linux/drivers/net/ethernet/sfc/ptp.c

1487 lines
43 KiB
C
Raw Normal View History

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2011 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/* Theory of operation:
*
* PTP support is assisted by firmware running on the MC, which provides
* the hardware timestamping capabilities. Both transmitted and received
* PTP event packets are queued onto internal queues for subsequent processing;
* this is because the MC operations are relatively long and would block
* block NAPI/interrupt operation.
*
* Receive event processing:
* The event contains the packet's UUID and sequence number, together
* with the hardware timestamp. The PTP receive packet queue is searched
* for this UUID/sequence number and, if found, put on a pending queue.
* Packets not matching are delivered without timestamps (MCDI events will
* always arrive after the actual packet).
* It is important for the operation of the PTP protocol that the ordering
* of packets between the event and general port is maintained.
*
* Work queue processing:
* If work waiting, synchronise host/hardware time
*
* Transmit: send packet through MC, which returns the transmission time
* that is converted to an appropriate timestamp.
*
* Receive: the packet's reception time is converted to an appropriate
* timestamp.
*/
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/pps_kernel.h>
#include <linux/ptp_clock_kernel.h>
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "io.h"
#include "regs.h"
#include "nic.h"
/* Maximum number of events expected to make up a PTP event */
#define MAX_EVENT_FRAGS 3
/* Maximum delay, ms, to begin synchronisation */
#define MAX_SYNCHRONISE_WAIT_MS 2
/* How long, at most, to spend synchronising */
#define SYNCHRONISE_PERIOD_NS 250000
/* How often to update the shared memory time */
#define SYNCHRONISATION_GRANULARITY_NS 200
/* Minimum permitted length of a (corrected) synchronisation time */
#define MIN_SYNCHRONISATION_NS 120
/* Maximum permitted length of a (corrected) synchronisation time */
#define MAX_SYNCHRONISATION_NS 1000
/* How many (MC) receive events that can be queued */
#define MAX_RECEIVE_EVENTS 8
/* Length of (modified) moving average. */
#define AVERAGE_LENGTH 16
/* How long an unmatched event or packet can be held */
#define PKT_EVENT_LIFETIME_MS 10
/* Offsets into PTP packet for identification. These offsets are from the
* start of the IP header, not the MAC header. Note that neither PTP V1 nor
* PTP V2 permit the use of IPV4 options.
*/
#define PTP_DPORT_OFFSET 22
#define PTP_V1_VERSION_LENGTH 2
#define PTP_V1_VERSION_OFFSET 28
#define PTP_V1_UUID_LENGTH 6
#define PTP_V1_UUID_OFFSET 50
#define PTP_V1_SEQUENCE_LENGTH 2
#define PTP_V1_SEQUENCE_OFFSET 58
/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
* includes IP header.
*/
#define PTP_V1_MIN_LENGTH 64
#define PTP_V2_VERSION_LENGTH 1
#define PTP_V2_VERSION_OFFSET 29
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
#define PTP_V2_UUID_LENGTH 8
#define PTP_V2_UUID_OFFSET 48
/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
* the MC only captures the last six bytes of the clock identity. These values
* reflect those, not the ones used in the standard. The standard permits
* mapping of V1 UUIDs to V2 UUIDs with these same values.
*/
#define PTP_V2_MC_UUID_LENGTH 6
#define PTP_V2_MC_UUID_OFFSET 50
#define PTP_V2_SEQUENCE_LENGTH 2
#define PTP_V2_SEQUENCE_OFFSET 58
/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
* includes IP header.
*/
#define PTP_V2_MIN_LENGTH 63
#define PTP_MIN_LENGTH 63
#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
#define PTP_EVENT_PORT 319
#define PTP_GENERAL_PORT 320
/* Annoyingly the format of the version numbers are different between
* versions 1 and 2 so it isn't possible to simply look for 1 or 2.
*/
#define PTP_VERSION_V1 1
#define PTP_VERSION_V2 2
#define PTP_VERSION_V2_MASK 0x0f
enum ptp_packet_state {
PTP_PACKET_STATE_UNMATCHED = 0,
PTP_PACKET_STATE_MATCHED,
PTP_PACKET_STATE_TIMED_OUT,
PTP_PACKET_STATE_MATCH_UNWANTED
};
/* NIC synchronised with single word of time only comprising
* partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
*/
#define MC_NANOSECOND_BITS 30
#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
/* Maximum parts-per-billion adjustment that is acceptable */
#define MAX_PPB 1000000
/* Number of bits required to hold the above */
#define MAX_PPB_BITS 20
/* Number of extra bits allowed when calculating fractional ns.
* EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
* be less than 63.
*/
#define PPB_EXTRA_BITS 2
/* Precalculate scale word to avoid long long division at runtime */
#define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
MAX_PPB_BITS)) / 1000000000LL)
#define PTP_SYNC_ATTEMPTS 4
/**
* struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
* @words: UUID and (partial) sequence number
* @expiry: Time after which the packet should be delivered irrespective of
* event arrival.
* @state: The state of the packet - whether it is ready for processing or
* whether that is of no interest.
*/
struct efx_ptp_match {
u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
unsigned long expiry;
enum ptp_packet_state state;
};
/**
* struct efx_ptp_event_rx - A PTP receive event (from MC)
* @seq0: First part of (PTP) UUID
* @seq1: Second part of (PTP) UUID and sequence number
* @hwtimestamp: Event timestamp
*/
struct efx_ptp_event_rx {
struct list_head link;
u32 seq0;
u32 seq1;
ktime_t hwtimestamp;
unsigned long expiry;
};
/**
* struct efx_ptp_timeset - Synchronisation between host and MC
* @host_start: Host time immediately before hardware timestamp taken
* @seconds: Hardware timestamp, seconds
* @nanoseconds: Hardware timestamp, nanoseconds
* @host_end: Host time immediately after hardware timestamp taken
* @waitns: Number of nanoseconds between hardware timestamp being read and
* host end time being seen
* @window: Difference of host_end and host_start
* @valid: Whether this timeset is valid
*/
struct efx_ptp_timeset {
u32 host_start;
u32 seconds;
u32 nanoseconds;
u32 host_end;
u32 waitns;
u32 window; /* Derived: end - start, allowing for wrap */
};
/**
* struct efx_ptp_data - Precision Time Protocol (PTP) state
* @channel: The PTP channel
* @rxq: Receive queue (awaiting timestamps)
* @txq: Transmit queue
* @evt_list: List of MC receive events awaiting packets
* @evt_free_list: List of free events
* @evt_lock: Lock for manipulating evt_list and evt_free_list
* @rx_evts: Instantiated events (on evt_list and evt_free_list)
* @workwq: Work queue for processing pending PTP operations
* @work: Work task
* @reset_required: A serious error has occurred and the PTP task needs to be
* reset (disable, enable).
* @rxfilter_event: Receive filter when operating
* @rxfilter_general: Receive filter when operating
* @config: Current timestamp configuration
* @enabled: PTP operation enabled
* @mode: Mode in which PTP operating (PTP version)
* @evt_frags: Partly assembled PTP events
* @evt_frag_idx: Current fragment number
* @evt_code: Last event code
* @start: Address at which MC indicates ready for synchronisation
* @host_time_pps: Host time at last PPS
* @last_sync_ns: Last number of nanoseconds between readings when synchronising
* @base_sync_ns: Number of nanoseconds for last synchronisation.
* @base_sync_valid: Whether base_sync_time is valid.
* @current_adjfreq: Current ppb adjustment.
* @phc_clock: Pointer to registered phc device
* @phc_clock_info: Registration structure for phc device
* @pps_work: pps work task for handling pps events
* @pps_workwq: pps work queue
* @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
* @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
* allocations in main data path).
* @debug_ptp_dir: PTP debugfs directory
* @missed_rx_sync: Number of packets received without syncrhonisation.
* @good_syncs: Number of successful synchronisations.
* @no_time_syncs: Number of synchronisations with no good times.
* @bad_sync_durations: Number of synchronisations with bad durations.
* @bad_syncs: Number of failed synchronisations.
* @last_sync_time: Number of nanoseconds for last synchronisation.
* @sync_timeouts: Number of synchronisation timeouts
* @fast_syncs: Number of synchronisations requiring short delay
* @min_sync_delta: Minimum time between event and synchronisation
* @max_sync_delta: Maximum time between event and synchronisation
* @average_sync_delta: Average time between event and synchronisation.
* Modified moving average.
* @last_sync_delta: Last time between event and synchronisation
* @mc_stats: Context value for MC statistics
* @timeset: Last set of synchronisation statistics.
*/
struct efx_ptp_data {
struct efx_channel *channel;
struct sk_buff_head rxq;
struct sk_buff_head txq;
struct list_head evt_list;
struct list_head evt_free_list;
spinlock_t evt_lock;
struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
struct workqueue_struct *workwq;
struct work_struct work;
bool reset_required;
u32 rxfilter_event;
u32 rxfilter_general;
bool rxfilter_installed;
struct hwtstamp_config config;
bool enabled;
unsigned int mode;
efx_qword_t evt_frags[MAX_EVENT_FRAGS];
int evt_frag_idx;
int evt_code;
struct efx_buffer start;
struct pps_event_time host_time_pps;
unsigned last_sync_ns;
unsigned base_sync_ns;
bool base_sync_valid;
s64 current_adjfreq;
struct ptp_clock *phc_clock;
struct ptp_clock_info phc_clock_info;
struct work_struct pps_work;
struct workqueue_struct *pps_workwq;
bool nic_ts_enabled;
MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
struct efx_ptp_timeset
timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
};
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
static int efx_phc_settime(struct ptp_clock_info *ptp,
const struct timespec *e_ts);
static int efx_phc_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *request, int on);
/* Enable MCDI PTP support. */
static int efx_ptp_enable(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
efx->ptp_data->channel->channel);
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
/* Disable MCDI PTP support.
*
* Note that this function should never rely on the presence of ptp_data -
* may be called before that exists.
*/
static int efx_ptp_disable(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(q))) {
local_bh_disable();
netif_receive_skb(skb);
local_bh_enable();
}
}
static void efx_ptp_handle_no_channel(struct efx_nic *efx)
{
netif_err(efx, drv, efx->net_dev,
"ERROR: PTP requires MSI-X and 1 additional interrupt"
"vector. PTP disabled\n");
}
/* Repeatedly send the host time to the MC which will capture the hardware
* time.
*/
static void efx_ptp_send_times(struct efx_nic *efx,
struct pps_event_time *last_time)
{
struct pps_event_time now;
struct timespec limit;
struct efx_ptp_data *ptp = efx->ptp_data;
struct timespec start;
int *mc_running = ptp->start.addr;
pps_get_ts(&now);
start = now.ts_real;
limit = now.ts_real;
timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
/* Write host time for specified period or until MC is done */
while ((timespec_compare(&now.ts_real, &limit) < 0) &&
ACCESS_ONCE(*mc_running)) {
struct timespec update_time;
unsigned int host_time;
/* Don't update continuously to avoid saturating the PCIe bus */
update_time = now.ts_real;
timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
do {
pps_get_ts(&now);
} while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
ACCESS_ONCE(*mc_running));
/* Synchronise NIC with single word of time only */
host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
now.ts_real.tv_nsec);
/* Update host time in NIC memory */
_efx_writed(efx, cpu_to_le32(host_time),
FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
}
*last_time = now;
}
/* Read a timeset from the MC's results and partial process. */
static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
struct efx_ptp_timeset *timeset)
{
unsigned start_ns, end_ns;
timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
timeset->nanoseconds = MCDI_DWORD(data,
PTP_OUT_SYNCHRONIZE_NANOSECONDS);
timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
/* Ignore seconds */
start_ns = timeset->host_start & MC_NANOSECOND_MASK;
end_ns = timeset->host_end & MC_NANOSECOND_MASK;
/* Allow for rollover */
if (end_ns < start_ns)
end_ns += NSEC_PER_SEC;
/* Determine duration of operation */
timeset->window = end_ns - start_ns;
}
/* Process times received from MC.
*
* Extract times from returned results, and establish the minimum value
* seen. The minimum value represents the "best" possible time and events
* too much greater than this are rejected - the machine is, perhaps, too
* busy. A number of readings are taken so that, hopefully, at least one good
* synchronisation will be seen in the results.
*/
static int
efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
size_t response_length,
const struct pps_event_time *last_time)
{
unsigned number_readings =
MCDI_VAR_ARRAY_LEN(response_length,
PTP_OUT_SYNCHRONIZE_TIMESET);
unsigned i;
unsigned total;
unsigned ngood = 0;
unsigned last_good = 0;
struct efx_ptp_data *ptp = efx->ptp_data;
u32 last_sec;
u32 start_sec;
struct timespec delta;
if (number_readings == 0)
return -EAGAIN;
/* Read the set of results and increment stats for any results that
* appera to be erroneous.
*/
for (i = 0; i < number_readings; i++) {
efx_ptp_read_timeset(
MCDI_ARRAY_STRUCT_PTR(synch_buf,
PTP_OUT_SYNCHRONIZE_TIMESET, i),
&ptp->timeset[i]);
}
/* Find the last good host-MC synchronization result. The MC times
* when it finishes reading the host time so the corrected window time
* should be fairly constant for a given platform.
*/
total = 0;
for (i = 0; i < number_readings; i++)
if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
unsigned win;
win = ptp->timeset[i].window - ptp->timeset[i].waitns;
if (win >= MIN_SYNCHRONISATION_NS &&
win < MAX_SYNCHRONISATION_NS) {
total += ptp->timeset[i].window;
ngood++;
last_good = i;
}
}
if (ngood == 0) {
netif_warn(efx, drv, efx->net_dev,
"PTP no suitable synchronisations %dns\n",
ptp->base_sync_ns);
return -EAGAIN;
}
/* Average minimum this synchronisation */
ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
ptp->base_sync_valid = true;
ptp->base_sync_ns = ptp->last_sync_ns;
}
/* Calculate delay from actual PPS to last_time */
delta.tv_nsec =
ptp->timeset[last_good].nanoseconds +
last_time->ts_real.tv_nsec -
(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
/* It is possible that the seconds rolled over between taking
* the start reading and the last value written by the host. The
* timescales are such that a gap of more than one second is never
* expected.
*/
start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
if (start_sec != last_sec) {
if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
netif_warn(efx, hw, efx->net_dev,
"PTP bad synchronisation seconds\n");
return -EAGAIN;
} else {
delta.tv_sec = 1;
}
} else {
delta.tv_sec = 0;
}
ptp->host_time_pps = *last_time;
pps_sub_ts(&ptp->host_time_pps, delta);
return 0;
}
/* Synchronize times between the host and the MC */
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
{
struct efx_ptp_data *ptp = efx->ptp_data;
MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
size_t response_length;
int rc;
unsigned long timeout;
struct pps_event_time last_time = {};
unsigned int loops = 0;
int *start = ptp->start.addr;
MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
num_readings);
MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
ptp->start.dma_addr);
/* Clear flag that signals MC ready */
ACCESS_ONCE(*start) = 0;
efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
/* Wait for start from MCDI (or timeout) */
timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
udelay(20); /* Usually start MCDI execution quickly */
loops++;
}
if (ACCESS_ONCE(*start))
efx_ptp_send_times(efx, &last_time);
/* Collect results */
rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
synch_buf, sizeof(synch_buf),
&response_length);
if (rc == 0)
rc = efx_ptp_process_times(efx, synch_buf, response_length,
&last_time);
return rc;
}
/* Transmit a PTP packet, via the MCDI interface, to the wire. */
static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
{
struct efx_ptp_data *ptp_data = efx->ptp_data;
struct skb_shared_hwtstamps timestamps;
int rc = -EIO;
MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
size_t len;
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
if (skb_shinfo(skb)->nr_frags != 0) {
rc = skb_linearize(skb);
if (rc != 0)
goto fail;
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
rc = skb_checksum_help(skb);
if (rc != 0)
goto fail;
}
skb_copy_from_linear_data(skb,
MCDI_PTR(ptp_data->txbuf,
PTP_IN_TRANSMIT_PACKET),
skb->len);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
txtime, sizeof(txtime), &len);
if (rc != 0)
goto fail;
memset(&timestamps, 0, sizeof(timestamps));
timestamps.hwtstamp = ktime_set(
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
skb_tstamp_tx(skb, &timestamps);
rc = 0;
fail:
dev_kfree_skb(skb);
return rc;
}
static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct list_head *cursor;
struct list_head *next;
/* Drop time-expired events */
spin_lock_bh(&ptp->evt_lock);
if (!list_empty(&ptp->evt_list)) {
list_for_each_safe(cursor, next, &ptp->evt_list) {
struct efx_ptp_event_rx *evt;
evt = list_entry(cursor, struct efx_ptp_event_rx,
link);
if (time_after(jiffies, evt->expiry)) {
list_move(&evt->link, &ptp->evt_free_list);
netif_warn(efx, hw, efx->net_dev,
"PTP rx event dropped\n");
}
}
}
spin_unlock_bh(&ptp->evt_lock);
}
static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
struct sk_buff *skb)
{
struct efx_ptp_data *ptp = efx->ptp_data;
bool evts_waiting;
struct list_head *cursor;
struct list_head *next;
struct efx_ptp_match *match;
enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
spin_lock_bh(&ptp->evt_lock);
evts_waiting = !list_empty(&ptp->evt_list);
spin_unlock_bh(&ptp->evt_lock);
if (!evts_waiting)
return PTP_PACKET_STATE_UNMATCHED;
match = (struct efx_ptp_match *)skb->cb;
/* Look for a matching timestamp in the event queue */
spin_lock_bh(&ptp->evt_lock);
list_for_each_safe(cursor, next, &ptp->evt_list) {
struct efx_ptp_event_rx *evt;
evt = list_entry(cursor, struct efx_ptp_event_rx, link);
if ((evt->seq0 == match->words[0]) &&
(evt->seq1 == match->words[1])) {
struct skb_shared_hwtstamps *timestamps;
/* Match - add in hardware timestamp */
timestamps = skb_hwtstamps(skb);
timestamps->hwtstamp = evt->hwtimestamp;
match->state = PTP_PACKET_STATE_MATCHED;
rc = PTP_PACKET_STATE_MATCHED;
list_move(&evt->link, &ptp->evt_free_list);
break;
}
}
spin_unlock_bh(&ptp->evt_lock);
return rc;
}
/* Process any queued receive events and corresponding packets
*
* q is returned with all the packets that are ready for delivery.
* true is returned if at least one of those packets requires
* synchronisation.
*/
static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
{
struct efx_ptp_data *ptp = efx->ptp_data;
bool rc = false;
struct sk_buff *skb;
while ((skb = skb_dequeue(&ptp->rxq))) {
struct efx_ptp_match *match;
match = (struct efx_ptp_match *)skb->cb;
if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
__skb_queue_tail(q, skb);
} else if (efx_ptp_match_rx(efx, skb) ==
PTP_PACKET_STATE_MATCHED) {
rc = true;
__skb_queue_tail(q, skb);
} else if (time_after(jiffies, match->expiry)) {
match->state = PTP_PACKET_STATE_TIMED_OUT;
netif_warn(efx, rx_err, efx->net_dev,
"PTP packet - no timestamp seen\n");
__skb_queue_tail(q, skb);
} else {
/* Replace unprocessed entry and stop */
skb_queue_head(&ptp->rxq, skb);
break;
}
}
return rc;
}
/* Complete processing of a received packet */
static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
{
local_bh_disable();
netif_receive_skb(skb);
local_bh_enable();
}
static int efx_ptp_start(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct efx_filter_spec rxfilter;
int rc;
ptp->reset_required = false;
/* Must filter on both event and general ports to ensure
* that there is no packet re-ordering.
*/
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
efx_rx_queue_index(
efx_channel_get_rx_queue(ptp->channel)));
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
htonl(PTP_ADDRESS),
htons(PTP_EVENT_PORT));
if (rc != 0)
return rc;
rc = efx_filter_insert_filter(efx, &rxfilter, true);
if (rc < 0)
return rc;
ptp->rxfilter_event = rc;
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
efx_rx_queue_index(
efx_channel_get_rx_queue(ptp->channel)));
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
htonl(PTP_ADDRESS),
htons(PTP_GENERAL_PORT));
if (rc != 0)
goto fail;
rc = efx_filter_insert_filter(efx, &rxfilter, true);
if (rc < 0)
goto fail;
ptp->rxfilter_general = rc;
rc = efx_ptp_enable(efx);
if (rc != 0)
goto fail2;
ptp->evt_frag_idx = 0;
ptp->current_adjfreq = 0;
ptp->rxfilter_installed = true;
return 0;
fail2:
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_general);
fail:
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_event);
return rc;
}
static int efx_ptp_stop(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
int rc = efx_ptp_disable(efx);
struct list_head *cursor;
struct list_head *next;
if (ptp->rxfilter_installed) {
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_general);
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_event);
ptp->rxfilter_installed = false;
}
/* Make sure RX packets are really delivered */
efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
skb_queue_purge(&efx->ptp_data->txq);
/* Drop any pending receive events */
spin_lock_bh(&efx->ptp_data->evt_lock);
list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
list_move(cursor, &efx->ptp_data->evt_free_list);
}
spin_unlock_bh(&efx->ptp_data->evt_lock);
return rc;
}
static void efx_ptp_pps_worker(struct work_struct *work)
{
struct efx_ptp_data *ptp =
container_of(work, struct efx_ptp_data, pps_work);
struct efx_nic *efx = ptp->channel->efx;
struct ptp_clock_event ptp_evt;
if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
return;
ptp_evt.type = PTP_CLOCK_PPSUSR;
ptp_evt.pps_times = ptp->host_time_pps;
ptp_clock_event(ptp->phc_clock, &ptp_evt);
}
/* Process any pending transmissions and timestamp any received packets.
*/
static void efx_ptp_worker(struct work_struct *work)
{
struct efx_ptp_data *ptp_data =
container_of(work, struct efx_ptp_data, work);
struct efx_nic *efx = ptp_data->channel->efx;
struct sk_buff *skb;
struct sk_buff_head tempq;
if (ptp_data->reset_required) {
efx_ptp_stop(efx);
efx_ptp_start(efx);
return;
}
efx_ptp_drop_time_expired_events(efx);
__skb_queue_head_init(&tempq);
if (efx_ptp_process_events(efx, &tempq) ||
!skb_queue_empty(&ptp_data->txq)) {
while ((skb = skb_dequeue(&ptp_data->txq)))
efx_ptp_xmit_skb(efx, skb);
}
while ((skb = __skb_dequeue(&tempq)))
efx_ptp_process_rx(efx, skb);
}
/* Initialise PTP channel and state.
*
* Setting core_index to zero causes the queue to be initialised and doesn't
* overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
*/
static int efx_ptp_probe_channel(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
struct efx_ptp_data *ptp;
int rc = 0;
unsigned int pos;
channel->irq_moderation = 0;
channel->rx_queue.core_index = 0;
ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
efx->ptp_data = ptp;
if (!efx->ptp_data)
return -ENOMEM;
rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
if (rc != 0)
goto fail1;
ptp->channel = channel;
skb_queue_head_init(&ptp->rxq);
skb_queue_head_init(&ptp->txq);
ptp->workwq = create_singlethread_workqueue("sfc_ptp");
if (!ptp->workwq) {
rc = -ENOMEM;
goto fail2;
}
INIT_WORK(&ptp->work, efx_ptp_worker);
ptp->config.flags = 0;
ptp->config.tx_type = HWTSTAMP_TX_OFF;
ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
INIT_LIST_HEAD(&ptp->evt_list);
INIT_LIST_HEAD(&ptp->evt_free_list);
spin_lock_init(&ptp->evt_lock);
for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
ptp->phc_clock_info.owner = THIS_MODULE;
snprintf(ptp->phc_clock_info.name,
sizeof(ptp->phc_clock_info.name),
"%pm", efx->net_dev->perm_addr);
ptp->phc_clock_info.max_adj = MAX_PPB;
ptp->phc_clock_info.n_alarm = 0;
ptp->phc_clock_info.n_ext_ts = 0;
ptp->phc_clock_info.n_per_out = 0;
ptp->phc_clock_info.pps = 1;
ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
ptp->phc_clock_info.adjtime = efx_phc_adjtime;
ptp->phc_clock_info.gettime = efx_phc_gettime;
ptp->phc_clock_info.settime = efx_phc_settime;
ptp->phc_clock_info.enable = efx_phc_enable;
ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
&efx->pci_dev->dev);
if (IS_ERR(ptp->phc_clock)) {
rc = PTR_ERR(ptp->phc_clock);
goto fail3;
}
INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
if (!ptp->pps_workwq) {
rc = -ENOMEM;
goto fail4;
}
ptp->nic_ts_enabled = false;
return 0;
fail4:
ptp_clock_unregister(efx->ptp_data->phc_clock);
fail3:
destroy_workqueue(efx->ptp_data->workwq);
fail2:
efx_nic_free_buffer(efx, &ptp->start);
fail1:
kfree(efx->ptp_data);
efx->ptp_data = NULL;
return rc;
}
static void efx_ptp_remove_channel(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
if (!efx->ptp_data)
return;
(void)efx_ptp_disable(channel->efx);
cancel_work_sync(&efx->ptp_data->work);
cancel_work_sync(&efx->ptp_data->pps_work);
skb_queue_purge(&efx->ptp_data->rxq);
skb_queue_purge(&efx->ptp_data->txq);
ptp_clock_unregister(efx->ptp_data->phc_clock);
destroy_workqueue(efx->ptp_data->workwq);
destroy_workqueue(efx->ptp_data->pps_workwq);
efx_nic_free_buffer(efx, &efx->ptp_data->start);
kfree(efx->ptp_data);
}
static void efx_ptp_get_channel_name(struct efx_channel *channel,
char *buf, size_t len)
{
snprintf(buf, len, "%s-ptp", channel->efx->name);
}
/* Determine whether this packet should be processed by the PTP module
* or transmitted conventionally.
*/
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
return efx->ptp_data &&
efx->ptp_data->enabled &&
skb->len >= PTP_MIN_LENGTH &&
skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
likely(skb->protocol == htons(ETH_P_IP)) &&
ip_hdr(skb)->protocol == IPPROTO_UDP &&
udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
}
/* Receive a PTP packet. Packets are queued until the arrival of
* the receive timestamp from the MC - this will probably occur after the
* packet arrival because of the processing in the MC.
*/
static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
{
struct efx_nic *efx = channel->efx;
struct efx_ptp_data *ptp = efx->ptp_data;
struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
u8 *match_data_012, *match_data_345;
unsigned int version;
match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
/* Correct version? */
if (ptp->mode == MC_CMD_PTP_MODE_V1) {
if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
return false;
}
version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
if (version != PTP_VERSION_V1) {
return false;
}
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
/* PTP V1 uses all six bytes of the UUID to match the packet
* to the timestamp
*/
match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
} else {
if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
return false;
}
version = skb->data[PTP_V2_VERSION_OFFSET];
if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
return false;
}
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
/* The original V2 implementation uses bytes 2-7 of
* the UUID to match the packet to the timestamp. This
* discards two of the bytes of the MAC address used
* to create the UUID (SF bug 33070). The PTP V2
* enhanced mode fixes this issue and uses bytes 0-2
* and byte 5-7 of the UUID.
*/
match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
if (ptp->mode == MC_CMD_PTP_MODE_V2) {
match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
} else {
match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
}
}
/* Does this packet require timestamping? */
if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
struct skb_shared_hwtstamps *timestamps;
match->state = PTP_PACKET_STATE_UNMATCHED;
/* Clear all timestamps held: filled in later */
timestamps = skb_hwtstamps(skb);
memset(timestamps, 0, sizeof(*timestamps));
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
/* We expect the sequence number to be in the same position in
* the packet for PTP V1 and V2
*/
BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
/* Extract UUID/Sequence information */
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
match->words[0] = (match_data_012[0] |
(match_data_012[1] << 8) |
(match_data_012[2] << 16) |
(match_data_345[0] << 24));
match->words[1] = (match_data_345[1] |
(match_data_345[2] << 8) |
(skb->data[PTP_V1_SEQUENCE_OFFSET +
PTP_V1_SEQUENCE_LENGTH - 1] <<
16));
} else {
match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
}
skb_queue_tail(&ptp->rxq, skb);
queue_work(ptp->workwq, &ptp->work);
return true;
}
/* Transmit a PTP packet. This has to be transmitted by the MC
* itself, through an MCDI call. MCDI calls aren't permitted
* in the transmit path so defer the actual transmission to a suitable worker.
*/
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
struct efx_ptp_data *ptp = efx->ptp_data;
skb_queue_tail(&ptp->txq, skb);
if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
(skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
efx_xmit_hwtstamp_pending(skb);
queue_work(ptp->workwq, &ptp->work);
return NETDEV_TX_OK;
}
static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
unsigned int new_mode)
{
if ((enable_wanted != efx->ptp_data->enabled) ||
(enable_wanted && (efx->ptp_data->mode != new_mode))) {
int rc;
if (enable_wanted) {
/* Change of mode requires disable */
if (efx->ptp_data->enabled &&
(efx->ptp_data->mode != new_mode)) {
efx->ptp_data->enabled = false;
rc = efx_ptp_stop(efx);
if (rc != 0)
return rc;
}
/* Set new operating mode and establish
* baseline synchronisation, which must
* succeed.
*/
efx->ptp_data->mode = new_mode;
rc = efx_ptp_start(efx);
if (rc == 0) {
rc = efx_ptp_synchronize(efx,
PTP_SYNC_ATTEMPTS * 2);
if (rc != 0)
efx_ptp_stop(efx);
}
} else {
rc = efx_ptp_stop(efx);
}
if (rc != 0)
return rc;
efx->ptp_data->enabled = enable_wanted;
}
return 0;
}
static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
{
bool enable_wanted = false;
unsigned int new_mode;
int rc;
if (init->flags)
return -EINVAL;
if ((init->tx_type != HWTSTAMP_TX_OFF) &&
(init->tx_type != HWTSTAMP_TX_ON))
return -ERANGE;
new_mode = efx->ptp_data->mode;
/* Determine whether any PTP HW operations are required */
switch (init->rx_filter) {
case HWTSTAMP_FILTER_NONE:
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
new_mode = MC_CMD_PTP_MODE_V1;
enable_wanted = true;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
/* Although these three are accepted only IPV4 packets will be
* timestamped
*/
init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
enable_wanted = true;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
/* Non-IP + IPv6 timestamping not supported */
return -ERANGE;
break;
default:
return -ERANGE;
}
if (init->tx_type != HWTSTAMP_TX_OFF)
enable_wanted = true;
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
/* Old versions of the firmware do not support the improved
* UUID filtering option (SF bug 33070). If the firmware does
* not accept the enhanced mode, fall back to the standard PTP
* v2 UUID filtering.
*/
rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
sfc: PTP changes to support improved UUID filtering mode There is a long-standing problem with the packet-timestamp matching in the driver. When a PTP packet is received by the MC, the FPGA timestamps the packet and the MC sends the timestamp and 6 bytes of the UUID to the driver. The driver then matches the timestamp against received packets using the same 6 bytes of UUID. The problem comes from the choice of which 6 bytes to use. The PTP spec is slightly contradictory and misleading in one of the two places where the UUIDs are discussed. From section 7.2.2.2 of the spec, a PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a EUI-48. The typical ethernet based implementation uses a EUI-64 constructed from a EUI-48. This works by taking the first 3 bytes of the MAC address of the NIC being used for PTP (the OUI), then inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address giving MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5] The current MC firmware and driver discard the first two bytes of this UUID and packets are matched against timestamps using bytes 2 to 7 so there is a small risk that in a deployment of Solarflare PTP NICs used with other vendors NICs, that a PTP packet could be matched against the wrong timestamp. This applies to all other organisations whose third byte of the OUI is 0x53. It's a long list but I notice that it includes Cisco. The necessary modifications to use bytes 0-2 and 5-7 of the UUID to match against are quite small but introduce incompatibility between older version of the firmware and driver. When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver will try to enable PTP in the firmware using the enhanced mode (above). If the firmware returns an error, the driver will enable PTP in the firmware using the old mode. [bwh: Fix some style errors; remove private ioctl bits] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-11-15 18:56:07 +08:00
if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
if (rc != 0)
return rc;
efx->ptp_data->config = *init;
return 0;
}
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
{
struct efx_ptp_data *ptp = efx->ptp_data;
if (!ptp)
return;
ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE);
ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
}
int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
{
struct hwtstamp_config config;
int rc;
/* Not a PTP enabled port */
if (!efx->ptp_data)
return -EOPNOTSUPP;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
rc = efx_ptp_ts_init(efx, &config);
if (rc != 0)
return rc;
return copy_to_user(ifr->ifr_data, &config, sizeof(config))
? -EFAULT : 0;
}
static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
{
struct efx_ptp_data *ptp = efx->ptp_data;
netif_err(efx, hw, efx->net_dev,
"PTP unexpected event length: got %d expected %d\n",
ptp->evt_frag_idx, expected_frag_len);
ptp->reset_required = true;
queue_work(ptp->workwq, &ptp->work);
}
/* Process a completed receive event. Put it on the event queue and
* start worker thread. This is required because event and their
* correspoding packets may come in either order.
*/
static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
struct efx_ptp_event_rx *evt = NULL;
if (ptp->evt_frag_idx != 3) {
ptp_event_failure(efx, 3);
return;
}
spin_lock_bh(&ptp->evt_lock);
if (!list_empty(&ptp->evt_free_list)) {
evt = list_first_entry(&ptp->evt_free_list,
struct efx_ptp_event_rx, link);
list_del(&evt->link);
evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
MCDI_EVENT_SRC) |
(EFX_QWORD_FIELD(ptp->evt_frags[1],
MCDI_EVENT_SRC) << 8) |
(EFX_QWORD_FIELD(ptp->evt_frags[0],
MCDI_EVENT_SRC) << 16));
evt->hwtimestamp = ktime_set(
EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
list_add_tail(&evt->link, &ptp->evt_list);
queue_work(ptp->workwq, &ptp->work);
} else {
netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
}
spin_unlock_bh(&ptp->evt_lock);
}
static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
if (ptp->evt_frag_idx != 1) {
ptp_event_failure(efx, 1);
return;
}
netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
}
static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
if (ptp->nic_ts_enabled)
queue_work(ptp->pps_workwq, &ptp->pps_work);
}
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
{
struct efx_ptp_data *ptp = efx->ptp_data;
int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
if (!ptp->enabled)
return;
if (ptp->evt_frag_idx == 0) {
ptp->evt_code = code;
} else if (ptp->evt_code != code) {
netif_err(efx, hw, efx->net_dev,
"PTP out of sequence event %d\n", code);
ptp->evt_frag_idx = 0;
}
ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
if (!MCDI_EVENT_FIELD(*ev, CONT)) {
/* Process resulting event */
switch (code) {
case MCDI_EVENT_CODE_PTP_RX:
ptp_event_rx(efx, ptp);
break;
case MCDI_EVENT_CODE_PTP_FAULT:
ptp_event_fault(efx, ptp);
break;
case MCDI_EVENT_CODE_PTP_PPS:
ptp_event_pps(efx, ptp);
break;
default:
netif_err(efx, hw, efx->net_dev,
"PTP unknown event %d\n", code);
break;
}
ptp->evt_frag_idx = 0;
} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
netif_err(efx, hw, efx->net_dev,
"PTP too many event fragments\n");
ptp->evt_frag_idx = 0;
}
}
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->channel->efx;
MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
s64 adjustment_ns;
int rc;
if (delta > MAX_PPB)
delta = MAX_PPB;
else if (delta < -MAX_PPB)
delta = -MAX_PPB;
/* Convert ppb to fixed point ns. */
adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
(PPB_EXTRA_BITS + MAX_PPB_BITS));
MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
NULL, 0, NULL);
if (rc != 0)
return rc;
ptp_data->current_adjfreq = delta;
return 0;
}
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->channel->efx;
struct timespec delta_ts = ns_to_timespec(delta);
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->channel->efx;
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
int rc;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc != 0)
return rc;
ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
return 0;
}
static int efx_phc_settime(struct ptp_clock_info *ptp,
const struct timespec *e_ts)
{
/* Get the current NIC time, efx_phc_gettime.
* Subtract from the desired time to get the offset
* call efx_phc_adjtime with the offset
*/
int rc;
struct timespec time_now;
struct timespec delta;
rc = efx_phc_gettime(ptp, &time_now);
if (rc != 0)
return rc;
delta = timespec_sub(*e_ts, time_now);
rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
if (rc != 0)
return rc;
return 0;
}
static int efx_phc_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *request,
int enable)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
if (request->type != PTP_CLK_REQ_PPS)
return -EOPNOTSUPP;
ptp_data->nic_ts_enabled = !!enable;
return 0;
}
static const struct efx_channel_type efx_ptp_channel_type = {
.handle_no_channel = efx_ptp_handle_no_channel,
.pre_probe = efx_ptp_probe_channel,
.post_remove = efx_ptp_remove_channel,
.get_name = efx_ptp_get_channel_name,
/* no copy operation; there is no need to reallocate this channel */
.receive_skb = efx_ptp_rx,
.keep_eventq = false,
};
void efx_ptp_probe(struct efx_nic *efx)
{
/* Check whether PTP is implemented on this NIC. The DISABLE
* operation will succeed if and only if it is implemented.
*/
if (efx_ptp_disable(efx) == 0)
efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
&efx_ptp_channel_type;
}