2012-03-05 19:49:28 +08:00
|
|
|
/*
|
|
|
|
* Based on arch/arm/kernel/process.c
|
|
|
|
*
|
|
|
|
* Original Copyright (C) 1995 Linus Torvalds
|
|
|
|
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
|
|
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdarg.h>
|
|
|
|
|
2014-04-30 17:51:32 +08:00
|
|
|
#include <linux/compat.h>
|
2015-03-06 22:49:24 +08:00
|
|
|
#include <linux/efi.h>
|
2012-03-05 19:49:28 +08:00
|
|
|
#include <linux/export.h>
|
|
|
|
#include <linux/sched.h>
|
2017-02-09 01:51:35 +08:00
|
|
|
#include <linux/sched/debug.h>
|
2017-02-09 01:51:36 +08:00
|
|
|
#include <linux/sched/task.h>
|
2017-02-09 01:51:37 +08:00
|
|
|
#include <linux/sched/task_stack.h>
|
2012-03-05 19:49:28 +08:00
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/stddef.h>
|
|
|
|
#include <linux/unistd.h>
|
|
|
|
#include <linux/user.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/reboot.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/kallsyms.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/elfcore.h>
|
|
|
|
#include <linux/pm.h>
|
|
|
|
#include <linux/tick.h>
|
|
|
|
#include <linux/utsname.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/random.h>
|
|
|
|
#include <linux/hw_breakpoint.h>
|
|
|
|
#include <linux/personality.h>
|
|
|
|
#include <linux/notifier.h>
|
2015-09-16 22:23:21 +08:00
|
|
|
#include <trace/events/power.h>
|
arm64: split thread_info from task stack
This patch moves arm64's struct thread_info from the task stack into
task_struct. This protects thread_info from corruption in the case of
stack overflows, and makes its address harder to determine if stack
addresses are leaked, making a number of attacks more difficult. Precise
detection and handling of overflow is left for subsequent patches.
Largely, this involves changing code to store the task_struct in sp_el0,
and acquire the thread_info from the task struct. Core code now
implements current_thread_info(), and as noted in <linux/sched.h> this
relies on offsetof(task_struct, thread_info) == 0, enforced by core
code.
This change means that the 'tsk' register used in entry.S now points to
a task_struct, rather than a thread_info as it used to. To make this
clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets
appropriately updated to account for the structural change.
Userspace clobbers sp_el0, and we can no longer restore this from the
stack. Instead, the current task is cached in a per-cpu variable that we
can safely access from early assembly as interrupts are disabled (and we
are thus not preemptible).
Both secondary entry and idle are updated to stash the sp and task
pointer separately.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-04 04:23:13 +08:00
|
|
|
#include <linux/percpu.h>
|
2012-03-05 19:49:28 +08:00
|
|
|
|
2016-02-05 22:58:48 +08:00
|
|
|
#include <asm/alternative.h>
|
2012-03-05 19:49:28 +08:00
|
|
|
#include <asm/compat.h>
|
|
|
|
#include <asm/cacheflush.h>
|
2016-10-18 18:27:48 +08:00
|
|
|
#include <asm/exec.h>
|
2013-01-17 20:31:45 +08:00
|
|
|
#include <asm/fpsimd.h>
|
|
|
|
#include <asm/mmu_context.h>
|
2012-03-05 19:49:28 +08:00
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/stacktrace.h>
|
|
|
|
|
2014-06-26 06:55:03 +08:00
|
|
|
#ifdef CONFIG_CC_STACKPROTECTOR
|
|
|
|
#include <linux/stackprotector.h>
|
|
|
|
unsigned long __stack_chk_guard __read_mostly;
|
|
|
|
EXPORT_SYMBOL(__stack_chk_guard);
|
|
|
|
#endif
|
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
/*
|
|
|
|
* Function pointers to optional machine specific functions
|
|
|
|
*/
|
|
|
|
void (*pm_power_off)(void);
|
|
|
|
EXPORT_SYMBOL_GPL(pm_power_off);
|
|
|
|
|
2013-07-23 18:05:10 +08:00
|
|
|
void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
|
2012-03-05 19:49:28 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This is our default idle handler.
|
|
|
|
*/
|
2013-03-22 05:49:39 +08:00
|
|
|
void arch_cpu_idle(void)
|
2012-03-05 19:49:28 +08:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
* This should do all the clock switching and wait for interrupt
|
|
|
|
* tricks
|
|
|
|
*/
|
2015-09-16 22:23:21 +08:00
|
|
|
trace_cpu_idle_rcuidle(1, smp_processor_id());
|
2014-02-17 23:59:30 +08:00
|
|
|
cpu_do_idle();
|
|
|
|
local_irq_enable();
|
2015-09-16 22:23:21 +08:00
|
|
|
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
|
2012-03-05 19:49:28 +08:00
|
|
|
}
|
|
|
|
|
2013-10-25 03:30:18 +08:00
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
void arch_cpu_idle_dead(void)
|
|
|
|
{
|
|
|
|
cpu_die();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
arm64: Fix machine_shutdown() definition
This patch ports most of commit 19ab428f4b79 "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-07 09:41:22 +08:00
|
|
|
/*
|
|
|
|
* Called by kexec, immediately prior to machine_kexec().
|
|
|
|
*
|
|
|
|
* This must completely disable all secondary CPUs; simply causing those CPUs
|
|
|
|
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
|
|
|
|
* kexec'd kernel to use any and all RAM as it sees fit, without having to
|
|
|
|
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
|
|
|
|
* functionality embodied in disable_nonboot_cpus() to achieve this.
|
|
|
|
*/
|
2012-03-05 19:49:28 +08:00
|
|
|
void machine_shutdown(void)
|
|
|
|
{
|
arm64: Fix machine_shutdown() definition
This patch ports most of commit 19ab428f4b79 "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-07 09:41:22 +08:00
|
|
|
disable_nonboot_cpus();
|
2012-03-05 19:49:28 +08:00
|
|
|
}
|
|
|
|
|
arm64: Fix machine_shutdown() definition
This patch ports most of commit 19ab428f4b79 "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-07 09:41:22 +08:00
|
|
|
/*
|
|
|
|
* Halting simply requires that the secondary CPUs stop performing any
|
|
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
|
|
* achieves this.
|
|
|
|
*/
|
2012-03-05 19:49:28 +08:00
|
|
|
void machine_halt(void)
|
|
|
|
{
|
2014-05-07 09:41:23 +08:00
|
|
|
local_irq_disable();
|
arm64: Fix machine_shutdown() definition
This patch ports most of commit 19ab428f4b79 "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-07 09:41:22 +08:00
|
|
|
smp_send_stop();
|
2012-03-05 19:49:28 +08:00
|
|
|
while (1);
|
|
|
|
}
|
|
|
|
|
arm64: Fix machine_shutdown() definition
This patch ports most of commit 19ab428f4b79 "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-07 09:41:22 +08:00
|
|
|
/*
|
|
|
|
* Power-off simply requires that the secondary CPUs stop performing any
|
|
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
|
|
* achieves this. When the system power is turned off, it will take all CPUs
|
|
|
|
* with it.
|
|
|
|
*/
|
2012-03-05 19:49:28 +08:00
|
|
|
void machine_power_off(void)
|
|
|
|
{
|
2014-05-07 09:41:23 +08:00
|
|
|
local_irq_disable();
|
arm64: Fix machine_shutdown() definition
This patch ports most of commit 19ab428f4b79 "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-07 09:41:22 +08:00
|
|
|
smp_send_stop();
|
2012-03-05 19:49:28 +08:00
|
|
|
if (pm_power_off)
|
|
|
|
pm_power_off();
|
|
|
|
}
|
|
|
|
|
arm64: Fix machine_shutdown() definition
This patch ports most of commit 19ab428f4b79 "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-07 09:41:22 +08:00
|
|
|
/*
|
|
|
|
* Restart requires that the secondary CPUs stop performing any activity
|
2015-04-20 17:24:35 +08:00
|
|
|
* while the primary CPU resets the system. Systems with multiple CPUs must
|
arm64: Fix machine_shutdown() definition
This patch ports most of commit 19ab428f4b79 "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-07 09:41:22 +08:00
|
|
|
* provide a HW restart implementation, to ensure that all CPUs reset at once.
|
|
|
|
* This is required so that any code running after reset on the primary CPU
|
|
|
|
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
|
|
|
|
* executing pre-reset code, and using RAM that the primary CPU's code wishes
|
|
|
|
* to use. Implementing such co-ordination would be essentially impossible.
|
|
|
|
*/
|
2012-03-05 19:49:28 +08:00
|
|
|
void machine_restart(char *cmd)
|
|
|
|
{
|
|
|
|
/* Disable interrupts first */
|
|
|
|
local_irq_disable();
|
2014-05-07 09:41:23 +08:00
|
|
|
smp_send_stop();
|
2012-03-05 19:49:28 +08:00
|
|
|
|
2015-03-06 22:49:24 +08:00
|
|
|
/*
|
|
|
|
* UpdateCapsule() depends on the system being reset via
|
|
|
|
* ResetSystem().
|
|
|
|
*/
|
|
|
|
if (efi_enabled(EFI_RUNTIME_SERVICES))
|
|
|
|
efi_reboot(reboot_mode, NULL);
|
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
/* Now call the architecture specific reboot code. */
|
2013-03-01 02:14:37 +08:00
|
|
|
if (arm_pm_restart)
|
2013-07-11 19:13:00 +08:00
|
|
|
arm_pm_restart(reboot_mode, cmd);
|
2014-09-26 08:03:16 +08:00
|
|
|
else
|
|
|
|
do_kernel_restart(cmd);
|
2012-03-05 19:49:28 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Whoops - the architecture was unable to reboot.
|
|
|
|
*/
|
|
|
|
printk("Reboot failed -- System halted\n");
|
|
|
|
while (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __show_regs(struct pt_regs *regs)
|
|
|
|
{
|
2013-09-18 01:49:46 +08:00
|
|
|
int i, top_reg;
|
|
|
|
u64 lr, sp;
|
|
|
|
|
|
|
|
if (compat_user_mode(regs)) {
|
|
|
|
lr = regs->compat_lr;
|
|
|
|
sp = regs->compat_sp;
|
|
|
|
top_reg = 12;
|
|
|
|
} else {
|
|
|
|
lr = regs->regs[30];
|
|
|
|
sp = regs->sp;
|
|
|
|
top_reg = 29;
|
|
|
|
}
|
2012-03-05 19:49:28 +08:00
|
|
|
|
dump_stack: unify debug information printed by show_regs()
show_regs() is inherently arch-dependent but it does make sense to print
generic debug information and some archs already do albeit in slightly
different forms. This patch introduces a generic function to print debug
information from show_regs() so that different archs print out the same
information and it's much easier to modify what's printed.
show_regs_print_info() prints out the same debug info as dump_stack()
does plus task and thread_info pointers.
* Archs which didn't print debug info now do.
alpha, arc, blackfin, c6x, cris, frv, h8300, hexagon, ia64, m32r,
metag, microblaze, mn10300, openrisc, parisc, score, sh64, sparc,
um, xtensa
* Already prints debug info. Replaced with show_regs_print_info().
The printed information is superset of what used to be there.
arm, arm64, avr32, mips, powerpc, sh32, tile, unicore32, x86
* s390 is special in that it used to print arch-specific information
along with generic debug info. Heiko and Martin think that the
arch-specific extra isn't worth keeping s390 specfic implementation.
Converted to use the generic version.
Note that now all archs print the debug info before actual register
dumps.
An example BUG() dump follows.
kernel BUG at /work/os/work/kernel/workqueue.c:4841!
invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.9.0-rc1-work+ #7
Hardware name: empty empty/S3992, BIOS 080011 10/26/2007
task: ffff88007c85e040 ti: ffff88007c860000 task.ti: ffff88007c860000
RIP: 0010:[<ffffffff8234a07e>] [<ffffffff8234a07e>] init_workqueues+0x4/0x6
RSP: 0000:ffff88007c861ec8 EFLAGS: 00010246
RAX: ffff88007c861fd8 RBX: ffffffff824466a8 RCX: 0000000000000001
RDX: 0000000000000046 RSI: 0000000000000001 RDI: ffffffff8234a07a
RBP: ffff88007c861ec8 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: ffffffff8234a07a
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: ffff88015f7ff000 CR3: 00000000021f1000 CR4: 00000000000007f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Stack:
ffff88007c861ef8 ffffffff81000312 ffffffff824466a8 ffff88007c85e650
0000000000000003 0000000000000000 ffff88007c861f38 ffffffff82335e5d
ffff88007c862080 ffffffff8223d8c0 ffff88007c862080 ffffffff81c47760
Call Trace:
[<ffffffff81000312>] do_one_initcall+0x122/0x170
[<ffffffff82335e5d>] kernel_init_freeable+0x9b/0x1c8
[<ffffffff81c47760>] ? rest_init+0x140/0x140
[<ffffffff81c4776e>] kernel_init+0xe/0xf0
[<ffffffff81c6be9c>] ret_from_fork+0x7c/0xb0
[<ffffffff81c47760>] ? rest_init+0x140/0x140
...
v2: Typo fix in x86-32.
v3: CPU number dropped from show_regs_print_info() as
dump_stack_print_info() has been updated to print it. s390
specific implementation dropped as requested by s390 maintainers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Acked-by: Chris Metcalf <cmetcalf@tilera.com> [tile bits]
Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon bits]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-01 06:27:17 +08:00
|
|
|
show_regs_print_info(KERN_DEFAULT);
|
2012-03-05 19:49:28 +08:00
|
|
|
print_symbol("PC is at %s\n", instruction_pointer(regs));
|
2013-09-18 01:49:46 +08:00
|
|
|
print_symbol("LR is at %s\n", lr);
|
2012-03-05 19:49:28 +08:00
|
|
|
printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
|
2013-09-18 01:49:46 +08:00
|
|
|
regs->pc, lr, regs->pstate);
|
|
|
|
printk("sp : %016llx\n", sp);
|
arm64: fix show_regs fallout from KERN_CONT changes
Recently in commit 4bcc595ccd80decb ("printk: reinstate KERN_CONT for
printing continuation lines"), the behaviour of printk changed w.r.t.
KERN_CONT. Now, KERN_CONT is mandatory to continue existing lines.
Without this, prefixes are inserted, making output illegible, e.g.
[ 1007.069010] pc : [<ffff00000871898c>] lr : [<ffff000008718948>] pstate: 40000145
[ 1007.076329] sp : ffff000008d53ec0
[ 1007.079606] x29: ffff000008d53ec0 [ 1007.082797] x28: 0000000080c50018
[ 1007.086160]
[ 1007.087630] x27: ffff000008e0c7f8 [ 1007.090820] x26: ffff80097631ca00
[ 1007.094183]
[ 1007.095653] x25: 0000000000000001 [ 1007.098843] x24: 000000ea68b61cac
[ 1007.102206]
... or when dumped with the userpace dmesg tool, which has slightly
different implicit newline behaviour. e.g.
[ 1007.069010] pc : [<ffff00000871898c>] lr : [<ffff000008718948>] pstate: 40000145
[ 1007.076329] sp : ffff000008d53ec0
[ 1007.079606] x29: ffff000008d53ec0
[ 1007.082797] x28: 0000000080c50018
[ 1007.086160]
[ 1007.087630] x27: ffff000008e0c7f8
[ 1007.090820] x26: ffff80097631ca00
[ 1007.094183]
[ 1007.095653] x25: 0000000000000001
[ 1007.098843] x24: 000000ea68b61cac
[ 1007.102206]
We can't simply always use KERN_CONT for lines which may or may not be
continuations. That causes line prefixes (e.g. timestamps) to be
supressed, and the alignment of all but the first line will be broken.
For even more fun, we can't simply insert some dummy empty-string printk
calls, as GCC warns for an empty printk string, and even if we pass
KERN_DEFAULT explcitly to silence the warning, the prefix gets swallowed
unless there is an additional part to the string.
Instead, we must manually iterate over pairs of registers, which gives
us the legible output we want in either case, e.g.
[ 169.771790] pc : [<ffff00000871898c>] lr : [<ffff000008718948>] pstate: 40000145
[ 169.779109] sp : ffff000008d53ec0
[ 169.782386] x29: ffff000008d53ec0 x28: 0000000080c50018
[ 169.787650] x27: ffff000008e0c7f8 x26: ffff80097631de00
[ 169.792913] x25: 0000000000000001 x24: 00000027827b2cf4
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-10-20 19:23:16 +08:00
|
|
|
|
|
|
|
i = top_reg;
|
|
|
|
|
|
|
|
while (i >= 0) {
|
2012-03-05 19:49:28 +08:00
|
|
|
printk("x%-2d: %016llx ", i, regs->regs[i]);
|
arm64: fix show_regs fallout from KERN_CONT changes
Recently in commit 4bcc595ccd80decb ("printk: reinstate KERN_CONT for
printing continuation lines"), the behaviour of printk changed w.r.t.
KERN_CONT. Now, KERN_CONT is mandatory to continue existing lines.
Without this, prefixes are inserted, making output illegible, e.g.
[ 1007.069010] pc : [<ffff00000871898c>] lr : [<ffff000008718948>] pstate: 40000145
[ 1007.076329] sp : ffff000008d53ec0
[ 1007.079606] x29: ffff000008d53ec0 [ 1007.082797] x28: 0000000080c50018
[ 1007.086160]
[ 1007.087630] x27: ffff000008e0c7f8 [ 1007.090820] x26: ffff80097631ca00
[ 1007.094183]
[ 1007.095653] x25: 0000000000000001 [ 1007.098843] x24: 000000ea68b61cac
[ 1007.102206]
... or when dumped with the userpace dmesg tool, which has slightly
different implicit newline behaviour. e.g.
[ 1007.069010] pc : [<ffff00000871898c>] lr : [<ffff000008718948>] pstate: 40000145
[ 1007.076329] sp : ffff000008d53ec0
[ 1007.079606] x29: ffff000008d53ec0
[ 1007.082797] x28: 0000000080c50018
[ 1007.086160]
[ 1007.087630] x27: ffff000008e0c7f8
[ 1007.090820] x26: ffff80097631ca00
[ 1007.094183]
[ 1007.095653] x25: 0000000000000001
[ 1007.098843] x24: 000000ea68b61cac
[ 1007.102206]
We can't simply always use KERN_CONT for lines which may or may not be
continuations. That causes line prefixes (e.g. timestamps) to be
supressed, and the alignment of all but the first line will be broken.
For even more fun, we can't simply insert some dummy empty-string printk
calls, as GCC warns for an empty printk string, and even if we pass
KERN_DEFAULT explcitly to silence the warning, the prefix gets swallowed
unless there is an additional part to the string.
Instead, we must manually iterate over pairs of registers, which gives
us the legible output we want in either case, e.g.
[ 169.771790] pc : [<ffff00000871898c>] lr : [<ffff000008718948>] pstate: 40000145
[ 169.779109] sp : ffff000008d53ec0
[ 169.782386] x29: ffff000008d53ec0 x28: 0000000080c50018
[ 169.787650] x27: ffff000008e0c7f8 x26: ffff80097631de00
[ 169.792913] x25: 0000000000000001 x24: 00000027827b2cf4
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-10-20 19:23:16 +08:00
|
|
|
i--;
|
|
|
|
|
|
|
|
if (i % 2 == 0) {
|
|
|
|
pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
|
|
|
|
i--;
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_cont("\n");
|
2012-03-05 19:49:28 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void show_regs(struct pt_regs * regs)
|
|
|
|
{
|
|
|
|
__show_regs(regs);
|
|
|
|
}
|
|
|
|
|
2014-09-11 21:38:16 +08:00
|
|
|
static void tls_thread_flush(void)
|
|
|
|
{
|
2016-09-08 20:55:38 +08:00
|
|
|
write_sysreg(0, tpidr_el0);
|
2014-09-11 21:38:16 +08:00
|
|
|
|
|
|
|
if (is_compat_task()) {
|
|
|
|
current->thread.tp_value = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We need to ensure ordering between the shadow state and the
|
|
|
|
* hardware state, so that we don't corrupt the hardware state
|
|
|
|
* with a stale shadow state during context switch.
|
|
|
|
*/
|
|
|
|
barrier();
|
2016-09-08 20:55:38 +08:00
|
|
|
write_sysreg(0, tpidrro_el0);
|
2014-09-11 21:38:16 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
void flush_thread(void)
|
|
|
|
{
|
|
|
|
fpsimd_flush_thread();
|
2014-09-11 21:38:16 +08:00
|
|
|
tls_thread_flush();
|
2012-03-05 19:49:28 +08:00
|
|
|
flush_ptrace_hw_breakpoint(current);
|
|
|
|
}
|
|
|
|
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
|
|
{
|
2015-06-11 12:04:32 +08:00
|
|
|
if (current->mm)
|
|
|
|
fpsimd_preserve_current_state();
|
2012-03-05 19:49:28 +08:00
|
|
|
*dst = *src;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
|
|
|
|
|
|
|
|
int copy_thread(unsigned long clone_flags, unsigned long stack_start,
|
2012-10-23 10:51:14 +08:00
|
|
|
unsigned long stk_sz, struct task_struct *p)
|
2012-03-05 19:49:28 +08:00
|
|
|
{
|
|
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
|
|
|
2012-10-05 19:31:20 +08:00
|
|
|
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
|
2012-03-05 19:49:28 +08:00
|
|
|
|
2012-10-22 03:56:52 +08:00
|
|
|
if (likely(!(p->flags & PF_KTHREAD))) {
|
|
|
|
*childregs = *current_pt_regs();
|
2012-10-05 19:31:20 +08:00
|
|
|
childregs->regs[0] = 0;
|
2015-05-27 22:39:40 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Read the current TLS pointer from tpidr_el0 as it may be
|
|
|
|
* out-of-sync with the saved value.
|
|
|
|
*/
|
2016-09-08 20:55:38 +08:00
|
|
|
*task_user_tls(p) = read_sysreg(tpidr_el0);
|
2015-05-27 22:39:40 +08:00
|
|
|
|
|
|
|
if (stack_start) {
|
|
|
|
if (is_compat_thread(task_thread_info(p)))
|
2012-10-18 12:55:54 +08:00
|
|
|
childregs->compat_sp = stack_start;
|
2015-05-27 22:39:40 +08:00
|
|
|
else
|
2012-10-18 12:55:54 +08:00
|
|
|
childregs->sp = stack_start;
|
2012-10-05 19:31:20 +08:00
|
|
|
}
|
2015-05-27 22:39:40 +08:00
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
/*
|
2012-10-05 19:31:20 +08:00
|
|
|
* If a TLS pointer was passed to clone (4th argument), use it
|
|
|
|
* for the new thread.
|
2012-03-05 19:49:28 +08:00
|
|
|
*/
|
2012-10-05 19:31:20 +08:00
|
|
|
if (clone_flags & CLONE_SETTLS)
|
2015-05-27 22:39:40 +08:00
|
|
|
p->thread.tp_value = childregs->regs[3];
|
2012-10-05 19:31:20 +08:00
|
|
|
} else {
|
|
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
|
|
childregs->pstate = PSR_MODE_EL1h;
|
2016-02-05 22:58:48 +08:00
|
|
|
if (IS_ENABLED(CONFIG_ARM64_UAO) &&
|
2016-11-08 21:56:20 +08:00
|
|
|
cpus_have_const_cap(ARM64_HAS_UAO))
|
2016-02-05 22:58:48 +08:00
|
|
|
childregs->pstate |= PSR_UAO_BIT;
|
2012-10-05 19:31:20 +08:00
|
|
|
p->thread.cpu_context.x19 = stack_start;
|
|
|
|
p->thread.cpu_context.x20 = stk_sz;
|
2012-03-05 19:49:28 +08:00
|
|
|
}
|
|
|
|
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
|
2012-10-05 19:31:20 +08:00
|
|
|
p->thread.cpu_context.sp = (unsigned long)childregs;
|
2012-03-05 19:49:28 +08:00
|
|
|
|
|
|
|
ptrace_hw_copy_thread(p);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void tls_thread_switch(struct task_struct *next)
|
|
|
|
{
|
|
|
|
unsigned long tpidr, tpidrro;
|
|
|
|
|
2016-09-08 20:55:38 +08:00
|
|
|
tpidr = read_sysreg(tpidr_el0);
|
2015-05-27 22:39:40 +08:00
|
|
|
*task_user_tls(current) = tpidr;
|
2012-03-05 19:49:28 +08:00
|
|
|
|
2015-05-27 22:39:40 +08:00
|
|
|
tpidr = *task_user_tls(next);
|
|
|
|
tpidrro = is_compat_thread(task_thread_info(next)) ?
|
|
|
|
next->thread.tp_value : 0;
|
2012-03-05 19:49:28 +08:00
|
|
|
|
2016-09-08 20:55:38 +08:00
|
|
|
write_sysreg(tpidr, tpidr_el0);
|
|
|
|
write_sysreg(tpidrro, tpidrro_el0);
|
2012-03-05 19:49:28 +08:00
|
|
|
}
|
|
|
|
|
2016-02-05 22:58:48 +08:00
|
|
|
/* Restore the UAO state depending on next's addr_limit */
|
2016-10-18 18:27:48 +08:00
|
|
|
void uao_thread_switch(struct task_struct *next)
|
2016-02-05 22:58:48 +08:00
|
|
|
{
|
2016-02-18 23:50:04 +08:00
|
|
|
if (IS_ENABLED(CONFIG_ARM64_UAO)) {
|
|
|
|
if (task_thread_info(next)->addr_limit == KERNEL_DS)
|
|
|
|
asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
|
|
|
|
else
|
|
|
|
asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
|
|
|
|
}
|
2016-02-05 22:58:48 +08:00
|
|
|
}
|
|
|
|
|
arm64: split thread_info from task stack
This patch moves arm64's struct thread_info from the task stack into
task_struct. This protects thread_info from corruption in the case of
stack overflows, and makes its address harder to determine if stack
addresses are leaked, making a number of attacks more difficult. Precise
detection and handling of overflow is left for subsequent patches.
Largely, this involves changing code to store the task_struct in sp_el0,
and acquire the thread_info from the task struct. Core code now
implements current_thread_info(), and as noted in <linux/sched.h> this
relies on offsetof(task_struct, thread_info) == 0, enforced by core
code.
This change means that the 'tsk' register used in entry.S now points to
a task_struct, rather than a thread_info as it used to. To make this
clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets
appropriately updated to account for the structural change.
Userspace clobbers sp_el0, and we can no longer restore this from the
stack. Instead, the current task is cached in a per-cpu variable that we
can safely access from early assembly as interrupts are disabled (and we
are thus not preemptible).
Both secondary entry and idle are updated to stash the sp and task
pointer separately.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-04 04:23:13 +08:00
|
|
|
/*
|
|
|
|
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
|
|
|
|
* shadow copy so that we can restore this upon entry from userspace.
|
|
|
|
*
|
|
|
|
* This is *only* for exception entry from EL0, and is not valid until we
|
|
|
|
* __switch_to() a user task.
|
|
|
|
*/
|
|
|
|
DEFINE_PER_CPU(struct task_struct *, __entry_task);
|
|
|
|
|
|
|
|
static void entry_task_switch(struct task_struct *next)
|
|
|
|
{
|
|
|
|
__this_cpu_write(__entry_task, next);
|
|
|
|
}
|
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
/*
|
|
|
|
* Thread switching.
|
|
|
|
*/
|
2016-12-22 06:44:46 +08:00
|
|
|
__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
|
2012-03-05 19:49:28 +08:00
|
|
|
struct task_struct *next)
|
|
|
|
{
|
|
|
|
struct task_struct *last;
|
|
|
|
|
|
|
|
fpsimd_thread_switch(next);
|
|
|
|
tls_thread_switch(next);
|
|
|
|
hw_breakpoint_thread_switch(next);
|
2013-04-04 02:01:01 +08:00
|
|
|
contextidr_thread_switch(next);
|
arm64: split thread_info from task stack
This patch moves arm64's struct thread_info from the task stack into
task_struct. This protects thread_info from corruption in the case of
stack overflows, and makes its address harder to determine if stack
addresses are leaked, making a number of attacks more difficult. Precise
detection and handling of overflow is left for subsequent patches.
Largely, this involves changing code to store the task_struct in sp_el0,
and acquire the thread_info from the task struct. Core code now
implements current_thread_info(), and as noted in <linux/sched.h> this
relies on offsetof(task_struct, thread_info) == 0, enforced by core
code.
This change means that the 'tsk' register used in entry.S now points to
a task_struct, rather than a thread_info as it used to. To make this
clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets
appropriately updated to account for the structural change.
Userspace clobbers sp_el0, and we can no longer restore this from the
stack. Instead, the current task is cached in a per-cpu variable that we
can safely access from early assembly as interrupts are disabled (and we
are thus not preemptible).
Both secondary entry and idle are updated to stash the sp and task
pointer separately.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-04 04:23:13 +08:00
|
|
|
entry_task_switch(next);
|
2016-02-05 22:58:48 +08:00
|
|
|
uao_thread_switch(next);
|
2012-03-05 19:49:28 +08:00
|
|
|
|
2013-04-24 21:47:02 +08:00
|
|
|
/*
|
|
|
|
* Complete any pending TLB or cache maintenance on this CPU in case
|
|
|
|
* the thread migrates to a different CPU.
|
|
|
|
*/
|
2014-05-02 23:24:10 +08:00
|
|
|
dsb(ish);
|
2012-03-05 19:49:28 +08:00
|
|
|
|
|
|
|
/* the actual thread switch */
|
|
|
|
last = cpu_switch_to(prev, next);
|
|
|
|
|
|
|
|
return last;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
|
|
{
|
|
|
|
struct stackframe frame;
|
2016-11-04 04:23:08 +08:00
|
|
|
unsigned long stack_page, ret = 0;
|
2012-03-05 19:49:28 +08:00
|
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
|
|
return 0;
|
|
|
|
|
2016-11-04 04:23:08 +08:00
|
|
|
stack_page = (unsigned long)try_get_task_stack(p);
|
|
|
|
if (!stack_page)
|
|
|
|
return 0;
|
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
frame.fp = thread_saved_fp(p);
|
|
|
|
frame.sp = thread_saved_sp(p);
|
|
|
|
frame.pc = thread_saved_pc(p);
|
2015-12-15 16:33:41 +08:00
|
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
|
|
frame.graph = p->curr_ret_stack;
|
|
|
|
#endif
|
2012-03-05 19:49:28 +08:00
|
|
|
do {
|
2013-12-05 21:30:10 +08:00
|
|
|
if (frame.sp < stack_page ||
|
|
|
|
frame.sp >= stack_page + THREAD_SIZE ||
|
2015-12-15 16:33:40 +08:00
|
|
|
unwind_frame(p, &frame))
|
2016-11-04 04:23:08 +08:00
|
|
|
goto out;
|
|
|
|
if (!in_sched_functions(frame.pc)) {
|
|
|
|
ret = frame.pc;
|
|
|
|
goto out;
|
|
|
|
}
|
2012-03-05 19:49:28 +08:00
|
|
|
} while (count ++ < 16);
|
2016-11-04 04:23:08 +08:00
|
|
|
|
|
|
|
out:
|
|
|
|
put_task_stack(p);
|
|
|
|
return ret;
|
2012-03-05 19:49:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
|
|
{
|
|
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
|
|
sp -= get_random_int() & ~PAGE_MASK;
|
|
|
|
return sp & ~0xf;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long arch_randomize_brk(struct mm_struct *mm)
|
|
|
|
{
|
2016-05-11 01:55:49 +08:00
|
|
|
if (is_compat_task())
|
2017-02-09 09:52:03 +08:00
|
|
|
return randomize_page(mm->brk, SZ_32M);
|
2016-05-11 01:55:49 +08:00
|
|
|
else
|
2017-02-09 09:52:03 +08:00
|
|
|
return randomize_page(mm->brk, SZ_1G);
|
2012-03-05 19:49:28 +08:00
|
|
|
}
|