linux/drivers/soc/qcom/rpmh-rsc.c

1043 lines
31 KiB
C
Raw Normal View History

drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
#include <linux/atomic.h>
#include <linux/cpu_pm.h>
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <soc/qcom/cmd-db.h>
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
#include <soc/qcom/tcs.h>
#include <dt-bindings/soc/qcom,rpmh-rsc.h>
#include "rpmh-internal.h"
#define CREATE_TRACE_POINTS
#include "trace-rpmh.h"
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
#define RSC_DRV_TCS_OFFSET 672
#define RSC_DRV_CMD_OFFSET 20
/* DRV HW Solver Configuration Information Register */
#define DRV_SOLVER_CONFIG 0x04
#define DRV_HW_SOLVER_MASK 1
#define DRV_HW_SOLVER_SHIFT 24
/* DRV TCS Configuration Information Register */
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
#define DRV_PRNT_CHLD_CONFIG 0x0C
#define DRV_NUM_TCS_MASK 0x3F
#define DRV_NUM_TCS_SHIFT 6
#define DRV_NCPT_MASK 0x1F
#define DRV_NCPT_SHIFT 27
/* Offsets for common TCS Registers, one bit per TCS */
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
#define RSC_DRV_IRQ_ENABLE 0x00
#define RSC_DRV_IRQ_STATUS 0x04
#define RSC_DRV_IRQ_CLEAR 0x08 /* w/o; write 1 to clear */
/*
* Offsets for per TCS Registers.
*
* TCSes start at 0x10 from tcs_base and are stored one after another.
* Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
* of the below to find a register.
*/
#define RSC_DRV_CMD_WAIT_FOR_CMPL 0x10 /* 1 bit per command */
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
#define RSC_DRV_CONTROL 0x14
#define RSC_DRV_STATUS 0x18 /* zero if tcs is busy */
#define RSC_DRV_CMD_ENABLE 0x1C /* 1 bit per command */
/*
* Offsets for per command in a TCS.
*
* Commands (up to 16) start at 0x30 in a TCS; multiply command index
* by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
#define RSC_DRV_CMD_MSGID 0x30
#define RSC_DRV_CMD_ADDR 0x34
#define RSC_DRV_CMD_DATA 0x38
#define RSC_DRV_CMD_STATUS 0x3C
#define RSC_DRV_CMD_RESP_DATA 0x40
#define TCS_AMC_MODE_ENABLE BIT(16)
#define TCS_AMC_MODE_TRIGGER BIT(24)
/* TCS CMD register bit mask */
#define CMD_MSGID_LEN 8
#define CMD_MSGID_RESP_REQ BIT(8)
#define CMD_MSGID_WRITE BIT(16)
#define CMD_STATUS_ISSUED BIT(8)
#define CMD_STATUS_COMPL BIT(16)
/*
* Here's a high level overview of how all the registers in RPMH work
* together:
*
* - The main rpmh-rsc address is the base of a register space that can
* be used to find overall configuration of the hardware
* (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
* space are all the TCS blocks. The offset of the TCS blocks is
* specified in the device tree by "qcom,tcs-offset" and used to
* compute tcs_base.
* - TCS blocks come one after another. Type, count, and order are
* specified by the device tree as "qcom,tcs-config".
* - Each TCS block has some registers, then space for up to 16 commands.
* Note that though address space is reserved for 16 commands, fewer
* might be present. See ncpt (num cmds per TCS).
*
* Here's a picture:
*
* +---------------------------------------------------+
* |RSC |
* | ctrl |
* | |
* | Drvs: |
* | +-----------------------------------------------+ |
* | |DRV0 | |
* | | ctrl/config | |
* | | IRQ | |
* | | | |
* | | TCSes: | |
* | | +------------------------------------------+ | |
* | | |TCS0 | | | | | | | | | | | | | | |
* | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
* | | | | | | | | | | | | | | | | | |
* | | +------------------------------------------+ | |
* | | +------------------------------------------+ | |
* | | |TCS1 | | | | | | | | | | | | | | |
* | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
* | | | | | | | | | | | | | | | | | |
* | | +------------------------------------------+ | |
* | | +------------------------------------------+ | |
* | | |TCS2 | | | | | | | | | | | | | | |
* | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
* | | | | | | | | | | | | | | | | | |
* | | +------------------------------------------+ | |
* | | ...... | |
* | +-----------------------------------------------+ |
* | +-----------------------------------------------+ |
* | |DRV1 | |
* | | (same as DRV0) | |
* | +-----------------------------------------------+ |
* | ...... |
* +---------------------------------------------------+
*/
static inline void __iomem *
tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
{
return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
static inline void __iomem *
tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
{
return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
}
static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
int cmd_id)
{
return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
}
static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
{
return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
int cmd_id, u32 data)
{
writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
}
static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
u32 data)
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
{
writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
u32 data)
{
int i;
writel(data, tcs_reg_addr(drv, reg, tcs_id));
/*
* Wait until we read back the same value. Use a counter rather than
* ktime for timeout since this may be called after timekeeping stops.
*/
for (i = 0; i < USEC_PER_SEC; i++) {
if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
return;
udelay(1);
}
pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
data, tcs_id, reg);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
/**
* tcs_is_free() - Return if a TCS is totally free.
* @drv: The RSC controller.
* @tcs_id: The global ID of this TCS.
*
* Returns true if nobody has claimed this TCS (by setting tcs_in_use).
*
soc: qcom: rpmh-rsc: Simplify locking by eliminating the per-TCS lock The rpmh-rsc code had both a driver-level lock (sometimes referred to in comments as drv->lock) and a lock per-TCS. The idea was supposed to be that there would be times where you could get by with just locking a TCS lock and therefor other RPMH users wouldn't be blocked. The above didn't work out so well. Looking at tcs_write() the bigger drv->lock was held for most of the function anyway. Only the __tcs_buffer_write() and __tcs_set_trigger() calls were called without holding the drv->lock. It actually turns out that in tcs_write() we don't need to hold the drv->lock for those function calls anyway even if the per-TCS lock isn't there anymore. From the newly added comments in the code, this is because: - We marked "tcs_in_use" under lock. - Once "tcs_in_use" has been marked nobody else could be writing to these registers until the interrupt goes off. - The interrupt can't go off until we trigger w/ the last line of __tcs_set_trigger(). Thus, from a tcs_write() point of view, the per-TCS lock was useless. Looking at rpmh_rsc_write_ctrl_data(), only the per-TCS lock was held. It turns out, though, that this function already needs to be called with the equivalent of the drv->lock held anyway (we either need to hold drv->lock as we will in a future patch or we need to know no other CPUs could be running as happens today). Specifically rpmh_rsc_write_ctrl_data() might be writing to a TCS that has been borrowed for writing an active transation but it never checks this. Let's eliminate this extra overhead and avoid possible AB BA locking headaches. Suggested-by: Maulik Shah <mkshah@codeaurora.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.4.Ib8dccfdb10bf6b1fb1d600ca1c21d9c0db1ef746@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-05 01:50:18 +08:00
* Context: Must be called with the drv->lock held.
*
* Return: true if the given TCS is free.
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
static bool tcs_is_free(struct rsc_drv *drv, int tcs_id)
{
return !test_bit(tcs_id, drv->tcs_in_use);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
/**
* tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
* @drv: The RSC controller.
* @type: SLEEP_TCS or WAKE_TCS
*
* This will clear the "slots" variable of the given tcs_group and also
* tell the hardware to forget about all entries.
*
soc: qcom: rpmh-rsc: Caller handles tcs_invalidate() exclusivity Auditing tcs_invalidate() made me worried. Specifically I saw that it used spin_lock(), not spin_lock_irqsave(). That always worries me unless I can trace for sure that I'm in the interrupt handler or that someone else already disabled interrupts. Looking more at it, there is actually no reason for these locks anyway. Specifically the only reason you'd ever call rpmh_rsc_invalidate() is if you cared that the sleep/wake TCSes were empty. That means that they need to continue to be empty even after rpmh_rsc_invalidate() returns. The only way that can happen is if the caller already has done something to keep all other RPMH users out. It should be noted that even though the caller is only worried about making sleep/wake TCSes empty, they also need to worry about stopping active-only transfers if they need to handle the case where active-only transfers might borrow the wake TCS. At the moment rpmh_rsc_invalidate() is only called in PM code from the last CPU. If that later changes the caller will still need to solve the above problems themselves, so these locks will never be useful. Continuing to audit tcs_invalidate(), I found a bug. The function didn't properly check for a borrowed TCS if we hadn't recently written anything into the TCS. Specifically, if we've never written to the WAKE_TCS (or we've flushed it recently) then tcs->slots is empty. We'll early-out and we'll never call tcs_is_free(). I thought about fixing this bug by either deleting the early check for bitmap_empty() or possibly only doing it if we knew we weren't on a TCS that could be borrowed. However, I think it's better to just delete the checks. As argued above it's up to the caller to make sure that all other users of RPMH are quiet before tcs_invalidate() is called. Since callers need to handle the zero-active-TCS case anyway that means they need to make sure that the active-only transfers are quiet before calling too. The one way tcs_invalidate() gets called today is through rpmh_rsc_cpu_pm_callback() which calls rpmh_rsc_ctrlr_is_busy() to handle this. When we have another path to get to tcs_invalidate() it will also need to come up with something similar and it won't need this extra check either. If we later find some code path that actually needs this check back in (and somehow manages to be race free) we can always add it back in. Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Maulik Shah <mkshah@codeaurora.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Tested-by: Maulik Shah <mkshah@codeaurora.org> Link: https://lore.kernel.org/r/20200413100321.v4.9.I07c1f70e0e8f2dc0004bd38970b4e258acdc773e@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-04-14 01:04:14 +08:00
* The caller must ensure that no other RPMH actions are happening when this
* function is called, since otherwise the device may immediately become
* used again even before this function exits.
*/
soc: qcom: rpmh-rsc: Caller handles tcs_invalidate() exclusivity Auditing tcs_invalidate() made me worried. Specifically I saw that it used spin_lock(), not spin_lock_irqsave(). That always worries me unless I can trace for sure that I'm in the interrupt handler or that someone else already disabled interrupts. Looking more at it, there is actually no reason for these locks anyway. Specifically the only reason you'd ever call rpmh_rsc_invalidate() is if you cared that the sleep/wake TCSes were empty. That means that they need to continue to be empty even after rpmh_rsc_invalidate() returns. The only way that can happen is if the caller already has done something to keep all other RPMH users out. It should be noted that even though the caller is only worried about making sleep/wake TCSes empty, they also need to worry about stopping active-only transfers if they need to handle the case where active-only transfers might borrow the wake TCS. At the moment rpmh_rsc_invalidate() is only called in PM code from the last CPU. If that later changes the caller will still need to solve the above problems themselves, so these locks will never be useful. Continuing to audit tcs_invalidate(), I found a bug. The function didn't properly check for a borrowed TCS if we hadn't recently written anything into the TCS. Specifically, if we've never written to the WAKE_TCS (or we've flushed it recently) then tcs->slots is empty. We'll early-out and we'll never call tcs_is_free(). I thought about fixing this bug by either deleting the early check for bitmap_empty() or possibly only doing it if we knew we weren't on a TCS that could be borrowed. However, I think it's better to just delete the checks. As argued above it's up to the caller to make sure that all other users of RPMH are quiet before tcs_invalidate() is called. Since callers need to handle the zero-active-TCS case anyway that means they need to make sure that the active-only transfers are quiet before calling too. The one way tcs_invalidate() gets called today is through rpmh_rsc_cpu_pm_callback() which calls rpmh_rsc_ctrlr_is_busy() to handle this. When we have another path to get to tcs_invalidate() it will also need to come up with something similar and it won't need this extra check either. If we later find some code path that actually needs this check back in (and somehow manages to be race free) we can always add it back in. Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Maulik Shah <mkshah@codeaurora.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Tested-by: Maulik Shah <mkshah@codeaurora.org> Link: https://lore.kernel.org/r/20200413100321.v4.9.I07c1f70e0e8f2dc0004bd38970b4e258acdc773e@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-04-14 01:04:14 +08:00
static void tcs_invalidate(struct rsc_drv *drv, int type)
{
int m;
struct tcs_group *tcs = &drv->tcs[type];
soc: qcom: rpmh-rsc: Caller handles tcs_invalidate() exclusivity Auditing tcs_invalidate() made me worried. Specifically I saw that it used spin_lock(), not spin_lock_irqsave(). That always worries me unless I can trace for sure that I'm in the interrupt handler or that someone else already disabled interrupts. Looking more at it, there is actually no reason for these locks anyway. Specifically the only reason you'd ever call rpmh_rsc_invalidate() is if you cared that the sleep/wake TCSes were empty. That means that they need to continue to be empty even after rpmh_rsc_invalidate() returns. The only way that can happen is if the caller already has done something to keep all other RPMH users out. It should be noted that even though the caller is only worried about making sleep/wake TCSes empty, they also need to worry about stopping active-only transfers if they need to handle the case where active-only transfers might borrow the wake TCS. At the moment rpmh_rsc_invalidate() is only called in PM code from the last CPU. If that later changes the caller will still need to solve the above problems themselves, so these locks will never be useful. Continuing to audit tcs_invalidate(), I found a bug. The function didn't properly check for a borrowed TCS if we hadn't recently written anything into the TCS. Specifically, if we've never written to the WAKE_TCS (or we've flushed it recently) then tcs->slots is empty. We'll early-out and we'll never call tcs_is_free(). I thought about fixing this bug by either deleting the early check for bitmap_empty() or possibly only doing it if we knew we weren't on a TCS that could be borrowed. However, I think it's better to just delete the checks. As argued above it's up to the caller to make sure that all other users of RPMH are quiet before tcs_invalidate() is called. Since callers need to handle the zero-active-TCS case anyway that means they need to make sure that the active-only transfers are quiet before calling too. The one way tcs_invalidate() gets called today is through rpmh_rsc_cpu_pm_callback() which calls rpmh_rsc_ctrlr_is_busy() to handle this. When we have another path to get to tcs_invalidate() it will also need to come up with something similar and it won't need this extra check either. If we later find some code path that actually needs this check back in (and somehow manages to be race free) we can always add it back in. Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Maulik Shah <mkshah@codeaurora.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Tested-by: Maulik Shah <mkshah@codeaurora.org> Link: https://lore.kernel.org/r/20200413100321.v4.9.I07c1f70e0e8f2dc0004bd38970b4e258acdc773e@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-04-14 01:04:14 +08:00
/* Caller ensures nobody else is running so no lock */
if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
return;
for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0);
}
bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
}
/**
* rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
* @drv: The RSC controller.
*
soc: qcom: rpmh-rsc: Caller handles tcs_invalidate() exclusivity Auditing tcs_invalidate() made me worried. Specifically I saw that it used spin_lock(), not spin_lock_irqsave(). That always worries me unless I can trace for sure that I'm in the interrupt handler or that someone else already disabled interrupts. Looking more at it, there is actually no reason for these locks anyway. Specifically the only reason you'd ever call rpmh_rsc_invalidate() is if you cared that the sleep/wake TCSes were empty. That means that they need to continue to be empty even after rpmh_rsc_invalidate() returns. The only way that can happen is if the caller already has done something to keep all other RPMH users out. It should be noted that even though the caller is only worried about making sleep/wake TCSes empty, they also need to worry about stopping active-only transfers if they need to handle the case where active-only transfers might borrow the wake TCS. At the moment rpmh_rsc_invalidate() is only called in PM code from the last CPU. If that later changes the caller will still need to solve the above problems themselves, so these locks will never be useful. Continuing to audit tcs_invalidate(), I found a bug. The function didn't properly check for a borrowed TCS if we hadn't recently written anything into the TCS. Specifically, if we've never written to the WAKE_TCS (or we've flushed it recently) then tcs->slots is empty. We'll early-out and we'll never call tcs_is_free(). I thought about fixing this bug by either deleting the early check for bitmap_empty() or possibly only doing it if we knew we weren't on a TCS that could be borrowed. However, I think it's better to just delete the checks. As argued above it's up to the caller to make sure that all other users of RPMH are quiet before tcs_invalidate() is called. Since callers need to handle the zero-active-TCS case anyway that means they need to make sure that the active-only transfers are quiet before calling too. The one way tcs_invalidate() gets called today is through rpmh_rsc_cpu_pm_callback() which calls rpmh_rsc_ctrlr_is_busy() to handle this. When we have another path to get to tcs_invalidate() it will also need to come up with something similar and it won't need this extra check either. If we later find some code path that actually needs this check back in (and somehow manages to be race free) we can always add it back in. Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Maulik Shah <mkshah@codeaurora.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Tested-by: Maulik Shah <mkshah@codeaurora.org> Link: https://lore.kernel.org/r/20200413100321.v4.9.I07c1f70e0e8f2dc0004bd38970b4e258acdc773e@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-04-14 01:04:14 +08:00
* The caller must ensure that no other RPMH actions are happening when this
* function is called, since otherwise the device may immediately become
* used again even before this function exits.
*/
soc: qcom: rpmh-rsc: Caller handles tcs_invalidate() exclusivity Auditing tcs_invalidate() made me worried. Specifically I saw that it used spin_lock(), not spin_lock_irqsave(). That always worries me unless I can trace for sure that I'm in the interrupt handler or that someone else already disabled interrupts. Looking more at it, there is actually no reason for these locks anyway. Specifically the only reason you'd ever call rpmh_rsc_invalidate() is if you cared that the sleep/wake TCSes were empty. That means that they need to continue to be empty even after rpmh_rsc_invalidate() returns. The only way that can happen is if the caller already has done something to keep all other RPMH users out. It should be noted that even though the caller is only worried about making sleep/wake TCSes empty, they also need to worry about stopping active-only transfers if they need to handle the case where active-only transfers might borrow the wake TCS. At the moment rpmh_rsc_invalidate() is only called in PM code from the last CPU. If that later changes the caller will still need to solve the above problems themselves, so these locks will never be useful. Continuing to audit tcs_invalidate(), I found a bug. The function didn't properly check for a borrowed TCS if we hadn't recently written anything into the TCS. Specifically, if we've never written to the WAKE_TCS (or we've flushed it recently) then tcs->slots is empty. We'll early-out and we'll never call tcs_is_free(). I thought about fixing this bug by either deleting the early check for bitmap_empty() or possibly only doing it if we knew we weren't on a TCS that could be borrowed. However, I think it's better to just delete the checks. As argued above it's up to the caller to make sure that all other users of RPMH are quiet before tcs_invalidate() is called. Since callers need to handle the zero-active-TCS case anyway that means they need to make sure that the active-only transfers are quiet before calling too. The one way tcs_invalidate() gets called today is through rpmh_rsc_cpu_pm_callback() which calls rpmh_rsc_ctrlr_is_busy() to handle this. When we have another path to get to tcs_invalidate() it will also need to come up with something similar and it won't need this extra check either. If we later find some code path that actually needs this check back in (and somehow manages to be race free) we can always add it back in. Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Maulik Shah <mkshah@codeaurora.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Tested-by: Maulik Shah <mkshah@codeaurora.org> Link: https://lore.kernel.org/r/20200413100321.v4.9.I07c1f70e0e8f2dc0004bd38970b4e258acdc773e@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-04-14 01:04:14 +08:00
void rpmh_rsc_invalidate(struct rsc_drv *drv)
{
soc: qcom: rpmh-rsc: Caller handles tcs_invalidate() exclusivity Auditing tcs_invalidate() made me worried. Specifically I saw that it used spin_lock(), not spin_lock_irqsave(). That always worries me unless I can trace for sure that I'm in the interrupt handler or that someone else already disabled interrupts. Looking more at it, there is actually no reason for these locks anyway. Specifically the only reason you'd ever call rpmh_rsc_invalidate() is if you cared that the sleep/wake TCSes were empty. That means that they need to continue to be empty even after rpmh_rsc_invalidate() returns. The only way that can happen is if the caller already has done something to keep all other RPMH users out. It should be noted that even though the caller is only worried about making sleep/wake TCSes empty, they also need to worry about stopping active-only transfers if they need to handle the case where active-only transfers might borrow the wake TCS. At the moment rpmh_rsc_invalidate() is only called in PM code from the last CPU. If that later changes the caller will still need to solve the above problems themselves, so these locks will never be useful. Continuing to audit tcs_invalidate(), I found a bug. The function didn't properly check for a borrowed TCS if we hadn't recently written anything into the TCS. Specifically, if we've never written to the WAKE_TCS (or we've flushed it recently) then tcs->slots is empty. We'll early-out and we'll never call tcs_is_free(). I thought about fixing this bug by either deleting the early check for bitmap_empty() or possibly only doing it if we knew we weren't on a TCS that could be borrowed. However, I think it's better to just delete the checks. As argued above it's up to the caller to make sure that all other users of RPMH are quiet before tcs_invalidate() is called. Since callers need to handle the zero-active-TCS case anyway that means they need to make sure that the active-only transfers are quiet before calling too. The one way tcs_invalidate() gets called today is through rpmh_rsc_cpu_pm_callback() which calls rpmh_rsc_ctrlr_is_busy() to handle this. When we have another path to get to tcs_invalidate() it will also need to come up with something similar and it won't need this extra check either. If we later find some code path that actually needs this check back in (and somehow manages to be race free) we can always add it back in. Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Maulik Shah <mkshah@codeaurora.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Tested-by: Maulik Shah <mkshah@codeaurora.org> Link: https://lore.kernel.org/r/20200413100321.v4.9.I07c1f70e0e8f2dc0004bd38970b4e258acdc773e@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-04-14 01:04:14 +08:00
tcs_invalidate(drv, SLEEP_TCS);
tcs_invalidate(drv, WAKE_TCS);
}
/**
* get_tcs_for_msg() - Get the tcs_group used to send the given message.
* @drv: The RSC controller.
* @msg: The message we want to send.
*
* This is normally pretty straightforward except if we are trying to send
* an ACTIVE_ONLY message but don't have any active_only TCSes.
*
* Return: A pointer to a tcs_group or an ERR_PTR.
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
const struct tcs_request *msg)
{
int type;
struct tcs_group *tcs;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
switch (msg->state) {
case RPMH_ACTIVE_ONLY_STATE:
type = ACTIVE_TCS;
break;
case RPMH_WAKE_ONLY_STATE:
type = WAKE_TCS;
break;
case RPMH_SLEEP_STATE:
type = SLEEP_TCS;
break;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
default:
return ERR_PTR(-EINVAL);
}
/*
* If we are making an active request on a RSC that does not have a
* dedicated TCS for active state use, then re-purpose a wake TCS to
* send active votes. This is safe because we ensure any active-only
* transfers have finished before we use it (maybe by running from
* the last CPU in PM code).
*/
tcs = &drv->tcs[type];
if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
tcs = &drv->tcs[WAKE_TCS];
return tcs;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
/**
* get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
* @drv: The RSC controller.
* @tcs_id: The global ID of this TCS.
*
* For ACTIVE_ONLY transfers we want to call back into the client when the
* transfer finishes. To do this we need the "request" that the client
* originally provided us. This function grabs the request that we stashed
* when we started the transfer.
*
* This only makes sense for ACTIVE_ONLY transfers since those are the only
* ones we track sending (the only ones we enable interrupts for and the only
* ones we call back to the client for).
*
* Return: The stashed request.
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
int tcs_id)
{
struct tcs_group *tcs;
int i;
for (i = 0; i < TCS_TYPE_NR; i++) {
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
tcs = &drv->tcs[i];
if (tcs->mask & BIT(tcs_id))
return tcs->req[tcs_id - tcs->offset];
}
return NULL;
}
/**
* __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
* @drv: The controller.
* @tcs_id: The global ID of this TCS.
* @trigger: If true then untrigger/retrigger. If false then just untrigger.
*
* In the normal case we only ever call with "trigger=true" to start a
* transfer. That will un-trigger/disable the TCS from the last transfer
* then trigger/enable for this transfer.
*
* If we borrowed a wake TCS for an active-only transfer we'll also call
* this function with "trigger=false" to just do the un-trigger/disable
* before using the TCS for wake purposes again.
*
* Note that the AP is only in charge of triggering active-only transfers.
* The AP never triggers sleep/wake values using this function.
*/
static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
{
u32 enable;
/*
* HW req: Clear the DRV_CONTROL and enable TCS again
* While clearing ensure that the AMC mode trigger is cleared
* and then the mode enable is cleared.
*/
enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
enable &= ~TCS_AMC_MODE_TRIGGER;
write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
enable &= ~TCS_AMC_MODE_ENABLE;
write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
if (trigger) {
/* Enable the AMC mode on the TCS and then trigger the TCS */
enable = TCS_AMC_MODE_ENABLE;
write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
enable |= TCS_AMC_MODE_TRIGGER;
write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
}
}
/**
* enable_tcs_irq() - Enable or disable interrupts on the given TCS.
* @drv: The controller.
* @tcs_id: The global ID of this TCS.
* @enable: If true then enable; if false then disable
*
* We only ever call this when we borrow a wake TCS for an active-only
* transfer. For active-only TCSes interrupts are always left enabled.
*/
static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
{
u32 data;
data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
if (enable)
data |= BIT(tcs_id);
else
data &= ~BIT(tcs_id);
writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
}
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
/**
* tcs_tx_done() - TX Done interrupt handler.
* @irq: The IRQ number (ignored).
* @p: Pointer to "struct rsc_drv".
*
* Called for ACTIVE_ONLY transfers (those are the only ones we enable the
* IRQ for) when a transfer is done.
*
* Return: IRQ_HANDLED
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
*/
static irqreturn_t tcs_tx_done(int irq, void *p)
{
struct rsc_drv *drv = p;
int i, j, err = 0;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
unsigned long irq_status;
const struct tcs_request *req;
struct tcs_cmd *cmd;
irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
for_each_set_bit(i, &irq_status, BITS_PER_LONG) {
req = get_req_from_tcs(drv, i);
if (!req) {
WARN_ON(1);
goto skip;
}
err = 0;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
for (j = 0; j < req->num_cmds; j++) {
u32 sts;
cmd = &req->cmds[j];
sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
if (!(sts & CMD_STATUS_ISSUED) ||
((req->wait_for_compl || cmd->wait) &&
!(sts & CMD_STATUS_COMPL))) {
pr_err("Incomplete request: %s: addr=%#x data=%#x",
drv->name, cmd->addr, cmd->data);
err = -EIO;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
}
trace_rpmh_tx_done(drv, i, req, err);
/*
* If wake tcs was re-purposed for sending active
* votes, clear AMC trigger & enable modes and
* disable interrupt for this TCS
*/
if (!drv->tcs[ACTIVE_TCS].num_tcs)
__tcs_set_trigger(drv, i, false);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
skip:
/* Reclaim the TCS */
write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0);
writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
spin_lock(&drv->lock);
clear_bit(i, drv->tcs_in_use);
/*
* Disable interrupt for WAKE TCS to avoid being
* spammed with interrupts coming when the solver
* sends its wake votes.
*/
if (!drv->tcs[ACTIVE_TCS].num_tcs)
enable_tcs_irq(drv, i, false);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
spin_unlock(&drv->lock);
if (req)
rpmh_tx_done(req, err);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
return IRQ_HANDLED;
}
/**
* __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
* @drv: The controller.
* @tcs_id: The global ID of this TCS.
* @cmd_id: The index within the TCS to start writing.
* @msg: The message we want to send, which will contain several addr/data
* pairs to program (but few enough that they all fit in one TCS).
*
* This is used for all types of transfers (active, sleep, and wake).
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
const struct tcs_request *msg)
{
u32 msgid, cmd_msgid;
u32 cmd_enable = 0;
u32 cmd_complete;
struct tcs_cmd *cmd;
int i, j;
cmd_msgid = CMD_MSGID_LEN;
cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
cmd_msgid |= CMD_MSGID_WRITE;
cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
cmd = &msg->cmds[i];
cmd_enable |= BIT(j);
cmd_complete |= cmd->wait << j;
msgid = cmd_msgid;
msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
drivers: qcom: rpmh-rsc: Use rcuidle tracepoints for rpmh This tracepoint is hit now that we call into the rpmh code from the cpu idle path. Let's move this to be an rcuidle tracepoint so that we avoid the RCU idle splat below ============================= WARNING: suspicious RCU usage 5.4.10 #68 Tainted: G S ----------------------------- drivers/soc/qcom/trace-rpmh.h:72 suspicious rcu_dereference_check() usage! other info that might help us debug this: RCU used illegally from idle CPU! rcu_scheduler_active = 2, debug_locks = 1 RCU used illegally from extended quiescent state! 5 locks held by swapper/2/0: #0: ffffff81745d6ee8 (&(&genpd->slock)->rlock){+.+.}, at: genpd_lock_spin+0x1c/0x2c #1: ffffff81745da6e8 (&(&genpd->slock)->rlock/1){....}, at: genpd_lock_nested_spin+0x24/0x34 #2: ffffff8174f2ca20 (&(&genpd->slock)->rlock/2){....}, at: genpd_lock_nested_spin+0x24/0x34 #3: ffffff8174f2c300 (&(&drv->client.cache_lock)->rlock){....}, at: rpmh_flush+0x48/0x24c #4: ffffff8174f2c150 (&(&tcs->lock)->rlock){+.+.}, at: rpmh_rsc_write_ctrl_data+0x74/0x270 stack backtrace: CPU: 2 PID: 0 Comm: swapper/2 Tainted: G S 5.4.10 #68 Call trace: dump_backtrace+0x0/0x174 show_stack+0x20/0x2c dump_stack+0xc8/0x124 lockdep_rcu_suspicious+0xe4/0x104 __tcs_buffer_write+0x230/0x2d0 rpmh_rsc_write_ctrl_data+0x210/0x270 rpmh_flush+0x84/0x24c rpmh_domain_power_off+0x78/0x98 _genpd_power_off+0x40/0xc0 genpd_power_off+0x168/0x208 genpd_power_off+0x1e0/0x208 genpd_power_off+0x1e0/0x208 genpd_runtime_suspend+0x1ac/0x220 __rpm_callback+0x70/0xfc rpm_callback+0x34/0x8c rpm_suspend+0x218/0x4a4 __pm_runtime_suspend+0x88/0xac psci_enter_domain_idle_state+0x3c/0xb4 cpuidle_enter_state+0xb8/0x284 cpuidle_enter+0x38/0x4c call_cpuidle+0x3c/0x68 do_idle+0x194/0x260 cpu_startup_entry+0x24/0x28 secondary_start_kernel+0x150/0x15c Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Tested-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org> Fixes: a65a397f2451 ("cpuidle: psci: Add support for PM domains by using genpd") Reported-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200115013751.249588-1-swboyd@chromium.org Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-01-15 09:37:51 +08:00
trace_rpmh_send_msg_rcuidle(drv, tcs_id, j, msgid, cmd);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
}
write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete);
cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
}
/**
* check_for_req_inflight() - Look to see if conflicting cmds are in flight.
* @drv: The controller.
* @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
* @msg: The message we want to send, which will contain several addr/data
* pairs to program (but few enough that they all fit in one TCS).
*
* This will walk through the TCSes in the group and check if any of them
* appear to be sending to addresses referenced in the message. If it finds
* one it'll return -EBUSY.
*
* Only for use for active-only transfers.
*
* Must be called with the drv->lock held since that protects tcs_in_use.
*
* Return: 0 if nothing in flight or -EBUSY if we should try again later.
* The caller must re-enable interrupts between tries since that's
* the only way tcs_is_free() will ever return true and the only way
* RSC_DRV_CMD_ENABLE will ever be cleared.
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
const struct tcs_request *msg)
{
unsigned long curr_enabled;
u32 addr;
int i, j, k;
int tcs_id = tcs->offset;
for (i = 0; i < tcs->num_tcs; i++, tcs_id++) {
if (tcs_is_free(drv, tcs_id))
continue;
curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
for (k = 0; k < msg->num_cmds; k++) {
if (addr == msg->cmds[k].addr)
return -EBUSY;
}
}
}
return 0;
}
/**
* find_free_tcs() - Find free tcs in the given tcs_group; only for active.
* @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
* we borrowed it because there are zero active-only ones).
*
* Must be called with the drv->lock held since that protects tcs_in_use.
*
* Return: The first tcs that's free.
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
static int find_free_tcs(struct tcs_group *tcs)
{
int i;
for (i = 0; i < tcs->num_tcs; i++) {
if (tcs_is_free(tcs->drv, tcs->offset + i))
return tcs->offset + i;
}
return -EBUSY;
}
/**
* tcs_write() - Store messages into a TCS right now, or return -EBUSY.
* @drv: The controller.
* @msg: The data to be sent.
*
* Grabs a TCS for ACTIVE_ONLY transfers and writes the messages to it.
*
* If there are no free TCSes for ACTIVE_ONLY transfers or if a command for
* the same address is already transferring returns -EBUSY which means the
* client should retry shortly.
*
* Return: 0 on success, -EBUSY if client should retry, or an error.
* Client should have interrupts enabled for a bit before retrying.
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
static int tcs_write(struct rsc_drv *drv, const struct tcs_request *msg)
{
struct tcs_group *tcs;
int tcs_id;
unsigned long flags;
int ret;
tcs = get_tcs_for_msg(drv, msg);
if (IS_ERR(tcs))
return PTR_ERR(tcs);
soc: qcom: rpmh-rsc: Simplify locking by eliminating the per-TCS lock The rpmh-rsc code had both a driver-level lock (sometimes referred to in comments as drv->lock) and a lock per-TCS. The idea was supposed to be that there would be times where you could get by with just locking a TCS lock and therefor other RPMH users wouldn't be blocked. The above didn't work out so well. Looking at tcs_write() the bigger drv->lock was held for most of the function anyway. Only the __tcs_buffer_write() and __tcs_set_trigger() calls were called without holding the drv->lock. It actually turns out that in tcs_write() we don't need to hold the drv->lock for those function calls anyway even if the per-TCS lock isn't there anymore. From the newly added comments in the code, this is because: - We marked "tcs_in_use" under lock. - Once "tcs_in_use" has been marked nobody else could be writing to these registers until the interrupt goes off. - The interrupt can't go off until we trigger w/ the last line of __tcs_set_trigger(). Thus, from a tcs_write() point of view, the per-TCS lock was useless. Looking at rpmh_rsc_write_ctrl_data(), only the per-TCS lock was held. It turns out, though, that this function already needs to be called with the equivalent of the drv->lock held anyway (we either need to hold drv->lock as we will in a future patch or we need to know no other CPUs could be running as happens today). Specifically rpmh_rsc_write_ctrl_data() might be writing to a TCS that has been borrowed for writing an active transation but it never checks this. Let's eliminate this extra overhead and avoid possible AB BA locking headaches. Suggested-by: Maulik Shah <mkshah@codeaurora.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.4.Ib8dccfdb10bf6b1fb1d600ca1c21d9c0db1ef746@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-05 01:50:18 +08:00
spin_lock_irqsave(&drv->lock, flags);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
/*
* The h/w does not like if we send a request to the same address,
* when one is already in-flight or being processed.
*/
ret = check_for_req_inflight(drv, tcs, msg);
soc: qcom: rpmh-rsc: Simplify locking by eliminating the per-TCS lock The rpmh-rsc code had both a driver-level lock (sometimes referred to in comments as drv->lock) and a lock per-TCS. The idea was supposed to be that there would be times where you could get by with just locking a TCS lock and therefor other RPMH users wouldn't be blocked. The above didn't work out so well. Looking at tcs_write() the bigger drv->lock was held for most of the function anyway. Only the __tcs_buffer_write() and __tcs_set_trigger() calls were called without holding the drv->lock. It actually turns out that in tcs_write() we don't need to hold the drv->lock for those function calls anyway even if the per-TCS lock isn't there anymore. From the newly added comments in the code, this is because: - We marked "tcs_in_use" under lock. - Once "tcs_in_use" has been marked nobody else could be writing to these registers until the interrupt goes off. - The interrupt can't go off until we trigger w/ the last line of __tcs_set_trigger(). Thus, from a tcs_write() point of view, the per-TCS lock was useless. Looking at rpmh_rsc_write_ctrl_data(), only the per-TCS lock was held. It turns out, though, that this function already needs to be called with the equivalent of the drv->lock held anyway (we either need to hold drv->lock as we will in a future patch or we need to know no other CPUs could be running as happens today). Specifically rpmh_rsc_write_ctrl_data() might be writing to a TCS that has been borrowed for writing an active transation but it never checks this. Let's eliminate this extra overhead and avoid possible AB BA locking headaches. Suggested-by: Maulik Shah <mkshah@codeaurora.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.4.Ib8dccfdb10bf6b1fb1d600ca1c21d9c0db1ef746@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-05 01:50:18 +08:00
if (ret)
goto unlock;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
soc: qcom: rpmh-rsc: Simplify locking by eliminating the per-TCS lock The rpmh-rsc code had both a driver-level lock (sometimes referred to in comments as drv->lock) and a lock per-TCS. The idea was supposed to be that there would be times where you could get by with just locking a TCS lock and therefor other RPMH users wouldn't be blocked. The above didn't work out so well. Looking at tcs_write() the bigger drv->lock was held for most of the function anyway. Only the __tcs_buffer_write() and __tcs_set_trigger() calls were called without holding the drv->lock. It actually turns out that in tcs_write() we don't need to hold the drv->lock for those function calls anyway even if the per-TCS lock isn't there anymore. From the newly added comments in the code, this is because: - We marked "tcs_in_use" under lock. - Once "tcs_in_use" has been marked nobody else could be writing to these registers until the interrupt goes off. - The interrupt can't go off until we trigger w/ the last line of __tcs_set_trigger(). Thus, from a tcs_write() point of view, the per-TCS lock was useless. Looking at rpmh_rsc_write_ctrl_data(), only the per-TCS lock was held. It turns out, though, that this function already needs to be called with the equivalent of the drv->lock held anyway (we either need to hold drv->lock as we will in a future patch or we need to know no other CPUs could be running as happens today). Specifically rpmh_rsc_write_ctrl_data() might be writing to a TCS that has been borrowed for writing an active transation but it never checks this. Let's eliminate this extra overhead and avoid possible AB BA locking headaches. Suggested-by: Maulik Shah <mkshah@codeaurora.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.4.Ib8dccfdb10bf6b1fb1d600ca1c21d9c0db1ef746@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-05 01:50:18 +08:00
ret = find_free_tcs(tcs);
if (ret < 0)
goto unlock;
tcs_id = ret;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
tcs->req[tcs_id - tcs->offset] = msg;
set_bit(tcs_id, drv->tcs_in_use);
if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
/*
* Clear previously programmed WAKE commands in selected
* repurposed TCS to avoid triggering them. tcs->slots will be
* cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
*/
write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0);
enable_tcs_irq(drv, tcs_id, true);
}
soc: qcom: rpmh-rsc: Simplify locking by eliminating the per-TCS lock The rpmh-rsc code had both a driver-level lock (sometimes referred to in comments as drv->lock) and a lock per-TCS. The idea was supposed to be that there would be times where you could get by with just locking a TCS lock and therefor other RPMH users wouldn't be blocked. The above didn't work out so well. Looking at tcs_write() the bigger drv->lock was held for most of the function anyway. Only the __tcs_buffer_write() and __tcs_set_trigger() calls were called without holding the drv->lock. It actually turns out that in tcs_write() we don't need to hold the drv->lock for those function calls anyway even if the per-TCS lock isn't there anymore. From the newly added comments in the code, this is because: - We marked "tcs_in_use" under lock. - Once "tcs_in_use" has been marked nobody else could be writing to these registers until the interrupt goes off. - The interrupt can't go off until we trigger w/ the last line of __tcs_set_trigger(). Thus, from a tcs_write() point of view, the per-TCS lock was useless. Looking at rpmh_rsc_write_ctrl_data(), only the per-TCS lock was held. It turns out, though, that this function already needs to be called with the equivalent of the drv->lock held anyway (we either need to hold drv->lock as we will in a future patch or we need to know no other CPUs could be running as happens today). Specifically rpmh_rsc_write_ctrl_data() might be writing to a TCS that has been borrowed for writing an active transation but it never checks this. Let's eliminate this extra overhead and avoid possible AB BA locking headaches. Suggested-by: Maulik Shah <mkshah@codeaurora.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.4.Ib8dccfdb10bf6b1fb1d600ca1c21d9c0db1ef746@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-05 01:50:18 +08:00
spin_unlock_irqrestore(&drv->lock, flags);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
soc: qcom: rpmh-rsc: Simplify locking by eliminating the per-TCS lock The rpmh-rsc code had both a driver-level lock (sometimes referred to in comments as drv->lock) and a lock per-TCS. The idea was supposed to be that there would be times where you could get by with just locking a TCS lock and therefor other RPMH users wouldn't be blocked. The above didn't work out so well. Looking at tcs_write() the bigger drv->lock was held for most of the function anyway. Only the __tcs_buffer_write() and __tcs_set_trigger() calls were called without holding the drv->lock. It actually turns out that in tcs_write() we don't need to hold the drv->lock for those function calls anyway even if the per-TCS lock isn't there anymore. From the newly added comments in the code, this is because: - We marked "tcs_in_use" under lock. - Once "tcs_in_use" has been marked nobody else could be writing to these registers until the interrupt goes off. - The interrupt can't go off until we trigger w/ the last line of __tcs_set_trigger(). Thus, from a tcs_write() point of view, the per-TCS lock was useless. Looking at rpmh_rsc_write_ctrl_data(), only the per-TCS lock was held. It turns out, though, that this function already needs to be called with the equivalent of the drv->lock held anyway (we either need to hold drv->lock as we will in a future patch or we need to know no other CPUs could be running as happens today). Specifically rpmh_rsc_write_ctrl_data() might be writing to a TCS that has been borrowed for writing an active transation but it never checks this. Let's eliminate this extra overhead and avoid possible AB BA locking headaches. Suggested-by: Maulik Shah <mkshah@codeaurora.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.4.Ib8dccfdb10bf6b1fb1d600ca1c21d9c0db1ef746@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-05 01:50:18 +08:00
/*
* These two can be done after the lock is released because:
* - We marked "tcs_in_use" under lock.
* - Once "tcs_in_use" has been marked nobody else could be writing
* to these registers until the interrupt goes off.
* - The interrupt can't go off until we trigger w/ the last line
* of __tcs_set_trigger() below.
*/
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
__tcs_buffer_write(drv, tcs_id, 0, msg);
__tcs_set_trigger(drv, tcs_id, true);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
soc: qcom: rpmh-rsc: Simplify locking by eliminating the per-TCS lock The rpmh-rsc code had both a driver-level lock (sometimes referred to in comments as drv->lock) and a lock per-TCS. The idea was supposed to be that there would be times where you could get by with just locking a TCS lock and therefor other RPMH users wouldn't be blocked. The above didn't work out so well. Looking at tcs_write() the bigger drv->lock was held for most of the function anyway. Only the __tcs_buffer_write() and __tcs_set_trigger() calls were called without holding the drv->lock. It actually turns out that in tcs_write() we don't need to hold the drv->lock for those function calls anyway even if the per-TCS lock isn't there anymore. From the newly added comments in the code, this is because: - We marked "tcs_in_use" under lock. - Once "tcs_in_use" has been marked nobody else could be writing to these registers until the interrupt goes off. - The interrupt can't go off until we trigger w/ the last line of __tcs_set_trigger(). Thus, from a tcs_write() point of view, the per-TCS lock was useless. Looking at rpmh_rsc_write_ctrl_data(), only the per-TCS lock was held. It turns out, though, that this function already needs to be called with the equivalent of the drv->lock held anyway (we either need to hold drv->lock as we will in a future patch or we need to know no other CPUs could be running as happens today). Specifically rpmh_rsc_write_ctrl_data() might be writing to a TCS that has been borrowed for writing an active transation but it never checks this. Let's eliminate this extra overhead and avoid possible AB BA locking headaches. Suggested-by: Maulik Shah <mkshah@codeaurora.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.4.Ib8dccfdb10bf6b1fb1d600ca1c21d9c0db1ef746@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-05 01:50:18 +08:00
return 0;
unlock:
spin_unlock_irqrestore(&drv->lock, flags);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
return ret;
}
/**
* rpmh_rsc_send_data() - Write / trigger active-only message.
* @drv: The controller.
* @msg: The data to be sent.
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
*
* NOTES:
* - This is only used for "ACTIVE_ONLY" since the limitations of this
* function don't make sense for sleep/wake cases.
* - To do the transfer, we will grab a whole TCS for ourselves--we don't
* try to share. If there are none available we'll wait indefinitely
* for a free one.
* - This function will not wait for the commands to be finished, only for
* data to be programmed into the RPMh. See rpmh_tx_done() which will
* be called when the transfer is fully complete.
* - This function must be called with interrupts enabled. If the hardware
* is busy doing someone else's transfer we need that transfer to fully
* finish so that we can have the hardware, and to fully finish it needs
* the interrupt handler to run. If the interrupts is set to run on the
* active CPU this can never happen if interrupts are disabled.
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
*
* Return: 0 on success, -EINVAL on error.
*/
int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
{
int ret;
do {
ret = tcs_write(drv, msg);
if (ret == -EBUSY) {
pr_info_ratelimited("TCS Busy, retrying RPMH message send: addr=%#x\n",
msg->cmds[0].addr);
udelay(10);
}
} while (ret == -EBUSY);
return ret;
}
/**
* find_slots() - Find a place to write the given message.
* @tcs: The tcs group to search.
* @msg: The message we want to find room for.
* @tcs_id: If we return 0 from the function, we return the global ID of the
* TCS to write to here.
* @cmd_id: If we return 0 from the function, we return the index of
* the command array of the returned TCS where the client should
* start writing the message.
*
* Only for use on sleep/wake TCSes since those are the only ones we maintain
* tcs->slots for.
*
* Return: -ENOMEM if there was no room, else 0.
*/
static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
int *tcs_id, int *cmd_id)
{
int slot, offset;
int i = 0;
/* Do over, until we can fit the full payload in a single TCS */
do {
slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
i, msg->num_cmds, 0);
if (slot >= tcs->num_tcs * tcs->ncpt)
return -ENOMEM;
i += tcs->ncpt;
} while (slot + msg->num_cmds - 1 >= i);
bitmap_set(tcs->slots, slot, msg->num_cmds);
offset = slot / tcs->ncpt;
*tcs_id = offset + tcs->offset;
*cmd_id = slot % tcs->ncpt;
return 0;
}
/**
* rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
* @drv: The controller.
* @msg: The data to be written to the controller.
*
* This should only be called for for sleep/wake state, never active-only
* state.
*
soc: qcom: rpmh-rsc: Simplify locking by eliminating the per-TCS lock The rpmh-rsc code had both a driver-level lock (sometimes referred to in comments as drv->lock) and a lock per-TCS. The idea was supposed to be that there would be times where you could get by with just locking a TCS lock and therefor other RPMH users wouldn't be blocked. The above didn't work out so well. Looking at tcs_write() the bigger drv->lock was held for most of the function anyway. Only the __tcs_buffer_write() and __tcs_set_trigger() calls were called without holding the drv->lock. It actually turns out that in tcs_write() we don't need to hold the drv->lock for those function calls anyway even if the per-TCS lock isn't there anymore. From the newly added comments in the code, this is because: - We marked "tcs_in_use" under lock. - Once "tcs_in_use" has been marked nobody else could be writing to these registers until the interrupt goes off. - The interrupt can't go off until we trigger w/ the last line of __tcs_set_trigger(). Thus, from a tcs_write() point of view, the per-TCS lock was useless. Looking at rpmh_rsc_write_ctrl_data(), only the per-TCS lock was held. It turns out, though, that this function already needs to be called with the equivalent of the drv->lock held anyway (we either need to hold drv->lock as we will in a future patch or we need to know no other CPUs could be running as happens today). Specifically rpmh_rsc_write_ctrl_data() might be writing to a TCS that has been borrowed for writing an active transation but it never checks this. Let's eliminate this extra overhead and avoid possible AB BA locking headaches. Suggested-by: Maulik Shah <mkshah@codeaurora.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20200504104917.v6.4.Ib8dccfdb10bf6b1fb1d600ca1c21d9c0db1ef746@changeid Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-05-05 01:50:18 +08:00
* The caller must ensure that no other RPMH actions are happening and the
* controller is idle when this function is called since it runs lockless.
*
* Return: 0 if no error; else -error.
*/
int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
{
struct tcs_group *tcs;
int tcs_id = 0, cmd_id = 0;
int ret;
tcs = get_tcs_for_msg(drv, msg);
if (IS_ERR(tcs))
return PTR_ERR(tcs);
/* find the TCS id and the command in the TCS to write to */
ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
if (!ret)
__tcs_buffer_write(drv, tcs_id, cmd_id, msg);
return ret;
}
/**
* rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
* @drv: The controller
*
* Checks if any of the AMCs are busy in handling ACTIVE sets.
* This is called from the last cpu powering down before flushing
* SLEEP and WAKE sets. If AMCs are busy, controller can not enter
* power collapse, so deny from the last cpu's pm notification.
*
* Context: Must be called with the drv->lock held.
*
* Return:
* * False - AMCs are idle
* * True - AMCs are busy
*/
static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
{
int m;
struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
/*
* If we made an active request on a RSC that does not have a
* dedicated TCS for active state use, then re-purposed wake TCSes
* should be checked for not busy, because we used wake TCSes for
* active requests in this case.
*/
if (!tcs->num_tcs)
tcs = &drv->tcs[WAKE_TCS];
for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
if (!tcs_is_free(drv, m))
return true;
}
return false;
}
/**
* rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
* @nfb: Pointer to the notifier block in struct rsc_drv.
* @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
* @v: Unused
*
* This function is given to cpu_pm_register_notifier so we can be informed
* about when CPUs go down. When all CPUs go down we know no more active
* transfers will be started so we write sleep/wake sets. This function gets
* called from cpuidle code paths and also at system suspend time.
*
* If its last CPU going down and AMCs are not busy then writes cached sleep
* and wake messages to TCSes. The firmware then takes care of triggering
* them when entering deepest low power modes.
*
* Return: See cpu_pm_register_notifier()
*/
static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
unsigned long action, void *v)
{
struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
int ret = NOTIFY_OK;
int cpus_in_pm;
switch (action) {
case CPU_PM_ENTER:
cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
/*
* NOTE: comments for num_online_cpus() point out that it's
* only a snapshot so we need to be careful. It should be OK
* for us to use, though. It's important for us not to miss
* if we're the last CPU going down so it would only be a
* problem if a CPU went offline right after we did the check
* AND that CPU was not idle AND that CPU was the last non-idle
* CPU. That can't happen. CPUs would have to come out of idle
* before the CPU could go offline.
*/
if (cpus_in_pm < num_online_cpus())
return NOTIFY_OK;
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
atomic_dec(&drv->cpus_in_pm);
return NOTIFY_OK;
default:
return NOTIFY_DONE;
}
/*
* It's likely we're on the last CPU. Grab the drv->lock and write
* out the sleep/wake commands to RPMH hardware. Grabbing the lock
* means that if we race with another CPU coming up we are still
* guaranteed to be safe. If another CPU came up just after we checked
* and has grabbed the lock or started an active transfer then we'll
* notice we're busy and abort. If another CPU comes up after we start
* flushing it will be blocked from starting an active transfer until
* we're done flushing. If another CPU starts an active transfer after
* we release the lock we're still OK because we're no longer the last
* CPU.
*/
if (spin_trylock(&drv->lock)) {
if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
ret = NOTIFY_BAD;
spin_unlock(&drv->lock);
} else {
/* Another CPU must be up */
return NOTIFY_OK;
}
if (ret == NOTIFY_BAD) {
/* Double-check if we're here because someone else is up */
if (cpus_in_pm < num_online_cpus())
ret = NOTIFY_OK;
else
/* We won't be called w/ CPU_PM_ENTER_FAILED */
atomic_dec(&drv->cpus_in_pm);
}
return ret;
}
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
static int rpmh_probe_tcs_config(struct platform_device *pdev,
struct rsc_drv *drv, void __iomem *base)
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
{
struct tcs_type_config {
u32 type;
u32 n;
} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
struct device_node *dn = pdev->dev.of_node;
u32 config, max_tcs, ncpt, offset;
int i, ret, n, st = 0;
struct tcs_group *tcs;
ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
if (ret)
return ret;
drv->tcs_base = base + offset;
config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
max_tcs = config;
max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
ncpt = ncpt >> DRV_NCPT_SHIFT;
n = of_property_count_u32_elems(dn, "qcom,tcs-config");
if (n != 2 * TCS_TYPE_NR)
return -EINVAL;
for (i = 0; i < TCS_TYPE_NR; i++) {
ret = of_property_read_u32_index(dn, "qcom,tcs-config",
i * 2, &tcs_cfg[i].type);
if (ret)
return ret;
if (tcs_cfg[i].type >= TCS_TYPE_NR)
return -EINVAL;
ret = of_property_read_u32_index(dn, "qcom,tcs-config",
i * 2 + 1, &tcs_cfg[i].n);
if (ret)
return ret;
if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
return -EINVAL;
}
for (i = 0; i < TCS_TYPE_NR; i++) {
tcs = &drv->tcs[tcs_cfg[i].type];
if (tcs->drv)
return -EINVAL;
tcs->drv = drv;
tcs->type = tcs_cfg[i].type;
tcs->num_tcs = tcs_cfg[i].n;
tcs->ncpt = ncpt;
if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
continue;
if (st + tcs->num_tcs > max_tcs ||
st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
return -EINVAL;
tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
tcs->offset = st;
st += tcs->num_tcs;
}
drv->num_tcs = st;
return 0;
}
static int rpmh_rsc_probe(struct platform_device *pdev)
{
struct device_node *dn = pdev->dev.of_node;
struct rsc_drv *drv;
struct resource *res;
char drv_id[10] = {0};
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
int ret, irq;
u32 solver_config;
void __iomem *base;
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
/*
* Even though RPMh doesn't directly use cmd-db, all of its children
* do. To avoid adding this check to our children we'll do it now.
*/
ret = cmd_db_ready();
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "Command DB not available (%d)\n",
ret);
return ret;
}
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
if (!drv)
return -ENOMEM;
ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
if (ret)
return ret;
drv->name = of_get_property(dn, "label", NULL);
if (!drv->name)
drv->name = dev_name(&pdev->dev);
snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
ret = rpmh_probe_tcs_config(pdev, drv, base);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
if (ret)
return ret;
spin_lock_init(&drv->lock);
bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
irq = platform_get_irq(pdev, drv->id);
if (irq < 0)
return irq;
ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
drv->name, drv);
if (ret)
return ret;
/*
* CPU PM notification are not required for controllers that support
* 'HW solver' mode where they can be in autonomous mode executing low
* power mode to power down.
*/
solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
if (!solver_config) {
drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
cpu_pm_register_notifier(&drv->rsc_pm);
}
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
/* Enable the active TCS to send requests immediately */
writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
drv->tcs_base + RSC_DRV_IRQ_ENABLE);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
spin_lock_init(&drv->client.cache_lock);
INIT_LIST_HEAD(&drv->client.cache);
INIT_LIST_HEAD(&drv->client.batch_cache);
dev_set_drvdata(&pdev->dev, drv);
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
return devm_of_platform_populate(&pdev->dev);
}
static const struct of_device_id rpmh_drv_match[] = {
{ .compatible = "qcom,rpmh-rsc", },
{ }
};
static struct platform_driver rpmh_driver = {
.probe = rpmh_rsc_probe,
.driver = {
.name = "rpmh",
.of_match_table = rpmh_drv_match,
.suppress_bind_attrs = true,
drivers: qcom: rpmh-rsc: add RPMH controller for QCOM SoCs Add controller driver for QCOM SoCs that have hardware based shared resource management. The hardware IP known as RSC (Resource State Coordinator) houses multiple Direct Resource Voter (DRV) for different execution levels. A DRV is a unique voter on the state of a shared resource. A Trigger Control Set (TCS) is a bunch of slots that can house multiple resource state requests, that when triggered will issue those requests through an internal bus to the Resource Power Manager Hardened (RPMH) blocks. These hardware blocks are capable of adjusting clocks, voltages, etc. The resource state request from a DRV are aggregated along with state requests from other processors in the SoC and the aggregate value is applied on the resource. Some important aspects of the RPMH communication - - Requests are <addr, value> with some header information - Multiple requests (upto 16) may be sent through a TCS, at a time - Requests in a TCS are sent in sequence - Requests may be fire-n-forget or completion (response expected) - Multiple TCS from the same DRV may be triggered simultaneously - Cannot send a request if another request for the same addr is in progress from the same DRV - When all the requests from a TCS are complete, an IRQ is raised - The IRQ handler needs to clear the TCS before it is available for reuse - TCS configuration is specific to a DRV - Platform drivers may use DRV from different RSCs to make requests Resource state requests made when CPUs are active are called 'active' state requests. Requests made when all the CPUs are powered down (idle state) are called 'sleep' state requests. They are matched by a corresponding 'wake' state requests which puts the resources back in to previously requested active state before resuming any CPU. TCSes are dedicated for each type of requests. Active mode TCSes (AMC) are used to send requests immediately to the resource, while control TCS are used to provide specific information to the controller. Sleep and Wake TCS send sleep and wake requests, after and before the system halt respectively. Signed-off-by: Lina Iyer <ilina@codeaurora.org> Signed-off-by: Raju P.L.S.S.S.N <rplsssn@codeaurora.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2018-06-20 21:26:58 +08:00
},
};
static int __init rpmh_driver_init(void)
{
return platform_driver_register(&rpmh_driver);
}
arch_initcall(rpmh_driver_init);