linux/drivers/cpufreq/imx6q-cpufreq.c

550 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Freescale Semiconductor, Inc.
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/pm_opp.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#define PU_SOC_VOLTAGE_NORMAL 1250000
#define PU_SOC_VOLTAGE_HIGH 1275000
#define FREQ_1P2_GHZ 1200000000
static struct regulator *arm_reg;
static struct regulator *pu_reg;
static struct regulator *soc_reg;
enum IMX6_CPUFREQ_CLKS {
ARM,
PLL1_SYS,
STEP,
PLL1_SW,
PLL2_PFD2_396M,
/* MX6UL requires two more clks */
PLL2_BUS,
SECONDARY_SEL,
};
#define IMX6Q_CPUFREQ_CLK_NUM 5
#define IMX6UL_CPUFREQ_CLK_NUM 7
static int num_clks;
static struct clk_bulk_data clks[] = {
{ .id = "arm" },
{ .id = "pll1_sys" },
{ .id = "step" },
{ .id = "pll1_sw" },
{ .id = "pll2_pfd2_396m" },
{ .id = "pll2_bus" },
{ .id = "secondary_sel" },
};
static struct device *cpu_dev;
static struct cpufreq_frequency_table *freq_table;
static unsigned int max_freq;
static unsigned int transition_latency;
static u32 *imx6_soc_volt;
static u32 soc_opp_count;
cpufreq: Implement light weight ->target_index() routine Currently, the prototype of cpufreq_drivers target routines is: int target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); And most of the drivers call cpufreq_frequency_table_target() to get a valid index of their frequency table which is closest to the target_freq. And they don't use target_freq and relation after that. So, it makes sense to just do this work in cpufreq core before calling cpufreq_frequency_table_target() and simply pass index instead. But this can be done only with drivers which expose their frequency table with cpufreq core. For others we need to stick with the old prototype of target() until those drivers are converted to expose frequency tables. This patch implements the new light weight prototype for target_index() routine. It looks like this: int target_index(struct cpufreq_policy *policy, unsigned int index); CPUFreq core will call cpufreq_frequency_table_target() before calling this routine and pass index to it. Because CPUFreq core now requires to call routines present in freq_table.c CONFIG_CPU_FREQ_TABLE must be enabled all the time. This also marks target() interface as deprecated. So, that new drivers avoid using it. And Documentation is updated accordingly. It also converts existing .target() to newly defined light weight .target_index() routine for many driver. Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Russell King <linux@arm.linux.org.uk> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2013-10-25 22:15:48 +08:00
static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
{
struct dev_pm_opp *opp;
unsigned long freq_hz, volt, volt_old;
unsigned int old_freq, new_freq;
bool pll1_sys_temp_enabled = false;
int ret;
new_freq = freq_table[index].frequency;
freq_hz = new_freq * 1000;
old_freq = clk_get_rate(clks[ARM].clk) / 1000;
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
return PTR_ERR(opp);
}
volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
volt_old = regulator_get_voltage(arm_reg);
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
old_freq / 1000, volt_old / 1000,
new_freq / 1000, volt / 1000);
/* scaling up? scale voltage before frequency */
if (new_freq > old_freq) {
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
return ret;
}
}
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
return ret;
}
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret) {
dev_err(cpu_dev,
"failed to scale vddarm up: %d\n", ret);
return ret;
}
}
/*
* The setpoints are selected per PLL/PDF frequencies, so we need to
* reprogram PLL for frequency scaling. The procedure of reprogramming
* PLL1 is as below.
* For i.MX6UL, it has a secondary clk mux, the cpu frequency change
* flow is slightly different from other i.MX6 OSC.
* The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
* - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
* - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
* - Disable pll2_pfd2_396m_clk
*/
if (of_machine_is_compatible("fsl,imx6ul") ||
of_machine_is_compatible("fsl,imx6ull")) {
/*
* When changing pll1_sw_clk's parent to pll1_sys_clk,
* CPU may run at higher than 528MHz, this will lead to
* the system unstable if the voltage is lower than the
* voltage of 528MHz, so lower the CPU frequency to one
* half before changing CPU frequency.
*/
clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
clk_set_parent(clks[SECONDARY_SEL].clk,
clks[PLL2_BUS].clk);
else
clk_set_parent(clks[SECONDARY_SEL].clk,
clks[PLL2_PFD2_396M].clk);
clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
}
} else {
clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
} else {
/* pll1_sys needs to be enabled for divider rate change to work. */
pll1_sys_temp_enabled = true;
clk_prepare_enable(clks[PLL1_SYS].clk);
}
}
/* Ensure the arm clock divider is what we expect */
ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
if (ret) {
int ret1;
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
if (ret1)
dev_warn(cpu_dev,
"failed to restore vddarm voltage: %d\n", ret1);
return ret;
}
/* PLL1 is only needed until after ARM-PODF is set. */
if (pll1_sys_temp_enabled)
clk_disable_unprepare(clks[PLL1_SYS].clk);
/* scaling down? scale voltage after frequency */
if (new_freq < old_freq) {
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret)
dev_warn(cpu_dev,
"failed to scale vddarm down: %d\n", ret);
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
if (ret)
dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
if (ret)
dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
}
}
return 0;
}
static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
{
policy->clk = clks[ARM].clk;
cpufreq_generic_init(policy, freq_table, transition_latency);
policy->suspend_freq = max_freq;
dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
return 0;
}
static struct cpufreq_driver imx6q_cpufreq_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
cpufreq: Implement light weight ->target_index() routine Currently, the prototype of cpufreq_drivers target routines is: int target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); And most of the drivers call cpufreq_frequency_table_target() to get a valid index of their frequency table which is closest to the target_freq. And they don't use target_freq and relation after that. So, it makes sense to just do this work in cpufreq core before calling cpufreq_frequency_table_target() and simply pass index instead. But this can be done only with drivers which expose their frequency table with cpufreq core. For others we need to stick with the old prototype of target() until those drivers are converted to expose frequency tables. This patch implements the new light weight prototype for target_index() routine. It looks like this: int target_index(struct cpufreq_policy *policy, unsigned int index); CPUFreq core will call cpufreq_frequency_table_target() before calling this routine and pass index to it. Because CPUFreq core now requires to call routines present in freq_table.c CONFIG_CPU_FREQ_TABLE must be enabled all the time. This also marks target() interface as deprecated. So, that new drivers avoid using it. And Documentation is updated accordingly. It also converts existing .target() to newly defined light weight .target_index() routine for many driver. Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Russell King <linux@arm.linux.org.uk> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2013-10-25 22:15:48 +08:00
.target_index = imx6q_set_target,
.get = cpufreq_generic_get,
.init = imx6q_cpufreq_init,
.name = "imx6q-cpufreq",
.attr = cpufreq_generic_attr,
.suspend = cpufreq_generic_suspend,
};
#define OCOTP_CFG3 0x440
#define OCOTP_CFG3_SPEED_SHIFT 16
#define OCOTP_CFG3_SPEED_1P2GHZ 0x3
#define OCOTP_CFG3_SPEED_996MHZ 0x2
#define OCOTP_CFG3_SPEED_852MHZ 0x1
static int imx6q_opp_check_speed_grading(struct device *dev)
{
struct device_node *np;
void __iomem *base;
u32 val;
int ret;
if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
if (ret)
return ret;
} else {
np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
if (!np)
return -ENOENT;
base = of_iomap(np, 0);
of_node_put(np);
if (!base) {
dev_err(dev, "failed to map ocotp\n");
return -EFAULT;
}
/*
* SPEED_GRADING[1:0] defines the max speed of ARM:
* 2b'11: 1200000000Hz;
* 2b'10: 996000000Hz;
* 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
* 2b'00: 792000000Hz;
* We need to set the max speed of ARM according to fuse map.
*/
val = readl_relaxed(base + OCOTP_CFG3);
iounmap(base);
}
val >>= OCOTP_CFG3_SPEED_SHIFT;
val &= 0x3;
if (val < OCOTP_CFG3_SPEED_996MHZ)
if (dev_pm_opp_disable(dev, 996000000))
dev_warn(dev, "failed to disable 996MHz OPP\n");
if (of_machine_is_compatible("fsl,imx6q") ||
of_machine_is_compatible("fsl,imx6qp")) {
if (val != OCOTP_CFG3_SPEED_852MHZ)
if (dev_pm_opp_disable(dev, 852000000))
dev_warn(dev, "failed to disable 852MHz OPP\n");
if (val != OCOTP_CFG3_SPEED_1P2GHZ)
if (dev_pm_opp_disable(dev, 1200000000))
dev_warn(dev, "failed to disable 1.2GHz OPP\n");
}
return 0;
}
#define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
#define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
#define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
static int imx6ul_opp_check_speed_grading(struct device *dev)
{
u32 val;
int ret = 0;
if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
if (ret)
return ret;
} else {
struct device_node *np;
void __iomem *base;
np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
if (!np)
np = of_find_compatible_node(NULL, NULL,
"fsl,imx6ull-ocotp");
if (!np)
return -ENOENT;
base = of_iomap(np, 0);
of_node_put(np);
if (!base) {
dev_err(dev, "failed to map ocotp\n");
return -EFAULT;
}
val = readl_relaxed(base + OCOTP_CFG3);
iounmap(base);
}
/*
* Speed GRADING[1:0] defines the max speed of ARM:
* 2b'00: Reserved;
* 2b'01: 528000000Hz;
* 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
* 2b'11: 900000000Hz on i.MX6ULL only;
* We need to set the max speed of ARM according to fuse map.
*/
val >>= OCOTP_CFG3_SPEED_SHIFT;
val &= 0x3;
if (of_machine_is_compatible("fsl,imx6ul")) {
if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
if (dev_pm_opp_disable(dev, 696000000))
dev_warn(dev, "failed to disable 696MHz OPP\n");
}
if (of_machine_is_compatible("fsl,imx6ull")) {
if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
if (dev_pm_opp_disable(dev, 792000000))
dev_warn(dev, "failed to disable 792MHz OPP\n");
if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
if (dev_pm_opp_disable(dev, 900000000))
dev_warn(dev, "failed to disable 900MHz OPP\n");
}
return ret;
}
static int imx6q_cpufreq_probe(struct platform_device *pdev)
{
struct device_node *np;
struct dev_pm_opp *opp;
unsigned long min_volt, max_volt;
int num, ret;
const struct property *prop;
const __be32 *val;
u32 nr, i, j;
cpu_dev = get_cpu_device(0);
if (!cpu_dev) {
pr_err("failed to get cpu0 device\n");
return -ENODEV;
}
np = of_node_get(cpu_dev->of_node);
if (!np) {
dev_err(cpu_dev, "failed to find cpu0 node\n");
return -ENOENT;
}
if (of_machine_is_compatible("fsl,imx6ul") ||
of_machine_is_compatible("fsl,imx6ull"))
num_clks = IMX6UL_CPUFREQ_CLK_NUM;
else
num_clks = IMX6Q_CPUFREQ_CLK_NUM;
ret = clk_bulk_get(cpu_dev, num_clks, clks);
if (ret)
goto put_node;
arm_reg = regulator_get(cpu_dev, "arm");
pu_reg = regulator_get_optional(cpu_dev, "pu");
soc_reg = regulator_get(cpu_dev, "soc");
if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
PTR_ERR(soc_reg) == -EPROBE_DEFER ||
PTR_ERR(pu_reg) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
dev_dbg(cpu_dev, "regulators not ready, defer\n");
goto put_reg;
}
if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
dev_err(cpu_dev, "failed to get regulators\n");
ret = -ENOENT;
goto put_reg;
}
ret = dev_pm_opp_of_add_table(cpu_dev);
if (ret < 0) {
dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
goto put_reg;
}
if (of_machine_is_compatible("fsl,imx6ul") ||
of_machine_is_compatible("fsl,imx6ull")) {
ret = imx6ul_opp_check_speed_grading(cpu_dev);
} else {
ret = imx6q_opp_check_speed_grading(cpu_dev);
}
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(cpu_dev, "failed to read ocotp: %d\n",
ret);
goto out_free_opp;
}
num = dev_pm_opp_get_opp_count(cpu_dev);
if (num < 0) {
ret = num;
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
goto out_free_opp;
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto out_free_opp;
}
/* Make imx6_soc_volt array's size same as arm opp number */
treewide: devm_kzalloc() -> devm_kcalloc() The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc(). This patch replaces cases of: devm_kzalloc(handle, a * b, gfp) with: devm_kcalloc(handle, a * b, gfp) as well as handling cases of: devm_kzalloc(handle, a * b * c, gfp) with: devm_kzalloc(handle, array3_size(a, b, c), gfp) as it's slightly less ugly than: devm_kcalloc(handle, array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: devm_kzalloc(handle, 4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. Some manual whitespace fixes were needed in this patch, as Coccinelle really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...". The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ expression HANDLE; type TYPE; expression THING, E; @@ ( devm_kzalloc(HANDLE, - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | devm_kzalloc(HANDLE, - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression HANDLE; expression COUNT; typedef u8; typedef __u8; @@ ( devm_kzalloc(HANDLE, - sizeof(u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ expression HANDLE; type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ expression HANDLE; identifier SIZE, COUNT; @@ - devm_kzalloc + devm_kcalloc (HANDLE, - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression HANDLE; expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression HANDLE; expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ expression HANDLE; identifier STRIDE, SIZE, COUNT; @@ ( devm_kzalloc(HANDLE, - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression HANDLE; expression E1, E2, E3; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression HANDLE; expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, sizeof(THING) * C2, ...) | devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...) | devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, C1 * C2, ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * E2 + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * (E2) + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:07:58 +08:00
imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
GFP_KERNEL);
if (imx6_soc_volt == NULL) {
ret = -ENOMEM;
goto free_freq_table;
}
prop = of_find_property(np, "fsl,soc-operating-points", NULL);
if (!prop || !prop->value)
goto soc_opp_out;
/*
* Each OPP is a set of tuples consisting of frequency and
* voltage like <freq-kHz vol-uV>.
*/
nr = prop->length / sizeof(u32);
if (nr % 2 || (nr / 2) < num)
goto soc_opp_out;
for (j = 0; j < num; j++) {
val = prop->value;
for (i = 0; i < nr / 2; i++) {
unsigned long freq = be32_to_cpup(val++);
unsigned long volt = be32_to_cpup(val++);
if (freq_table[j].frequency == freq) {
imx6_soc_volt[soc_opp_count++] = volt;
break;
}
}
}
soc_opp_out:
/* use fixed soc opp volt if no valid soc opp info found in dtb */
if (soc_opp_count != num) {
dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
for (j = 0; j < num; j++)
imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
}
if (of_property_read_u32(np, "clock-latency", &transition_latency))
transition_latency = CPUFREQ_ETERNAL;
/*
* Calculate the ramp time for max voltage change in the
* VDDSOC and VDDPU regulators.
*/
ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
if (ret > 0)
transition_latency += ret * 1000;
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
if (ret > 0)
transition_latency += ret * 1000;
}
/*
* OPP is maintained in order of increasing frequency, and
* freq_table initialised from OPP is therefore sorted in the
* same order.
*/
max_freq = freq_table[--num].frequency;
opp = dev_pm_opp_find_freq_exact(cpu_dev,
freq_table[0].frequency * 1000, true);
min_volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
max_volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
if (ret > 0)
transition_latency += ret * 1000;
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
if (ret) {
dev_err(cpu_dev, "failed register driver: %d\n", ret);
goto free_freq_table;
}
of_node_put(np);
return 0;
free_freq_table:
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
out_free_opp:
dev_pm_opp_of_remove_table(cpu_dev);
put_reg:
if (!IS_ERR(arm_reg))
regulator_put(arm_reg);
if (!IS_ERR(pu_reg))
regulator_put(pu_reg);
if (!IS_ERR(soc_reg))
regulator_put(soc_reg);
clk_bulk_put(num_clks, clks);
put_node:
of_node_put(np);
return ret;
}
static int imx6q_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&imx6q_cpufreq_driver);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
dev_pm_opp_of_remove_table(cpu_dev);
regulator_put(arm_reg);
if (!IS_ERR(pu_reg))
regulator_put(pu_reg);
regulator_put(soc_reg);
clk_bulk_put(num_clks, clks);
return 0;
}
static struct platform_driver imx6q_cpufreq_platdrv = {
.driver = {
.name = "imx6q-cpufreq",
},
.probe = imx6q_cpufreq_probe,
.remove = imx6q_cpufreq_remove,
};
module_platform_driver(imx6q_cpufreq_platdrv);
MODULE_ALIAS("platform:imx6q-cpufreq");
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
MODULE_LICENSE("GPL");