linux/arch/x86/kvm/svm/nested.c

886 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*/
#define pr_fmt(fmt) "SVM: " fmt
#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/kernel.h>
#include <asm/msr-index.h>
#include <asm/debugreg.h>
#include "kvm_emulate.h"
#include "trace.h"
#include "mmu.h"
#include "x86.h"
#include "lapic.h"
#include "svm.h"
static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
/*
* TODO: track the cause of the nested page fault, and
* correctly fill in the high bits of exit_info_1.
*/
svm->vmcb->control.exit_code = SVM_EXIT_NPF;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = (1ULL << 32);
svm->vmcb->control.exit_info_2 = fault->address;
}
svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
svm->vmcb->control.exit_info_1 |= fault->error_code;
/*
* The present bit is always zero for page structure faults on real
* hardware.
*/
if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
svm->vmcb->control.exit_info_1 &= ~1;
nested_svm_vmexit(svm);
}
static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 cr3 = svm->nested.ctl.nested_cr3;
u64 pdpte;
int ret;
ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
offset_in_page(cr3) + index * 8, 8);
if (ret)
return 0;
return pdpte;
}
static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return svm->nested.ctl.nested_cr3;
}
static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
{
WARN_ON(mmu_is_nested(vcpu));
vcpu->arch.mmu = &vcpu->arch.guest_mmu;
kvm_init_shadow_mmu(vcpu);
vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3;
vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
vcpu->arch.mmu->shadow_root_level = vcpu->arch.tdp_level;
reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
}
static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}
void recalc_intercepts(struct vcpu_svm *svm)
{
struct vmcb_control_area *c, *h, *g;
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
if (!is_guest_mode(&svm->vcpu))
return;
c = &svm->vmcb->control;
h = &svm->nested.hsave->control;
g = &svm->nested.ctl;
svm->nested.host_intercept_exceptions = h->intercept_exceptions;
c->intercept_cr = h->intercept_cr;
c->intercept_dr = h->intercept_dr;
c->intercept_exceptions = h->intercept_exceptions;
c->intercept = h->intercept;
if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
/* We only want the cr8 intercept bits of L1 */
c->intercept_cr &= ~(1U << INTERCEPT_CR8_READ);
c->intercept_cr &= ~(1U << INTERCEPT_CR8_WRITE);
/*
* Once running L2 with HF_VINTR_MASK, EFLAGS.IF does not
* affect any interrupt we may want to inject; therefore,
* interrupt window vmexits are irrelevant to L0.
*/
c->intercept &= ~(1ULL << INTERCEPT_VINTR);
}
/* We don't want to see VMMCALLs from a nested guest */
c->intercept &= ~(1ULL << INTERCEPT_VMMCALL);
c->intercept_cr |= g->intercept_cr;
c->intercept_dr |= g->intercept_dr;
c->intercept_exceptions |= g->intercept_exceptions;
c->intercept |= g->intercept;
}
static void copy_vmcb_control_area(struct vmcb_control_area *dst,
struct vmcb_control_area *from)
{
dst->intercept_cr = from->intercept_cr;
dst->intercept_dr = from->intercept_dr;
dst->intercept_exceptions = from->intercept_exceptions;
dst->intercept = from->intercept;
dst->iopm_base_pa = from->iopm_base_pa;
dst->msrpm_base_pa = from->msrpm_base_pa;
dst->tsc_offset = from->tsc_offset;
/* asid not copied, it is handled manually for svm->vmcb. */
dst->tlb_ctl = from->tlb_ctl;
dst->int_ctl = from->int_ctl;
dst->int_vector = from->int_vector;
dst->int_state = from->int_state;
dst->exit_code = from->exit_code;
dst->exit_code_hi = from->exit_code_hi;
dst->exit_info_1 = from->exit_info_1;
dst->exit_info_2 = from->exit_info_2;
dst->exit_int_info = from->exit_int_info;
dst->exit_int_info_err = from->exit_int_info_err;
dst->nested_ctl = from->nested_ctl;
dst->event_inj = from->event_inj;
dst->event_inj_err = from->event_inj_err;
dst->nested_cr3 = from->nested_cr3;
dst->virt_ext = from->virt_ext;
dst->pause_filter_count = from->pause_filter_count;
dst->pause_filter_thresh = from->pause_filter_thresh;
}
static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
{
/*
* This function merges the msr permission bitmaps of kvm and the
* nested vmcb. It is optimized in that it only merges the parts where
* the kvm msr permission bitmap may contain zero bits
*/
int i;
if (!(svm->nested.ctl.intercept & (1ULL << INTERCEPT_MSR_PROT)))
return true;
for (i = 0; i < MSRPM_OFFSETS; i++) {
u32 value, p;
u64 offset;
if (msrpm_offsets[i] == 0xffffffff)
break;
p = msrpm_offsets[i];
offset = svm->nested.ctl.msrpm_base_pa + (p * 4);
if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
return false;
svm->nested.msrpm[p] = svm->msrpm[p] | value;
}
svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
return true;
}
static bool nested_vmcb_checks(struct vmcb *vmcb)
{
if ((vmcb->save.efer & EFER_SVME) == 0)
return false;
if (((vmcb->save.cr0 & X86_CR0_CD) == 0) &&
(vmcb->save.cr0 & X86_CR0_NW))
return false;
if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
return false;
if (vmcb->control.asid == 0)
return false;
if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
!npt_enabled)
return false;
return true;
}
static void load_nested_vmcb_control(struct vcpu_svm *svm,
struct vmcb_control_area *control)
{
copy_vmcb_control_area(&svm->nested.ctl, control);
svm->nested.ctl.msrpm_base_pa &= ~0x0fffULL;
svm->nested.ctl.iopm_base_pa &= ~0x0fffULL;
}
/*
* Synchronize fields that are written by the processor, so that
* they can be copied back into the nested_vmcb.
*/
void sync_nested_vmcb_control(struct vcpu_svm *svm)
{
u32 mask;
svm->nested.ctl.event_inj = svm->vmcb->control.event_inj;
svm->nested.ctl.event_inj_err = svm->vmcb->control.event_inj_err;
/* Only a few fields of int_ctl are written by the processor. */
mask = V_IRQ_MASK | V_TPR_MASK;
if (!(svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) &&
is_intercept(svm, SVM_EXIT_VINTR)) {
/*
* In order to request an interrupt window, L0 is usurping
* svm->vmcb->control.int_ctl and possibly setting V_IRQ
* even if it was clear in L1's VMCB. Restoring it would be
* wrong. However, in this case V_IRQ will remain true until
* interrupt_window_interception calls svm_clear_vintr and
* restores int_ctl. We can just leave it aside.
*/
mask &= ~V_IRQ_MASK;
}
svm->nested.ctl.int_ctl &= ~mask;
svm->nested.ctl.int_ctl |= svm->vmcb->control.int_ctl & mask;
}
static void nested_prepare_vmcb_save(struct vcpu_svm *svm, struct vmcb *nested_vmcb)
{
/* Load the nested guest state */
svm->vmcb->save.es = nested_vmcb->save.es;
svm->vmcb->save.cs = nested_vmcb->save.cs;
svm->vmcb->save.ss = nested_vmcb->save.ss;
svm->vmcb->save.ds = nested_vmcb->save.ds;
svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
svm->vmcb->save.idtr = nested_vmcb->save.idtr;
kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
/* In case we don't even reach vcpu_run, the fields are not updated */
svm->vmcb->save.rax = nested_vmcb->save.rax;
svm->vmcb->save.rsp = nested_vmcb->save.rsp;
svm->vmcb->save.rip = nested_vmcb->save.rip;
svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
svm->vcpu.arch.dr6 = nested_vmcb->save.dr6;
svm->vmcb->save.cpl = nested_vmcb->save.cpl;
}
static void nested_prepare_vmcb_control(struct vcpu_svm *svm)
{
const u32 mask = V_INTR_MASKING_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK;
if (svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE)
nested_svm_init_mmu_context(&svm->vcpu);
/* Guest paging mode is active - reset mmu */
kvm_mmu_reset_context(&svm->vcpu);
svm_flush_tlb(&svm->vcpu);
if (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
svm->vcpu.arch.hflags |= HF_VINTR_MASK;
else
svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset =
svm->vcpu.arch.l1_tsc_offset + svm->nested.ctl.tsc_offset;
svm->vmcb->control.int_ctl =
(svm->nested.ctl.int_ctl & ~mask) |
(svm->nested.hsave->control.int_ctl & mask);
svm->vmcb->control.virt_ext = svm->nested.ctl.virt_ext;
svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
svm->vmcb->control.int_state = svm->nested.ctl.int_state;
svm->vmcb->control.event_inj = svm->nested.ctl.event_inj;
svm->vmcb->control.event_inj_err = svm->nested.ctl.event_inj_err;
svm->vmcb->control.pause_filter_count = svm->nested.ctl.pause_filter_count;
svm->vmcb->control.pause_filter_thresh = svm->nested.ctl.pause_filter_thresh;
/* Enter Guest-Mode */
enter_guest_mode(&svm->vcpu);
/*
* Merge guest and host intercepts - must be called with vcpu in
* guest-mode to take affect here
*/
recalc_intercepts(svm);
mark_all_dirty(svm->vmcb);
}
void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
struct vmcb *nested_vmcb)
{
svm->nested.vmcb = vmcb_gpa;
if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
svm->vcpu.arch.hflags |= HF_HIF_MASK;
else
svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
load_nested_vmcb_control(svm, &nested_vmcb->control);
nested_prepare_vmcb_save(svm, nested_vmcb);
nested_prepare_vmcb_control(svm);
svm_set_gif(svm, true);
}
int nested_svm_vmrun(struct vcpu_svm *svm)
{
int ret;
struct vmcb *nested_vmcb;
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
struct kvm_host_map map;
u64 vmcb_gpa;
if (is_smm(&svm->vcpu)) {
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
vmcb_gpa = svm->vmcb->save.rax;
ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
if (ret == -EINVAL) {
kvm_inject_gp(&svm->vcpu, 0);
return 1;
} else if (ret) {
return kvm_skip_emulated_instruction(&svm->vcpu);
}
ret = kvm_skip_emulated_instruction(&svm->vcpu);
nested_vmcb = map.hva;
if (!nested_vmcb_checks(nested_vmcb)) {
nested_vmcb->control.exit_code = SVM_EXIT_ERR;
nested_vmcb->control.exit_code_hi = 0;
nested_vmcb->control.exit_info_1 = 0;
nested_vmcb->control.exit_info_2 = 0;
goto out;
}
trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
nested_vmcb->save.rip,
nested_vmcb->control.int_ctl,
nested_vmcb->control.event_inj,
nested_vmcb->control.nested_ctl);
trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
nested_vmcb->control.intercept_cr >> 16,
nested_vmcb->control.intercept_exceptions,
nested_vmcb->control.intercept);
/* Clear internal status */
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
/*
* Save the old vmcb, so we don't need to pick what we save, but can
* restore everything when a VMEXIT occurs
*/
hsave->save.es = vmcb->save.es;
hsave->save.cs = vmcb->save.cs;
hsave->save.ss = vmcb->save.ss;
hsave->save.ds = vmcb->save.ds;
hsave->save.gdtr = vmcb->save.gdtr;
hsave->save.idtr = vmcb->save.idtr;
hsave->save.efer = svm->vcpu.arch.efer;
hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
hsave->save.cr4 = svm->vcpu.arch.cr4;
hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
hsave->save.rip = kvm_rip_read(&svm->vcpu);
hsave->save.rsp = vmcb->save.rsp;
hsave->save.rax = vmcb->save.rax;
if (npt_enabled)
hsave->save.cr3 = vmcb->save.cr3;
else
hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
copy_vmcb_control_area(&hsave->control, &vmcb->control);
svm->nested.nested_run_pending = 1;
enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb);
if (!nested_svm_vmrun_msrpm(svm)) {
svm->vmcb->control.exit_code = SVM_EXIT_ERR;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
out:
kvm_vcpu_unmap(&svm->vcpu, &map, true);
return ret;
}
void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
{
to_vmcb->save.fs = from_vmcb->save.fs;
to_vmcb->save.gs = from_vmcb->save.gs;
to_vmcb->save.tr = from_vmcb->save.tr;
to_vmcb->save.ldtr = from_vmcb->save.ldtr;
to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
to_vmcb->save.star = from_vmcb->save.star;
to_vmcb->save.lstar = from_vmcb->save.lstar;
to_vmcb->save.cstar = from_vmcb->save.cstar;
to_vmcb->save.sfmask = from_vmcb->save.sfmask;
to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
}
int nested_svm_vmexit(struct vcpu_svm *svm)
{
int rc;
struct vmcb *nested_vmcb;
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
struct kvm_host_map map;
trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
vmcb->control.exit_info_1,
vmcb->control.exit_info_2,
vmcb->control.exit_int_info,
vmcb->control.exit_int_info_err,
KVM_ISA_SVM);
rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
if (rc) {
if (rc == -EINVAL)
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
nested_vmcb = map.hva;
/* Exit Guest-Mode */
leave_guest_mode(&svm->vcpu);
svm->nested.vmcb = 0;
WARN_ON_ONCE(svm->nested.nested_run_pending);
/* in case we halted in L2 */
svm->vcpu.arch.mp_state = KVM_MP_STATE_RUNNABLE;
/* Give the current vmcb to the guest */
svm_set_gif(svm, false);
nested_vmcb->save.es = vmcb->save.es;
nested_vmcb->save.cs = vmcb->save.cs;
nested_vmcb->save.ss = vmcb->save.ss;
nested_vmcb->save.ds = vmcb->save.ds;
nested_vmcb->save.gdtr = vmcb->save.gdtr;
nested_vmcb->save.idtr = vmcb->save.idtr;
nested_vmcb->save.efer = svm->vcpu.arch.efer;
nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
nested_vmcb->save.cr2 = vmcb->save.cr2;
nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2020-05-27 17:01:02 +08:00
nested_vmcb->save.rip = kvm_rip_read(&svm->vcpu);
nested_vmcb->save.rsp = kvm_rsp_read(&svm->vcpu);
nested_vmcb->save.rax = kvm_rax_read(&svm->vcpu);
nested_vmcb->save.dr7 = vmcb->save.dr7;
nested_vmcb->save.dr6 = svm->vcpu.arch.dr6;
nested_vmcb->save.cpl = vmcb->save.cpl;
nested_vmcb->control.int_state = vmcb->control.int_state;
nested_vmcb->control.exit_code = vmcb->control.exit_code;
nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
if (svm->nrips_enabled)
nested_vmcb->control.next_rip = vmcb->control.next_rip;
nested_vmcb->control.int_ctl = svm->nested.ctl.int_ctl;
nested_vmcb->control.tlb_ctl = svm->nested.ctl.tlb_ctl;
nested_vmcb->control.event_inj = svm->nested.ctl.event_inj;
nested_vmcb->control.event_inj_err = svm->nested.ctl.event_inj_err;
nested_vmcb->control.pause_filter_count =
svm->vmcb->control.pause_filter_count;
nested_vmcb->control.pause_filter_thresh =
svm->vmcb->control.pause_filter_thresh;
/* Restore the original control entries */
copy_vmcb_control_area(&vmcb->control, &hsave->control);
svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset =
svm->vcpu.arch.l1_tsc_offset;
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
svm->nested.ctl.nested_cr3 = 0;
/* Restore selected save entries */
svm->vmcb->save.es = hsave->save.es;
svm->vmcb->save.cs = hsave->save.cs;
svm->vmcb->save.ss = hsave->save.ss;
svm->vmcb->save.ds = hsave->save.ds;
svm->vmcb->save.gdtr = hsave->save.gdtr;
svm->vmcb->save.idtr = hsave->save.idtr;
kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
svm_set_efer(&svm->vcpu, hsave->save.efer);
svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
svm_set_cr4(&svm->vcpu, hsave->save.cr4);
if (npt_enabled) {
svm->vmcb->save.cr3 = hsave->save.cr3;
svm->vcpu.arch.cr3 = hsave->save.cr3;
} else {
(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
}
kvm_rax_write(&svm->vcpu, hsave->save.rax);
kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
kvm_rip_write(&svm->vcpu, hsave->save.rip);
svm->vmcb->save.dr7 = 0;
svm->vmcb->save.cpl = 0;
svm->vmcb->control.exit_int_info = 0;
mark_all_dirty(svm->vmcb);
kvm_vcpu_unmap(&svm->vcpu, &map, true);
nested_svm_uninit_mmu_context(&svm->vcpu);
kvm_mmu_reset_context(&svm->vcpu);
kvm_mmu_load(&svm->vcpu);
/*
* Drop what we picked up for L2 via svm_complete_interrupts() so it
* doesn't end up in L1.
*/
svm->vcpu.arch.nmi_injected = false;
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
return 0;
}
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
{
u32 offset, msr, value;
int write, mask;
if (!(svm->nested.ctl.intercept & (1ULL << INTERCEPT_MSR_PROT)))
return NESTED_EXIT_HOST;
msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
offset = svm_msrpm_offset(msr);
write = svm->vmcb->control.exit_info_1 & 1;
mask = 1 << ((2 * (msr & 0xf)) + write);
if (offset == MSR_INVALID)
return NESTED_EXIT_DONE;
/* Offset is in 32 bit units but need in 8 bit units */
offset *= 4;
if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.ctl.msrpm_base_pa + offset, &value, 4))
return NESTED_EXIT_DONE;
return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
}
static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
{
unsigned port, size, iopm_len;
u16 val, mask;
u8 start_bit;
u64 gpa;
if (!(svm->nested.ctl.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
return NESTED_EXIT_HOST;
port = svm->vmcb->control.exit_info_1 >> 16;
size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
SVM_IOIO_SIZE_SHIFT;
gpa = svm->nested.ctl.iopm_base_pa + (port / 8);
start_bit = port % 8;
iopm_len = (start_bit + size > 8) ? 2 : 1;
mask = (0xf >> (4 - size)) << start_bit;
val = 0;
if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
return NESTED_EXIT_DONE;
return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
}
static int nested_svm_intercept(struct vcpu_svm *svm)
{
u32 exit_code = svm->vmcb->control.exit_code;
int vmexit = NESTED_EXIT_HOST;
switch (exit_code) {
case SVM_EXIT_MSR:
vmexit = nested_svm_exit_handled_msr(svm);
break;
case SVM_EXIT_IOIO:
vmexit = nested_svm_intercept_ioio(svm);
break;
case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
if (svm->nested.ctl.intercept_cr & bit)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
if (svm->nested.ctl.intercept_dr & bit)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
/*
* Host-intercepted exceptions have been checked already in
* nested_svm_exit_special. There is nothing to do here,
* the vmexit is injected by svm_check_nested_events.
*/
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_ERR: {
vmexit = NESTED_EXIT_DONE;
break;
}
default: {
u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
if (svm->nested.ctl.intercept & exit_bits)
vmexit = NESTED_EXIT_DONE;
}
}
return vmexit;
}
int nested_svm_exit_handled(struct vcpu_svm *svm)
{
int vmexit;
vmexit = nested_svm_intercept(svm);
if (vmexit == NESTED_EXIT_DONE)
nested_svm_vmexit(svm);
return vmexit;
}
int nested_svm_check_permissions(struct vcpu_svm *svm)
{
if (!(svm->vcpu.arch.efer & EFER_SVME) ||
!is_paging(&svm->vcpu)) {
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
if (svm->vmcb->save.cpl) {
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
return 0;
}
static bool nested_exit_on_exception(struct vcpu_svm *svm)
{
unsigned int nr = svm->vcpu.arch.exception.nr;
return (svm->nested.ctl.intercept_exceptions & (1 << nr));
}
static void nested_svm_inject_exception_vmexit(struct vcpu_svm *svm)
{
unsigned int nr = svm->vcpu.arch.exception.nr;
svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
svm->vmcb->control.exit_code_hi = 0;
if (svm->vcpu.arch.exception.has_error_code)
svm->vmcb->control.exit_info_1 = svm->vcpu.arch.exception.error_code;
/*
* EXITINFO2 is undefined for all exception intercepts other
* than #PF.
*/
if (nr == PF_VECTOR) {
if (svm->vcpu.arch.exception.nested_apf)
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
else if (svm->vcpu.arch.exception.has_payload)
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
else
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
} else if (nr == DB_VECTOR) {
/* See inject_pending_event. */
kvm_deliver_exception_payload(&svm->vcpu);
if (svm->vcpu.arch.dr7 & DR7_GD) {
svm->vcpu.arch.dr7 &= ~DR7_GD;
kvm_update_dr7(&svm->vcpu);
}
} else
WARN_ON(svm->vcpu.arch.exception.has_payload);
nested_svm_vmexit(svm);
}
static void nested_svm_smi(struct vcpu_svm *svm)
{
svm->vmcb->control.exit_code = SVM_EXIT_SMI;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
static void nested_svm_nmi(struct vcpu_svm *svm)
{
svm->vmcb->control.exit_code = SVM_EXIT_NMI;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
static void nested_svm_intr(struct vcpu_svm *svm)
{
trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
svm->vmcb->control.exit_code = SVM_EXIT_INTR;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
static inline bool nested_exit_on_init(struct vcpu_svm *svm)
{
return (svm->nested.ctl.intercept & (1ULL << INTERCEPT_INIT));
}
static void nested_svm_init(struct vcpu_svm *svm)
{
svm->vmcb->control.exit_code = SVM_EXIT_INIT;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
static int svm_check_nested_events(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
bool block_nested_events =
kvm_event_needs_reinjection(vcpu) || svm->nested.nested_run_pending;
struct kvm_lapic *apic = vcpu->arch.apic;
if (lapic_in_kernel(vcpu) &&
test_bit(KVM_APIC_INIT, &apic->pending_events)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_init(svm))
return 0;
nested_svm_init(svm);
return 0;
}
if (vcpu->arch.exception.pending) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_exception(svm))
return 0;
nested_svm_inject_exception_vmexit(svm);
return 0;
}
if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_smi(svm))
return 0;
nested_svm_smi(svm);
return 0;
}
if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_nmi(svm))
return 0;
nested_svm_nmi(svm);
return 0;
}
if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_intr(svm))
return 0;
nested_svm_intr(svm);
return 0;
}
return 0;
}
int nested_svm_exit_special(struct vcpu_svm *svm)
{
u32 exit_code = svm->vmcb->control.exit_code;
switch (exit_code) {
case SVM_EXIT_INTR:
case SVM_EXIT_NMI:
case SVM_EXIT_NPF:
return NESTED_EXIT_HOST;
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
if (get_host_vmcb(svm)->control.intercept_exceptions & excp_bits)
return NESTED_EXIT_HOST;
else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR &&
svm->vcpu.arch.apf.host_apf_reason)
/* Trap async PF even if not shadowing */
return NESTED_EXIT_HOST;
break;
}
default:
break;
}
return NESTED_EXIT_CONTINUE;
}
struct kvm_x86_nested_ops svm_nested_ops = {
.check_events = svm_check_nested_events,
};