linux/arch/x86/kernel/head64.c

195 lines
5.0 KiB
C
Raw Normal View History

/*
* prepare to run common code
*
* Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
*/
#include <linux/init.h>
#include <linux/linkage.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/percpu.h>
#include <linux/start_kernel.h>
#include <linux/io.h>
x86: Use memblock to replace early_res 1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-26 04:39:17 +08:00
#include <linux/memblock.h>
#include <asm/processor.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/kdebug.h>
#include <asm/e820.h>
#include <asm/bios_ebda.h>
#include <asm/bootparam_utils.h>
#include <asm/microcode.h>
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
/*
* Manage page tables very early on.
*/
extern pgd_t early_level4_pgt[PTRS_PER_PGD];
extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
static unsigned int __initdata next_early_pgt = 2;
pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
/* Wipe all early page tables except for the kernel symbol map */
static void __init reset_early_page_tables(void)
{
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
unsigned long i;
for (i = 0; i < PTRS_PER_PGD-1; i++)
early_level4_pgt[i].pgd = 0;
next_early_pgt = 0;
write_cr3(__pa(early_level4_pgt));
}
/* Create a new PMD entry */
int __init early_make_pgtable(unsigned long address)
{
unsigned long physaddr = address - __PAGE_OFFSET;
unsigned long i;
pgdval_t pgd, *pgd_p;
pudval_t pud, *pud_p;
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
pmdval_t pmd, *pmd_p;
/* Invalid address or early pgt is done ? */
if (physaddr >= MAXMEM || read_cr3() != __pa(early_level4_pgt))
return -1;
again:
pgd_p = &early_level4_pgt[pgd_index(address)].pgd;
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
pgd = *pgd_p;
/*
* The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
* critical -- __PAGE_OFFSET would point us back into the dynamic
* range and we might end up looping forever...
*/
if (pgd)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
pud_p = (pudval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
else {
if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
reset_early_page_tables();
goto again;
}
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
for (i = 0; i < PTRS_PER_PUD; i++)
pud_p[i] = 0;
*pgd_p = (pgdval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
}
pud_p += pud_index(address);
pud = *pud_p;
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
if (pud)
pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
else {
if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
reset_early_page_tables();
goto again;
}
pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
for (i = 0; i < PTRS_PER_PMD; i++)
pmd_p[i] = 0;
*pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
}
pmd = (physaddr & PMD_MASK) + early_pmd_flags;
pmd_p[pmd_index(address)] = pmd;
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
return 0;
}
/* Don't add a printk in there. printk relies on the PDA which is not initialized
yet. */
static void __init clear_bss(void)
{
memset(__bss_start, 0,
(unsigned long) __bss_stop - (unsigned long) __bss_start);
}
static unsigned long get_cmd_line_ptr(void)
{
unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
return cmd_line_ptr;
}
static void __init copy_bootdata(char *real_mode_data)
{
char * command_line;
unsigned long cmd_line_ptr;
memcpy(&boot_params, real_mode_data, sizeof boot_params);
sanitize_boot_params(&boot_params);
cmd_line_ptr = get_cmd_line_ptr();
if (cmd_line_ptr) {
command_line = __va(cmd_line_ptr);
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
}
}
void __init x86_64_start_kernel(char * real_mode_data)
{
int i;
/*
* Build-time sanity checks on the kernel image and module
* area mappings. (these are purely build-time and produce no code)
*/
BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
(__START_KERNEL & PGDIR_MASK)));
BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
/* Kill off the identity-map trampoline */
reset_early_page_tables();
/* clear bss before set_intr_gate with early_idt_handler */
clear_bss();
for (i = 0; i < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, &early_idt_handlers[i]);
load_idt((const struct desc_ptr *)&idt_descr);
copy_bootdata(__va(real_mode_data));
/*
* Load microcode early on BSP.
*/
load_ucode_bsp();
if (console_loglevel == 10)
early_printk("Kernel alive\n");
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 04:19:52 +08:00
clear_page(init_level4_pgt);
/* set init_level4_pgt kernel high mapping*/
init_level4_pgt[511] = early_level4_pgt[511];
x86_64_start_reservations(real_mode_data);
}
void __init x86_64_start_reservations(char *real_mode_data)
{
/* version is always not zero if it is copied */
if (!boot_params.hdr.version)
copy_bootdata(__va(real_mode_data));
reserve_ebda_region();
start_kernel();
}