{
|
|
|
|
unsigned long long efer = 0;
|
|
|
|
|
|
|
|
rdmsrl_safe(MSR_EFER, &efer);
|
|
|
|
return efer & EFER_NX;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct kvm_cpuid_entry2 *e, *entry;
|
|
|
|
|
|
|
|
entry = NULL;
|
|
|
|
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
|
|
|
|
e = &vcpu->arch.cpuid_entries[i];
|
|
|
|
if (e->function == 0x80000001) {
|
|
|
|
entry = e;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2014-12-03 21:34:47 +08:00
|
|
|
if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
|
|
|
|
entry->edx &= ~F(NX);
|
2011-11-23 22:30:32 +08:00
|
|
|
printk(KERN_INFO "kvm: guest NX capability removed\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-30 04:56:12 +08:00
|
|
|
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
|
|
|
|
if (!best || best->eax < 0x80000008)
|
|
|
|
goto not_found;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
|
|
|
|
if (best)
|
|
|
|
return best->eax & 0xff;
|
|
|
|
not_found:
|
|
|
|
return 36;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
|
|
|
|
|
2011-11-23 22:30:32 +08:00
|
|
|
/* when an old userspace process fills a new kernel module */
|
|
|
|
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_cpuid *cpuid,
|
|
|
|
struct kvm_cpuid_entry __user *entries)
|
|
|
|
{
|
|
|
|
int r, i;
|
2016-06-01 20:09:19 +08:00
|
|
|
struct kvm_cpuid_entry *cpuid_entries = NULL;
|
2011-11-23 22:30:32 +08:00
|
|
|
|
|
|
|
r = -E2BIG;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
|
|
goto out;
|
|
|
|
r = -ENOMEM;
|
2016-06-01 20:09:19 +08:00
|
|
|
if (cpuid->nent) {
|
treewide: Use array_size() in vmalloc()
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:
vmalloc(a * b)
with:
vmalloc(array_size(a, b))
as well as handling cases of:
vmalloc(a * b * c)
with:
vmalloc(array3_size(a, b, c))
This does, however, attempt to ignore constant size factors like:
vmalloc(4 * 1024)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
vmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
vmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
vmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
vmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
vmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
vmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
vmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
vmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
vmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
vmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
vmalloc(
- sizeof(TYPE) * (COUNT_ID)
+ array_size(COUNT_ID, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * COUNT_ID
+ array_size(COUNT_ID, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * (COUNT_CONST)
+ array_size(COUNT_CONST, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * COUNT_CONST
+ array_size(COUNT_CONST, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(THING) * (COUNT_ID)
+ array_size(COUNT_ID, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * COUNT_ID
+ array_size(COUNT_ID, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * (COUNT_CONST)
+ array_size(COUNT_CONST, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * COUNT_CONST
+ array_size(COUNT_CONST, sizeof(THING))
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
vmalloc(
- SIZE * COUNT
+ array_size(COUNT, SIZE)
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
vmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
vmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
vmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
vmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
vmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
vmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
vmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
vmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
vmalloc(C1 * C2 * C3, ...)
|
vmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@
(
vmalloc(C1 * C2, ...)
|
vmalloc(
- E1 * E2
+ array_size(E1, E2)
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:27:11 +08:00
|
|
|
cpuid_entries =
|
|
|
|
vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
|
|
|
|
cpuid->nent));
|
2016-06-01 20:09:19 +08:00
|
|
|
if (!cpuid_entries)
|
|
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
|
|
if (copy_from_user(cpuid_entries, entries,
|
|
|
|
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
|
|
|
|
goto out;
|
|
|
|
}
|
2011-11-23 22:30:32 +08:00
|
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
|
|
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
|
|
|
|
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
|
|
|
|
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
|
|
|
|
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
|
|
|
|
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
|
|
|
|
vcpu->arch.cpuid_entries[i].index = 0;
|
|
|
|
vcpu->arch.cpuid_entries[i].flags = 0;
|
|
|
|
vcpu->arch.cpuid_entries[i].padding[0] = 0;
|
|
|
|
vcpu->arch.cpuid_entries[i].padding[1] = 0;
|
|
|
|
vcpu->arch.cpuid_entries[i].padding[2] = 0;
|
|
|
|
}
|
|
|
|
vcpu->arch.cpuid_nent = cpuid->nent;
|
|
|
|
cpuid_fix_nx_cap(vcpu);
|
|
|
|
kvm_apic_set_version(vcpu);
|
|
|
|
kvm_x86_ops->cpuid_update(vcpu);
|
2014-09-16 20:10:03 +08:00
|
|
|
r = kvm_update_cpuid(vcpu);
|
2011-11-23 22:30:32 +08:00
|
|
|
|
|
|
|
out:
|
2016-06-01 20:09:19 +08:00
|
|
|
vfree(cpuid_entries);
|
2011-11-23 22:30:32 +08:00
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_cpuid2 *cpuid,
|
|
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
|
|
{
|
|
|
|
int r;
|
|
|
|
|
|
|
|
r = -E2BIG;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
|
|
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
|
|
|
|
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
|
|
|
|
goto out;
|
|
|
|
vcpu->arch.cpuid_nent = cpuid->nent;
|
|
|
|
kvm_apic_set_version(vcpu);
|
|
|
|
kvm_x86_ops->cpuid_update(vcpu);
|
2014-09-16 20:10:03 +08:00
|
|
|
r = kvm_update_cpuid(vcpu);
|
2011-11-23 22:30:32 +08:00
|
|
|
out:
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_cpuid2 *cpuid,
|
|
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
|
|
{
|
|
|
|
int r;
|
|
|
|
|
|
|
|
r = -E2BIG;
|
|
|
|
if (cpuid->nent < vcpu->arch.cpuid_nent)
|
|
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
|
|
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
|
|
|
|
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
|
|
|
|
goto out;
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out:
|
|
|
|
cpuid->nent = vcpu->arch.cpuid_nent;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cpuid_mask(u32 *word, int wordnum)
|
|
|
|
{
|
|
|
|
*word &= boot_cpu_data.x86_capability[wordnum];
|
|
|
|
}
|
|
|
|
|
2019-06-24 16:29:25 +08:00
|
|
|
static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
|
2011-11-23 22:30:32 +08:00
|
|
|
u32 index)
|
|
|
|
{
|
|
|
|
entry->function = function;
|
|
|
|
entry->index = index;
|
2019-06-24 16:23:33 +08:00
|
|
|
entry->flags = 0;
|
|
|
|
|
2011-11-23 22:30:32 +08:00
|
|
|
cpuid_count(entry->function, entry->index,
|
|
|
|
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
|
2019-07-04 18:20:48 +08:00
|
|
|
|
|
|
|
switch (function) {
|
|
|
|
case 2:
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
case 7:
|
|
|
|
case 0xb:
|
|
|
|
case 0xd:
|
2019-09-13 00:55:03 +08:00
|
|
|
case 0xf:
|
|
|
|
case 0x10:
|
|
|
|
case 0x12:
|
2019-07-04 18:20:48 +08:00
|
|
|
case 0x14:
|
2019-09-13 00:55:03 +08:00
|
|
|
case 0x17:
|
|
|
|
case 0x18:
|
|
|
|
case 0x1f:
|
2019-07-04 18:20:48 +08:00
|
|
|
case 0x8000001d:
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
|
|
break;
|
|
|
|
}
|
2011-11-23 22:30:32 +08:00
|
|
|
}
|
|
|
|
|
2019-06-24 16:23:33 +08:00
|
|
|
static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
|
|
|
|
u32 func, int *nent, int maxnent)
|
2013-09-22 22:44:50 +08:00
|
|
|
{
|
2019-06-24 16:23:33 +08:00
|
|
|
entry->function = func;
|
|
|
|
entry->index = 0;
|
|
|
|
entry->flags = 0;
|
|
|
|
|
2013-10-29 19:54:56 +08:00
|
|
|
switch (func) {
|
|
|
|
case 0:
|
2016-07-12 17:04:26 +08:00
|
|
|
entry->eax = 7;
|
2013-10-29 19:54:56 +08:00
|
|
|
++*nent;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
entry->ecx = F(MOVBE);
|
|
|
|
++*nent;
|
|
|
|
break;
|
2016-07-12 17:04:26 +08:00
|
|
|
case 7:
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
2019-06-24 16:23:33 +08:00
|
|
|
entry->eax = 0;
|
|
|
|
entry->ecx = F(RDPID);
|
2016-07-12 17:04:26 +08:00
|
|
|
++*nent;
|
2013-10-29 19:54:56 +08:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2013-09-22 22:44:50 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-07-04 18:18:13 +08:00
|
|
|
static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
|
|
|
|
{
|
|
|
|
unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
|
|
|
|
unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
|
|
|
|
unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
|
|
|
|
unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
|
|
|
|
unsigned f_la57;
|
|
|
|
|
|
|
|
/* cpuid 7.0.ebx */
|
|
|
|
const u32 kvm_cpuid_7_0_ebx_x86_features =
|
|
|
|
F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
|
|
|
|
F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
|
|
|
|
F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
|
|
|
|
F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
|
|
|
|
F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
|
|
|
|
|
|
|
|
/* cpuid 7.0.ecx*/
|
|
|
|
const u32 kvm_cpuid_7_0_ecx_x86_features =
|
2019-10-05 04:22:47 +08:00
|
|
|
F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
|
2019-07-04 18:18:13 +08:00
|
|
|
F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
|
|
|
|
F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
|
KVM: x86: Add support for user wait instructions
UMONITOR, UMWAIT and TPAUSE are a set of user wait instructions.
This patch adds support for user wait instructions in KVM. Availability
of the user wait instructions is indicated by the presence of the CPUID
feature flag WAITPKG CPUID.0x07.0x0:ECX[5]. User wait instructions may
be executed at any privilege level, and use 32bit IA32_UMWAIT_CONTROL MSR
to set the maximum time.
The behavior of user wait instructions in VMX non-root operation is
determined first by the setting of the "enable user wait and pause"
secondary processor-based VM-execution control bit 26.
If the VM-execution control is 0, UMONITOR/UMWAIT/TPAUSE cause
an invalid-opcode exception (#UD).
If the VM-execution control is 1, treatment is based on the
setting of the “RDTSC exiting†VM-execution control. Because KVM never
enables RDTSC exiting, if the instruction causes a delay, the amount of
time delayed is called here the physical delay. The physical delay is
first computed by determining the virtual delay. If
IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in
EDX:EAX minus the value that RDTSC would return; if
IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay is the minimum
of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).
Because umwait and tpause can put a (psysical) CPU into a power saving
state, by default we dont't expose it to kvm and enable it only when
guest CPUID has it.
Detailed information about user wait instructions can be found in the
latest Intel 64 and IA-32 Architectures Software Developer's Manual.
Co-developed-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-16 14:55:49 +08:00
|
|
|
F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
|
2019-07-04 18:18:13 +08:00
|
|
|
|
|
|
|
/* cpuid 7.0.edx*/
|
|
|
|
const u32 kvm_cpuid_7_0_edx_x86_features =
|
|
|
|
F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
|
|
|
|
F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
|
|
|
|
F(MD_CLEAR);
|
|
|
|
|
2019-07-11 13:49:57 +08:00
|
|
|
/* cpuid 7.1.eax */
|
|
|
|
const u32 kvm_cpuid_7_1_eax_x86_features =
|
|
|
|
F(AVX512_BF16);
|
|
|
|
|
2019-07-04 18:18:13 +08:00
|
|
|
switch (index) {
|
|
|
|
case 0:
|
2019-07-11 13:49:57 +08:00
|
|
|
entry->eax = min(entry->eax, 1u);
|
2019-07-04 18:18:13 +08:00
|
|
|
entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
|
|
|
|
cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
|
|
|
|
/* TSC_ADJUST is emulated */
|
|
|
|
entry->ebx |= F(TSC_ADJUST);
|
|
|
|
|
|
|
|
entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
|
|
|
|
f_la57 = entry->ecx & F(LA57);
|
|
|
|
cpuid_mask(&entry->ecx, CPUID_7_ECX);
|
|
|
|
/* Set LA57 based on hardware capability. */
|
|
|
|
entry->ecx |= f_la57;
|
|
|
|
entry->ecx |= f_umip;
|
|
|
|
/* PKU is not yet implemented for shadow paging. */
|
|
|
|
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
|
|
|
|
entry->ecx &= ~F(PKU);
|
|
|
|
|
|
|
|
entry->edx &= kvm_cpuid_7_0_edx_x86_features;
|
|
|
|
cpuid_mask(&entry->edx, CPUID_7_EDX);
|
2019-08-19 23:24:07 +08:00
|
|
|
if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
|
|
|
|
entry->edx |= F(SPEC_CTRL);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
|
|
entry->edx |= F(INTEL_STIBP);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_SSBD))
|
|
|
|
entry->edx |= F(SPEC_CTRL_SSBD);
|
2019-07-04 18:18:13 +08:00
|
|
|
/*
|
|
|
|
* We emulate ARCH_CAPABILITIES in software even
|
|
|
|
* if the host doesn't support it.
|
|
|
|
*/
|
|
|
|
entry->edx |= F(ARCH_CAPABILITIES);
|
|
|
|
break;
|
2019-07-11 13:49:57 +08:00
|
|
|
case 1:
|
|
|
|
entry->eax &= kvm_cpuid_7_1_eax_x86_features;
|
|
|
|
entry->ebx = 0;
|
|
|
|
entry->ecx = 0;
|
|
|
|
entry->edx = 0;
|
|
|
|
break;
|
2019-07-04 18:18:13 +08:00
|
|
|
default:
|
|
|
|
WARN_ON_ONCE(1);
|
|
|
|
entry->eax = 0;
|
|
|
|
entry->ebx = 0;
|
|
|
|
entry->ecx = 0;
|
|
|
|
entry->edx = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-24 16:23:33 +08:00
|
|
|
static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
|
|
|
|
int *nent, int maxnent)
|
2011-11-23 22:30:32 +08:00
|
|
|
{
|
2011-11-28 17:20:29 +08:00
|
|
|
int r;
|
2011-11-23 22:30:32 +08:00
|
|
|
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
|
|
|
|
? F(GBPAGES) : 0;
|
|
|
|
unsigned f_lm = F(LM);
|
|
|
|
#else
|
|
|
|
unsigned f_gbpages = 0;
|
|
|
|
unsigned f_lm = 0;
|
|
|
|
#endif
|
|
|
|
unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
|
2014-12-02 19:21:30 +08:00
|
|
|
unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
|
2018-10-24 16:05:11 +08:00
|
|
|
unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
|
2011-11-23 22:30:32 +08:00
|
|
|
|
|
|
|
/* cpuid 1.edx */
|
2016-03-22 16:51:14 +08:00
|
|
|
const u32 kvm_cpuid_1_edx_x86_features =
|
2011-11-23 22:30:32 +08:00
|
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
|
|
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
2014-02-28 00:31:30 +08:00
|
|
|
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
|
2011-11-23 22:30:32 +08:00
|
|
|
0 /* Reserved, DS, ACPI */ | F(MMX) |
|
|
|
|
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
|
|
|
|
0 /* HTT, TM, Reserved, PBE */;
|
|
|
|
/* cpuid 0x80000001.edx */
|
2016-03-22 16:51:14 +08:00
|
|
|
const u32 kvm_cpuid_8000_0001_edx_x86_features =
|
2011-11-23 22:30:32 +08:00
|
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
|
|
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
|
|
F(PAT) | F(PSE36) | 0 /* Reserved */ |
|
|
|
|
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
|
|
|
|
F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
|
|
|
|
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
|
|
|
|
/* cpuid 1.ecx */
|
2016-03-22 16:51:14 +08:00
|
|
|
const u32 kvm_cpuid_1_ecx_x86_features =
|
2014-05-08 04:52:13 +08:00
|
|
|
/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
|
|
|
|
* but *not* advertised to guests via CPUID ! */
|
2011-11-23 22:30:32 +08:00
|
|
|
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
|
|
|
|
0 /* DS-CPL, VMX, SMX, EST */ |
|
|
|
|
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
|
2011-11-28 19:55:19 +08:00
|
|
|
F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
|
2012-07-02 09:18:48 +08:00
|
|
|
F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
|
2011-11-23 22:30:32 +08:00
|
|
|
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
|
|
|
|
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
|
|
|
|
F(F16C) | F(RDRAND);
|
|
|
|
/* cpuid 0x80000001.ecx */
|
2016-03-22 16:51:14 +08:00
|
|
|
const u32 kvm_cpuid_8000_0001_ecx_x86_features =
|
2011-11-23 22:30:32 +08:00
|
|
|
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
|
|
|
|
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
|
2012-01-10 03:00:35 +08:00
|
|
|
F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
|
2018-01-30 00:39:44 +08:00
|
|
|
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
|
2018-02-06 03:24:52 +08:00
|
|
|
F(TOPOEXT) | F(PERFCTR_CORE);
|
2011-11-23 22:30:32 +08:00
|
|
|
|
2018-02-02 05:59:43 +08:00
|
|
|
/* cpuid 0x80000008.ebx */
|
|
|
|
const u32 kvm_cpuid_8000_0008_ebx_x86_features =
|
2019-09-26 05:37:21 +08:00
|
|
|
F(CLZERO) | F(XSAVEERPTR) |
|
|
|
|
F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
|
|
|
|
F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
|
2018-02-02 05:59:43 +08:00
|
|
|
|
2011-11-23 22:30:32 +08:00
|
|
|
/* cpuid 0xC0000001.edx */
|
2016-03-22 16:51:14 +08:00
|
|
|
const u32 kvm_cpuid_C000_0001_edx_x86_features =
|
2011-11-23 22:30:32 +08:00
|
|
|
F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
|
|
|
|
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
|
|
|
|
F(PMM) | F(PMM_EN);
|
|
|
|
|
2014-11-22 01:13:26 +08:00
|
|
|
/* cpuid 0xD.1.eax */
|
2016-03-22 16:51:14 +08:00
|
|
|
const u32 kvm_cpuid_D_1_eax_x86_features =
|
2014-12-02 19:21:30 +08:00
|
|
|
F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
|
2014-11-22 01:13:26 +08:00
|
|
|
|
2011-11-23 22:30:32 +08:00
|
|
|
/* all calls to cpuid_count() should be made on the same cpu */
|
|
|
|
get_cpu();
|
2011-11-28 17:20:29 +08:00
|
|
|
|
|
|
|
r = -E2BIG;
|
|
|
|
|
2019-12-04 17:28:54 +08:00
|
|
|
if (WARN_ON(*nent >= maxnent))
|
2011-11-28 17:20:29 +08:00
|
|
|
goto out;
|
|
|
|
|
2019-06-24 16:29:25 +08:00
|
|
|
do_host_cpuid(entry, function, 0);
|
2011-11-23 22:30:32 +08:00
|
|
|
++*nent;
|
|
|
|
|
|
|
|
switch (function) {
|
|
|
|
case 0:
|
2019-06-06 09:18:45 +08:00
|
|
|
/* Limited to the highest leaf implemented in KVM. */
|
|
|
|
entry->eax = min(entry->eax, 0x1fU);
|
2011-11-23 22:30:32 +08:00
|
|
|
break;
|
|
|
|
case 1:
|
2016-03-22 16:51:14 +08:00
|
|
|
entry->edx &= kvm_cpuid_1_edx_x86_features;
|
|
|
|
cpuid_mask(&entry->edx, CPUID_1_EDX);
|
|
|
|
entry->ecx &= kvm_cpuid_1_ecx_x86_features;
|
|
|
|
cpuid_mask(&entry->ecx, CPUID_1_ECX);
|
2011-11-23 22:30:32 +08:00
|
|
|
/* we support x2apic emulation even if host does not support
|
|
|
|
* it since we emulate x2apic in software */
|
|
|
|
entry->ecx |= F(X2APIC);
|
|
|
|
break;
|
|
|
|
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
|
|
|
|
* may return different values. This forces us to get_cpu() before
|
|
|
|
* issuing the first command, and also to emulate this annoying behavior
|
|
|
|
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
|
|
|
|
case 2: {
|
|
|
|
int t, times = entry->eax & 0xff;
|
|
|
|
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
|
2011-11-28 17:20:29 +08:00
|
|
|
for (t = 1; t < times; ++t) {
|
|
|
|
if (*nent >= maxnent)
|
|
|
|
goto out;
|
|
|
|
|
2019-06-24 16:29:25 +08:00
|
|
|
do_host_cpuid(&entry[t], function, 0);
|
2011-11-23 22:30:32 +08:00
|
|
|
++*nent;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2019-03-28 04:15:36 +08:00
|
|
|
/* functions 4 and 0x8000001d have additional index. */
|
|
|
|
case 4:
|
|
|
|
case 0x8000001d: {
|
2011-11-23 22:30:32 +08:00
|
|
|
int i, cache_type;
|
|
|
|
|
|
|
|
/* read more entries until cache_type is zero */
|
2011-11-28 17:20:29 +08:00
|
|
|
for (i = 1; ; ++i) {
|
|
|
|
if (*nent >= maxnent)
|
|
|
|
goto out;
|
|
|
|
|
2011-11-23 22:30:32 +08:00
|
|
|
cache_type = entry[i - 1].eax & 0x1f;
|
|
|
|
if (!cache_type)
|
|
|
|
break;
|
2019-06-24 16:29:25 +08:00
|
|
|
do_host_cpuid(&entry[i], function, i);
|
2011-11-23 22:30:32 +08:00
|
|
|
++*nent;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2015-05-24 23:22:38 +08:00
|
|
|
case 6: /* Thermal management */
|
|
|
|
entry->eax = 0x4; /* allow ARAT */
|
|
|
|
entry->ebx = 0;
|
|
|
|
entry->ecx = 0;
|
|
|
|
entry->edx = 0;
|
|
|
|
break;
|
2019-07-04 18:18:13 +08:00
|
|
|
/* function 7 has additional index. */
|
2011-11-23 22:30:32 +08:00
|
|
|
case 7: {
|
2019-07-04 18:18:13 +08:00
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; ; ) {
|
|
|
|
do_cpuid_7_mask(&entry[i], i);
|
|
|
|
if (i == entry->eax)
|
|
|
|
break;
|
|
|
|
if (*nent >= maxnent)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
++i;
|
2019-06-24 16:29:25 +08:00
|
|
|
do_host_cpuid(&entry[i], function, i);
|
2019-07-04 18:18:13 +08:00
|
|
|
++*nent;
|
|
|
|
}
|
2011-11-23 22:30:32 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 9:
|
|
|
|
break;
|
2011-11-10 20:57:28 +08:00
|
|
|
case 0xa: { /* Architectural Performance Monitoring */
|
|
|
|
struct x86_pmu_capability cap;
|
|
|
|
union cpuid10_eax eax;
|
|
|
|
union cpuid10_edx edx;
|
|
|
|
|
|
|
|
perf_get_x86_pmu_capability(&cap);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Only support guest architectural pmu on a host
|
|
|
|
* with architectural pmu.
|
|
|
|
*/
|
|
|
|
if (!cap.version)
|
|
|
|
memset(&cap, 0, sizeof(cap));
|
|
|
|
|
|
|
|
eax.split.version_id = min(cap.version, 2);
|
|
|
|
eax.split.num_counters = cap.num_counters_gp;
|
|
|
|
eax.split.bit_width = cap.bit_width_gp;
|
|
|
|
eax.split.mask_length = cap.events_mask_len;
|
|
|
|
|
|
|
|
edx.split.num_counters_fixed = cap.num_counters_fixed;
|
|
|
|
edx.split.bit_width_fixed = cap.bit_width_fixed;
|
|
|
|
edx.split.reserved = 0;
|
|
|
|
|
|
|
|
entry->eax = eax.full;
|
|
|
|
entry->ebx = cap.events_mask;
|
|
|
|
entry->ecx = 0;
|
|
|
|
entry->edx = edx.full;
|
|
|
|
break;
|
|
|
|
}
|
2019-06-06 09:18:45 +08:00
|
|
|
/*
|
|
|
|
* Per Intel's SDM, the 0x1f is a superset of 0xb,
|
|
|
|
* thus they can be handled by common code.
|
|
|
|
*/
|
|
|
|
case 0x1f:
|
2011-11-23 22:30:32 +08:00
|
|
|
case 0xb: {
|
2019-09-26 02:17:14 +08:00
|
|
|
int i;
|
2011-11-23 22:30:32 +08:00
|
|
|
|
2019-09-26 02:17:14 +08:00
|
|
|
/*
|
|
|
|
* We filled in entry[0] for CPUID(EAX=<function>,
|
|
|
|
* ECX=00H) above. If its level type (ECX[15:8]) is
|
|
|
|
* zero, then the leaf is unimplemented, and we're
|
|
|
|
* done. Otherwise, continue to populate entries
|
|
|
|
* until the level type (ECX[15:8]) of the previously
|
|
|
|
* added entry is zero.
|
|
|
|
*/
|
|
|
|
for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
|
2011-11-28 17:20:29 +08:00
|
|
|
if (*nent >= maxnent)
|
|
|
|
goto out;
|
|
|
|
|
2019-06-24 16:29:25 +08:00
|
|
|
do_host_cpuid(&entry[i], function, i);
|
2011-11-23 22:30:32 +08:00
|
|
|
++*nent;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 0xd: {
|
|
|
|
int idx, i;
|
2014-02-24 19:15:16 +08:00
|
|
|
u64 supported = kvm_supported_xcr0();
|
2011-11-23 22:30:32 +08:00
|
|
|
|
2014-02-24 19:15:16 +08:00
|
|
|
entry->eax &= supported;
|
2014-12-05 01:30:41 +08:00
|
|
|
entry->ebx = xstate_required_size(supported, false);
|
|
|
|
entry->ecx = entry->ebx;
|
2014-02-24 19:15:16 +08:00
|
|
|
entry->edx &= supported >> 32;
|
2014-11-22 01:13:26 +08:00
|
|
|
if (!supported)
|
|
|
|
break;
|
|
|
|
|
2011-11-28 17:20:29 +08:00
|
|
|
for (idx = 1, i = 1; idx < 64; ++idx) {
|
2014-02-24 19:15:16 +08:00
|
|
|
u64 mask = ((u64)1 << idx);
|
2011-11-28 17:20:29 +08:00
|
|
|
if (*nent >= maxnent)
|
|
|
|
goto out;
|
|
|
|
|
2019-06-24 16:29:25 +08:00
|
|
|
do_host_cpuid(&entry[i], function, idx);
|
2014-12-03 21:38:01 +08:00
|
|
|
if (idx == 1) {
|
2016-03-22 16:51:14 +08:00
|
|
|
entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
|
2016-03-21 19:33:00 +08:00
|
|
|
cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
|
2014-12-03 21:38:01 +08:00
|
|
|
entry[i].ebx = 0;
|
|
|
|
if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
|
|
|
|
entry[i].ebx =
|
|
|
|
xstate_required_size(supported,
|
|
|
|
true);
|
2014-12-04 22:11:11 +08:00
|
|
|
} else {
|
|
|
|
if (entry[i].eax == 0 || !(supported & mask))
|
|
|
|
continue;
|
|
|
|
if (WARN_ON_ONCE(entry[i].ecx & 1))
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
entry[i].ecx = 0;
|
|
|
|
entry[i].edx = 0;
|
2011-11-23 22:30:32 +08:00
|
|
|
++*nent;
|
|
|
|
++i;
|
|
|
|
}
|
|
|
|
break;
|
2018-10-24 16:05:11 +08:00
|
|
|
}
|
|
|
|
/* Intel PT */
|
|
|
|
case 0x14: {
|
|
|
|
int t, times = entry->eax;
|
|
|
|
|
|
|
|
if (!f_intel_pt)
|
|
|
|
break;
|
|
|
|
|
|
|
|
for (t = 1; t <= times; ++t) {
|
|
|
|
if (*nent >= maxnent)
|
|
|
|
goto out;
|
2019-06-24 16:29:25 +08:00
|
|
|
do_host_cpuid(&entry[t], function, t);
|
2018-10-24 16:05:11 +08:00
|
|
|
++*nent;
|
|
|
|
}
|
|
|
|
break;
|
2011-11-23 22:30:32 +08:00
|
|
|
}
|
|
|
|
case KVM_CPUID_SIGNATURE: {
|
2012-08-30 07:30:13 +08:00
|
|
|
static const char signature[12] = "KVMKVMKVM\0\0";
|
|
|
|
const u32 *sigptr = (const u32 *)signature;
|
2012-05-02 22:55:56 +08:00
|
|
|
entry->eax = KVM_CPUID_FEATURES;
|
2011-11-23 22:30:32 +08:00
|
|
|
entry->ebx = sigptr[0];
|
|
|
|
entry->ecx = sigptr[1];
|
|
|
|
entry->edx = sigptr[2];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case KVM_CPUID_FEATURES:
|
|
|
|
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
|
|
|
|
(1 << KVM_FEATURE_NOP_IO_DELAY) |
|
|
|
|
(1 << KVM_FEATURE_CLOCKSOURCE2) |
|
|
|
|
(1 << KVM_FEATURE_ASYNC_PF) |
|
2012-06-25 00:25:07 +08:00
|
|
|
(1 << KVM_FEATURE_PV_EOI) |
|
2013-08-26 16:48:34 +08:00
|
|
|
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
|
2017-12-13 09:33:04 +08:00
|
|
|
(1 << KVM_FEATURE_PV_UNHALT) |
|
2018-02-02 05:16:21 +08:00
|
|
|
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
|
KVM: X86: Implement "send IPI" hypercall
Using hypercall to send IPIs by one vmexit instead of one by one for
xAPIC/x2APIC physical mode and one vmexit per-cluster for x2APIC cluster
mode. Intel guest can enter x2apic cluster mode when interrupt remmaping
is enabled in qemu, however, latest AMD EPYC still just supports xapic
mode which can get great improvement by Exit-less IPIs. This patchset
lets a guest send multicast IPIs, with at most 128 destinations per
hypercall in 64-bit mode and 64 vCPUs per hypercall in 32-bit mode.
Hardware: Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads, the VM
is 80 vCPUs, IPI microbenchmark(https://lkml.org/lkml/2017/12/19/141):
x2apic cluster mode, vanilla
Dry-run: 0, 2392199 ns
Self-IPI: 6907514, 15027589 ns
Normal IPI: 223910476, 251301666 ns
Broadcast IPI: 0, 9282161150 ns
Broadcast lock: 0, 8812934104 ns
x2apic cluster mode, pv-ipi
Dry-run: 0, 2449341 ns
Self-IPI: 6720360, 15028732 ns
Normal IPI: 228643307, 255708477 ns
Broadcast IPI: 0, 7572293590 ns => 22% performance boost
Broadcast lock: 0, 8316124651 ns
x2apic physical mode, vanilla
Dry-run: 0, 3135933 ns
Self-IPI: 8572670, 17901757 ns
Normal IPI: 226444334, 255421709 ns
Broadcast IPI: 0, 19845070887 ns
Broadcast lock: 0, 19827383656 ns
x2apic physical mode, pv-ipi
Dry-run: 0, 2446381 ns
Self-IPI: 6788217, 15021056 ns
Normal IPI: 219454441, 249583458 ns
Broadcast IPI: 0, 7806540019 ns => 154% performance boost
Broadcast lock: 0, 9143618799 ns
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-07-23 14:39:54 +08:00
|
|
|
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
|
2019-06-04 06:52:44 +08:00
|
|
|
(1 << KVM_FEATURE_PV_SEND_IPI) |
|
2019-06-11 20:23:50 +08:00
|
|
|
(1 << KVM_FEATURE_POLL_CONTROL) |
|
|
|
|
(1 << KVM_FEATURE_PV_SCHED_YIELD);
|
2011-11-23 22:30:32 +08:00
|
|
|
|
|
|
|
if (sched_info_on())
|
|
|
|
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
|
|
|
|
|
|
|
|
entry->ebx = 0;
|
|
|
|
entry->ecx = 0;
|
|
|
|
entry->edx = 0;
|
|
|
|
break;
|
|
|
|
case 0x80000000:
|
2017-12-05 00:57:25 +08:00
|
|
|
entry->eax = min(entry->eax, 0x8000001f);
|
2011-11-23 22:30:32 +08:00
|
|
|
break;
|
|
|
|
case 0x80000001:
|
2016-03-22 16:51:14 +08:00
|
|
|
entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
|
|
|
|
cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
|
|
|
|
entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
|
|
|
|
cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
|
2011-11-23 22:30:32 +08:00
|
|
|
break;
|
2014-04-27 09:30:23 +08:00
|
|
|
case 0x80000007: /* Advanced power management */
|
|
|
|
/* invariant TSC is CPUID.80000007H:EDX[8] */
|
|
|
|
entry->edx &= (1 << 8);
|
|
|
|
/* mask against host */
|
|
|
|
entry->edx &= boot_cpu_data.x86_power;
|
|
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
|
|
break;
|
2011-11-23 22:30:32 +08:00
|
|
|
case 0x80000008: {
|
|
|
|
unsigned g_phys_as = (entry->eax >> 16) & 0xff;
|
|
|
|
unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
|
|
|
|
unsigned phys_as = entry->eax & 0xff;
|
|
|
|
|
|
|
|
if (!g_phys_as)
|
|
|
|
g_phys_as = phys_as;
|
|
|
|
entry->eax = g_phys_as | (virt_as << 8);
|
2018-02-02 05:59:43 +08:00
|
|
|
entry->edx = 0;
|
2019-08-15 00:07:34 +08:00
|
|
|
entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
|
|
|
|
cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
|
2018-05-11 04:06:39 +08:00
|
|
|
/*
|
2019-08-15 00:07:34 +08:00
|
|
|
* AMD has separate bits for each SPEC_CTRL bit.
|
|
|
|
* arch/x86/kernel/cpu/bugs.c is kind enough to
|
|
|
|
* record that in cpufeatures so use them.
|
2018-05-11 04:06:39 +08:00
|
|
|
*/
|
2019-08-15 00:07:34 +08:00
|
|
|
if (boot_cpu_has(X86_FEATURE_IBPB))
|
2018-05-03 00:15:14 +08:00
|
|
|
entry->ebx |= F(AMD_IBPB);
|
2019-08-15 00:07:34 +08:00
|
|
|
if (boot_cpu_has(X86_FEATURE_IBRS))
|
2018-05-03 00:15:14 +08:00
|
|
|
entry->ebx |= F(AMD_IBRS);
|
2019-08-15 00:07:34 +08:00
|
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
|
|
entry->ebx |= F(AMD_STIBP);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_SSBD))
|
|
|
|
entry->ebx |= F(AMD_SSBD);
|
|
|
|
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
|
|
|
|
entry->ebx |= F(AMD_SSB_NO);
|
2018-06-01 22:59:20 +08:00
|
|
|
/*
|
|
|
|
* The preference is to use SPEC CTRL MSR instead of the
|
|
|
|
* VIRT_SPEC MSR.
|
|
|
|
*/
|
|
|
|
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
|
|
|
|
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
2018-05-11 04:06:39 +08:00
|
|
|
entry->ebx |= F(VIRT_SSBD);
|
2011-11-23 22:30:32 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 0x80000019:
|
|
|
|
entry->ecx = entry->edx = 0;
|
|
|
|
break;
|
|
|
|
case 0x8000001a:
|
2019-03-28 04:15:37 +08:00
|
|
|
case 0x8000001e:
|
2011-11-23 22:30:32 +08:00
|
|
|
break;
|
2019-11-22 04:33:43 +08:00
|
|
|
/* Support memory encryption cpuid if host supports it */
|
|
|
|
case 0x8000001F:
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_SEV))
|
|
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
|
|
break;
|
2011-11-23 22:30:32 +08:00
|
|
|
/*Add support for Centaur's CPUID instruction*/
|
|
|
|
case 0xC0000000:
|
|
|
|
/*Just support up to 0xC0000004 now*/
|
|
|
|
entry->eax = min(entry->eax, 0xC0000004);
|
|
|
|
break;
|
|
|
|
case 0xC0000001:
|
2016-03-22 16:51:14 +08:00
|
|
|
entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
|
|
|
|
cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
|
2011-11-23 22:30:32 +08:00
|
|
|
break;
|
|
|
|
case 3: /* Processor serial number */
|
|
|
|
case 5: /* MONITOR/MWAIT */
|
|
|
|
case 0xC0000002:
|
|
|
|
case 0xC0000003:
|
|
|
|
case 0xC0000004:
|
|
|
|
default:
|
|
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
kvm_x86_ops->set_supported_cpuid(function, entry);
|
|
|
|
|
2011-11-28 17:20:29 +08:00
|
|
|
r = 0;
|
|
|
|
|
|
|
|
out:
|
2011-11-23 22:30:32 +08:00
|
|
|
put_cpu();
|
2011-11-28 17:20:29 +08:00
|
|
|
|
|
|
|
return r;
|
2011-11-23 22:30:32 +08:00
|
|
|
}
|
|
|
|
|
2019-06-24 16:23:33 +08:00
|
|
|
static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
|
|
|
|
int *nent, int maxnent, unsigned int type)
|
2013-09-22 22:44:50 +08:00
|
|
|
{
|
2019-12-04 17:28:54 +08:00
|
|
|
if (*nent >= maxnent)
|
|
|
|
return -E2BIG;
|
|
|
|
|
2013-09-22 22:44:50 +08:00
|
|
|
if (type == KVM_GET_EMULATED_CPUID)
|
2019-06-24 16:23:33 +08:00
|
|
|
return __do_cpuid_func_emulated(entry, func, nent, maxnent);
|
2013-09-22 22:44:50 +08:00
|
|
|
|
2019-06-24 16:23:33 +08:00
|
|
|
return __do_cpuid_func(entry, func, nent, maxnent);
|
2013-09-22 22:44:50 +08:00
|
|
|
}
|
|
|
|
|
2011-11-28 17:20:29 +08:00
|
|
|
struct kvm_cpuid_param {
|
|
|
|
u32 func;
|
2012-08-30 07:30:13 +08:00
|
|
|
bool (*qualifier)(const struct kvm_cpuid_param *param);
|
2011-11-28 17:20:29 +08:00
|
|
|
};
|
|
|
|
|
2012-08-30 07:30:13 +08:00
|
|
|
static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
|
2011-11-28 17:20:29 +08:00
|
|
|
{
|
|
|
|
return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
|
|
|
|
}
|
|
|
|
|
2013-09-22 22:44:50 +08:00
|
|
|
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
|
|
|
|
__u32 num_entries, unsigned int ioctl_type)
|
|
|
|
{
|
|
|
|
int i;
|
2013-11-06 22:46:02 +08:00
|
|
|
__u32 pad[3];
|
2013-09-22 22:44:50 +08:00
|
|
|
|
|
|
|
if (ioctl_type != KVM_GET_EMULATED_CPUID)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We want to make sure that ->padding is being passed clean from
|
|
|
|
* userspace in case we want to use it for something in the future.
|
|
|
|
*
|
|
|
|
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
|
|
|
|
* have to give ourselves satisfied only with the emulated side. /me
|
|
|
|
* sheds a tear.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < num_entries; i++) {
|
2013-11-06 22:46:02 +08:00
|
|
|
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (pad[0] || pad[1] || pad[2])
|
2013-09-22 22:44:50 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
|
|
|
|
struct kvm_cpuid_entry2 __user *entries,
|
|
|
|
unsigned int type)
|
2011-11-23 22:30:32 +08:00
|
|
|
{
|
|
|
|
struct kvm_cpuid_entry2 *cpuid_entries;
|
2011-11-28 17:20:29 +08:00
|
|
|
int limit, nent = 0, r = -E2BIG, i;
|
2011-11-23 22:30:32 +08:00
|
|
|
u32 func;
|
2012-08-30 07:30:13 +08:00
|
|
|
static const struct kvm_cpuid_param param[] = {
|
2019-06-24 16:32:57 +08:00
|
|
|
{ .func = 0 },
|
|
|
|
{ .func = 0x80000000 },
|
|
|
|
{ .func = 0xC0000000, .qualifier = is_centaur_cpu },
|
2011-11-28 17:20:29 +08:00
|
|
|
{ .func = KVM_CPUID_SIGNATURE },
|
|
|
|
};
|
2011-11-23 22:30:32 +08:00
|
|
|
|
|
|
|
if (cpuid->nent < 1)
|
|
|
|
goto out;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
|
|
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
|
2013-09-22 22:44:50 +08:00
|
|
|
|
|
|
|
if (sanity_check_entries(entries, cpuid->nent, type))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2011-11-23 22:30:32 +08:00
|
|
|
r = -ENOMEM;
|
treewide: Use array_size() in vzalloc()
The vzalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:
vzalloc(a * b)
with:
vzalloc(array_size(a, b))
as well as handling cases of:
vzalloc(a * b * c)
with:
vzalloc(array3_size(a, b, c))
This does, however, attempt to ignore constant size factors like:
vzalloc(4 * 1024)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
vzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
vzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
vzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
vzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
vzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
vzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
vzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
vzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
vzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
vzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
vzalloc(
- sizeof(TYPE) * (COUNT_ID)
+ array_size(COUNT_ID, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * COUNT_ID
+ array_size(COUNT_ID, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * (COUNT_CONST)
+ array_size(COUNT_CONST, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * COUNT_CONST
+ array_size(COUNT_CONST, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(THING) * (COUNT_ID)
+ array_size(COUNT_ID, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * COUNT_ID
+ array_size(COUNT_ID, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * (COUNT_CONST)
+ array_size(COUNT_CONST, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * COUNT_CONST
+ array_size(COUNT_CONST, sizeof(THING))
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
vzalloc(
- SIZE * COUNT
+ array_size(COUNT, SIZE)
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
vzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
vzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
vzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
vzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
vzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
vzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
vzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
vzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
vzalloc(C1 * C2 * C3, ...)
|
vzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@
(
vzalloc(C1 * C2, ...)
|
vzalloc(
- E1 * E2
+ array_size(E1, E2)
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:27:37 +08:00
|
|
|
cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
|
|
|
|
cpuid->nent));
|
2011-11-23 22:30:32 +08:00
|
|
|
if (!cpuid_entries)
|
|
|
|
goto out;
|
|
|
|
|
2011-11-28 17:20:29 +08:00
|
|
|
r = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(param); i++) {
|
2012-08-30 07:30:13 +08:00
|
|
|
const struct kvm_cpuid_param *ent = ¶m[i];
|
2011-11-23 22:30:32 +08:00
|
|
|
|
2011-11-28 17:20:29 +08:00
|
|
|
if (ent->qualifier && !ent->qualifier(ent))
|
|
|
|
continue;
|
2011-11-23 22:30:32 +08:00
|
|
|
|
2019-06-24 16:23:33 +08:00
|
|
|
r = do_cpuid_func(&cpuid_entries[nent], ent->func,
|
|
|
|
&nent, cpuid->nent, type);
|
2011-11-23 22:30:32 +08:00
|
|
|
|
2011-11-28 17:20:29 +08:00
|
|
|
if (r)
|
2011-11-23 22:30:32 +08:00
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
limit = cpuid_entries[nent - 1].eax;
|
2011-11-28 17:20:29 +08:00
|
|
|
for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
|
2019-06-24 16:23:33 +08:00
|
|
|
r = do_cpuid_func(&cpuid_entries[nent], func,
|
|
|
|
&nent, cpuid->nent, type);
|
2011-11-23 22:30:32 +08:00
|
|
|
|
2011-11-28 17:20:29 +08:00
|
|
|
if (r)
|
2011-11-23 22:30:32 +08:00
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
r = -EFAULT;
|
|
|
|
if (copy_to_user(entries, cpuid_entries,
|
|
|
|
nent * sizeof(struct kvm_cpuid_entry2)))
|
|
|
|
goto out_free;
|
|
|
|
cpuid->nent = nent;
|
|
|
|
r = 0;
|
|
|
|
|
|
|
|
out_free:
|
|
|
|
vfree(cpuid_entries);
|
|
|
|
out:
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
|
|
|
|
{
|
|
|
|
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
|
2017-06-08 16:22:07 +08:00
|
|
|
struct kvm_cpuid_entry2 *ej;
|
|
|
|
int j = i;
|
|
|
|
int nent = vcpu->arch.cpuid_nent;
|
2011-11-23 22:30:32 +08:00
|
|
|
|
|
|
|
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
|
|
/* when no next entry is found, the current entry[i] is reselected */
|
2017-06-08 16:22:07 +08:00
|
|
|
do {
|
|
|
|
j = (j + 1) % nent;
|
|
|
|
ej = &vcpu->arch.cpuid_entries[j];
|
|
|
|
} while (ej->function != e->function);
|
|
|
|
|
|
|
|
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
|
|
|
|
|
|
return j;
|
2011-11-23 22:30:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* find an entry with matching function, matching index (if needed), and that
|
|
|
|
* should be read next (if it's stateful) */
|
|
|
|
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
|
|
|
|
u32 function, u32 index)
|
|
|
|
{
|
|
|
|
if (e->function != function)
|
|
|
|
return 0;
|
|
|
|
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
|
|
|
|
return 0;
|
|
|
|
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
|
|
|
|
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
|
|
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
|
|
|
|
u32 function, u32 index)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct kvm_cpuid_entry2 *best = NULL;
|
|
|
|
|
|
|
|
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
|
|
|
|
struct kvm_cpuid_entry2 *e;
|
|
|
|
|
|
|
|
e = &vcpu->arch.cpuid_entries[i];
|
|
|
|
if (is_matching_cpuid_entry(e, function, index)) {
|
|
|
|
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
|
|
|
|
move_to_next_stateful_cpuid_entry(vcpu, i);
|
|
|
|
best = e;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return best;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
|
|
|
|
|
|
|
|
/*
|
2019-09-26 08:04:17 +08:00
|
|
|
* If the basic or extended CPUID leaf requested is higher than the
|
|
|
|
* maximum supported basic or extended leaf, respectively, then it is
|
|
|
|
* out of range.
|
2011-11-23 22:30:32 +08:00
|
|
|
*/
|
2019-09-26 08:04:17 +08:00
|
|
|
static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
|
2011-11-23 22:30:32 +08:00
|
|
|
{
|
2019-09-26 08:04:17 +08:00
|
|
|
struct kvm_cpuid_entry2 *max;
|
|
|
|
|
|
|
|
max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
|
|
|
|
return max && function <= max->eax;
|
2011-11-23 22:30:32 +08:00
|
|
|
}
|
|
|
|
|
2017-08-24 20:27:52 +08:00
|
|
|
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
|
|
|
|
u32 *ecx, u32 *edx, bool check_limit)
|
2011-11-23 22:30:32 +08:00
|
|
|
{
|
2012-06-07 19:07:48 +08:00
|
|
|
u32 function = *eax, index = *ecx;
|
2019-09-26 08:04:17 +08:00
|
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
struct kvm_cpuid_entry2 *max;
|
|
|
|
bool found;
|
2017-08-24 20:27:52 +08:00
|
|
|
|
2019-09-26 08:04:17 +08:00
|
|
|
entry = kvm_find_cpuid_entry(vcpu, function, index);
|
|
|
|
found = entry;
|
|
|
|
/*
|
|
|
|
* Intel CPUID semantics treats any query for an out-of-range
|
|
|
|
* leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
|
2019-09-26 08:04:18 +08:00
|
|
|
* requested. AMD CPUID semantics returns all zeroes for any
|
|
|
|
* undefined leaf, whether or not the leaf is in range.
|
2019-09-26 08:04:17 +08:00
|
|
|
*/
|
2019-09-26 08:04:18 +08:00
|
|
|
if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
|
|
|
|
!cpuid_function_in_range(vcpu, function)) {
|
2019-09-26 08:04:17 +08:00
|
|
|
max = kvm_find_cpuid_entry(vcpu, 0, 0);
|
|
|
|
if (max) {
|
|
|
|
function = max->eax;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, function, index);
|
|
|
|
}
|
2017-08-24 20:27:52 +08:00
|
|
|
}
|
2019-09-26 08:04:17 +08:00
|
|
|
if (entry) {
|
|
|
|
*eax = entry->eax;
|
|
|
|
*ebx = entry->ebx;
|
|
|
|
*ecx = entry->ecx;
|
|
|
|
*edx = entry->edx;
|
2019-11-19 01:23:00 +08:00
|
|
|
if (function == 7 && index == 0) {
|
|
|
|
u64 data;
|
|
|
|
if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
|
|
|
|
(data & TSX_CTRL_CPUID_CLEAR))
|
|
|
|
*ebx &= ~(F(RTM) | F(HLE));
|
|
|
|
}
|
2019-09-26 08:04:17 +08:00
|
|
|
} else {
|
2012-06-07 19:07:48 +08:00
|
|
|
*eax = *ebx = *ecx = *edx = 0;
|
2019-09-26 08:04:17 +08:00
|
|
|
/*
|
|
|
|
* When leaf 0BH or 1FH is defined, CL is pass-through
|
|
|
|
* and EDX is always the x2APIC ID, even for undefined
|
|
|
|
* subleaves. Index 1 will exist iff the leaf is
|
|
|
|
* implemented, so we pass through CL iff leaf 1
|
|
|
|
* exists. EDX can be copied from any existing index.
|
|
|
|
*/
|
|
|
|
if (function == 0xb || function == 0x1f) {
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, function, 1);
|
|
|
|
if (entry) {
|
|
|
|
*ecx = index & 0xff;
|
|
|
|
*edx = entry->edx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
|
|
|
|
return found;
|
2012-06-07 19:07:48 +08:00
|
|
|
}
|
2012-12-05 22:26:19 +08:00
|
|
|
EXPORT_SYMBOL_GPL(kvm_cpuid);
|
2012-06-07 19:07:48 +08:00
|
|
|
|
2016-11-30 04:40:37 +08:00
|
|
|
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
|
2012-06-07 19:07:48 +08:00
|
|
|
{
|
2016-11-07 08:55:49 +08:00
|
|
|
u32 eax, ebx, ecx, edx;
|
2012-06-07 19:07:48 +08:00
|
|
|
|
2017-03-20 16:16:28 +08:00
|
|
|
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
|
|
|
|
return 1;
|
|
|
|
|
2019-05-01 01:36:17 +08:00
|
|
|
eax = kvm_rax_read(vcpu);
|
|
|
|
ecx = kvm_rcx_read(vcpu);
|
2017-08-24 20:27:52 +08:00
|
|
|
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
|
2019-05-01 01:36:17 +08:00
|
|
|
kvm_rax_write(vcpu, eax);
|
|
|
|
kvm_rbx_write(vcpu, ebx);
|
|
|
|
kvm_rcx_write(vcpu, ecx);
|
|
|
|
kvm_rdx_write(vcpu, edx);
|
KVM: x86: Add kvm_skip_emulated_instruction and use it.
kvm_skip_emulated_instruction calls both
kvm_x86_ops->skip_emulated_instruction and kvm_vcpu_check_singlestep,
skipping the emulated instruction and generating a trap if necessary.
Replacing skip_emulated_instruction calls with
kvm_skip_emulated_instruction is straightforward, except for:
- ICEBP, which is already inside a trap, so avoid triggering another trap.
- Instructions that can trigger exits to userspace, such as the IO insns,
MOVs to CR8, and HALT. If kvm_skip_emulated_instruction does trigger a
KVM_GUESTDBG_SINGLESTEP exit, and the handling code for
IN/OUT/MOV CR8/HALT also triggers an exit to userspace, the latter will
take precedence. The singlestep will be triggered again on the next
instruction, which is the current behavior.
- Task switch instructions which would require additional handling (e.g.
the task switch bit) and are instead left alone.
- Cases where VMLAUNCH/VMRESUME do not proceed to the next instruction,
which do not trigger singlestep traps as mentioned previously.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2016-11-30 04:40:40 +08:00
|
|
|
return kvm_skip_emulated_instruction(vcpu);
|
2011-11-23 22:30:32 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|