mirror of https://gitee.com/openkylin/linux.git
1487 lines
43 KiB
C
1487 lines
43 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2011 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
/* Theory of operation:
|
|
*
|
|
* PTP support is assisted by firmware running on the MC, which provides
|
|
* the hardware timestamping capabilities. Both transmitted and received
|
|
* PTP event packets are queued onto internal queues for subsequent processing;
|
|
* this is because the MC operations are relatively long and would block
|
|
* block NAPI/interrupt operation.
|
|
*
|
|
* Receive event processing:
|
|
* The event contains the packet's UUID and sequence number, together
|
|
* with the hardware timestamp. The PTP receive packet queue is searched
|
|
* for this UUID/sequence number and, if found, put on a pending queue.
|
|
* Packets not matching are delivered without timestamps (MCDI events will
|
|
* always arrive after the actual packet).
|
|
* It is important for the operation of the PTP protocol that the ordering
|
|
* of packets between the event and general port is maintained.
|
|
*
|
|
* Work queue processing:
|
|
* If work waiting, synchronise host/hardware time
|
|
*
|
|
* Transmit: send packet through MC, which returns the transmission time
|
|
* that is converted to an appropriate timestamp.
|
|
*
|
|
* Receive: the packet's reception time is converted to an appropriate
|
|
* timestamp.
|
|
*/
|
|
#include <linux/ip.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/module.h>
|
|
#include <linux/net_tstamp.h>
|
|
#include <linux/pps_kernel.h>
|
|
#include <linux/ptp_clock_kernel.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "mcdi.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "io.h"
|
|
#include "regs.h"
|
|
#include "nic.h"
|
|
|
|
/* Maximum number of events expected to make up a PTP event */
|
|
#define MAX_EVENT_FRAGS 3
|
|
|
|
/* Maximum delay, ms, to begin synchronisation */
|
|
#define MAX_SYNCHRONISE_WAIT_MS 2
|
|
|
|
/* How long, at most, to spend synchronising */
|
|
#define SYNCHRONISE_PERIOD_NS 250000
|
|
|
|
/* How often to update the shared memory time */
|
|
#define SYNCHRONISATION_GRANULARITY_NS 200
|
|
|
|
/* Minimum permitted length of a (corrected) synchronisation time */
|
|
#define MIN_SYNCHRONISATION_NS 120
|
|
|
|
/* Maximum permitted length of a (corrected) synchronisation time */
|
|
#define MAX_SYNCHRONISATION_NS 1000
|
|
|
|
/* How many (MC) receive events that can be queued */
|
|
#define MAX_RECEIVE_EVENTS 8
|
|
|
|
/* Length of (modified) moving average. */
|
|
#define AVERAGE_LENGTH 16
|
|
|
|
/* How long an unmatched event or packet can be held */
|
|
#define PKT_EVENT_LIFETIME_MS 10
|
|
|
|
/* Offsets into PTP packet for identification. These offsets are from the
|
|
* start of the IP header, not the MAC header. Note that neither PTP V1 nor
|
|
* PTP V2 permit the use of IPV4 options.
|
|
*/
|
|
#define PTP_DPORT_OFFSET 22
|
|
|
|
#define PTP_V1_VERSION_LENGTH 2
|
|
#define PTP_V1_VERSION_OFFSET 28
|
|
|
|
#define PTP_V1_UUID_LENGTH 6
|
|
#define PTP_V1_UUID_OFFSET 50
|
|
|
|
#define PTP_V1_SEQUENCE_LENGTH 2
|
|
#define PTP_V1_SEQUENCE_OFFSET 58
|
|
|
|
/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
|
|
* includes IP header.
|
|
*/
|
|
#define PTP_V1_MIN_LENGTH 64
|
|
|
|
#define PTP_V2_VERSION_LENGTH 1
|
|
#define PTP_V2_VERSION_OFFSET 29
|
|
|
|
#define PTP_V2_UUID_LENGTH 8
|
|
#define PTP_V2_UUID_OFFSET 48
|
|
|
|
/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
|
|
* the MC only captures the last six bytes of the clock identity. These values
|
|
* reflect those, not the ones used in the standard. The standard permits
|
|
* mapping of V1 UUIDs to V2 UUIDs with these same values.
|
|
*/
|
|
#define PTP_V2_MC_UUID_LENGTH 6
|
|
#define PTP_V2_MC_UUID_OFFSET 50
|
|
|
|
#define PTP_V2_SEQUENCE_LENGTH 2
|
|
#define PTP_V2_SEQUENCE_OFFSET 58
|
|
|
|
/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
|
|
* includes IP header.
|
|
*/
|
|
#define PTP_V2_MIN_LENGTH 63
|
|
|
|
#define PTP_MIN_LENGTH 63
|
|
|
|
#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
|
|
#define PTP_EVENT_PORT 319
|
|
#define PTP_GENERAL_PORT 320
|
|
|
|
/* Annoyingly the format of the version numbers are different between
|
|
* versions 1 and 2 so it isn't possible to simply look for 1 or 2.
|
|
*/
|
|
#define PTP_VERSION_V1 1
|
|
|
|
#define PTP_VERSION_V2 2
|
|
#define PTP_VERSION_V2_MASK 0x0f
|
|
|
|
enum ptp_packet_state {
|
|
PTP_PACKET_STATE_UNMATCHED = 0,
|
|
PTP_PACKET_STATE_MATCHED,
|
|
PTP_PACKET_STATE_TIMED_OUT,
|
|
PTP_PACKET_STATE_MATCH_UNWANTED
|
|
};
|
|
|
|
/* NIC synchronised with single word of time only comprising
|
|
* partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
|
|
*/
|
|
#define MC_NANOSECOND_BITS 30
|
|
#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
|
|
#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
|
|
|
|
/* Maximum parts-per-billion adjustment that is acceptable */
|
|
#define MAX_PPB 1000000
|
|
|
|
/* Number of bits required to hold the above */
|
|
#define MAX_PPB_BITS 20
|
|
|
|
/* Number of extra bits allowed when calculating fractional ns.
|
|
* EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
|
|
* be less than 63.
|
|
*/
|
|
#define PPB_EXTRA_BITS 2
|
|
|
|
/* Precalculate scale word to avoid long long division at runtime */
|
|
#define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
|
|
MAX_PPB_BITS)) / 1000000000LL)
|
|
|
|
#define PTP_SYNC_ATTEMPTS 4
|
|
|
|
/**
|
|
* struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
|
|
* @words: UUID and (partial) sequence number
|
|
* @expiry: Time after which the packet should be delivered irrespective of
|
|
* event arrival.
|
|
* @state: The state of the packet - whether it is ready for processing or
|
|
* whether that is of no interest.
|
|
*/
|
|
struct efx_ptp_match {
|
|
u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
|
|
unsigned long expiry;
|
|
enum ptp_packet_state state;
|
|
};
|
|
|
|
/**
|
|
* struct efx_ptp_event_rx - A PTP receive event (from MC)
|
|
* @seq0: First part of (PTP) UUID
|
|
* @seq1: Second part of (PTP) UUID and sequence number
|
|
* @hwtimestamp: Event timestamp
|
|
*/
|
|
struct efx_ptp_event_rx {
|
|
struct list_head link;
|
|
u32 seq0;
|
|
u32 seq1;
|
|
ktime_t hwtimestamp;
|
|
unsigned long expiry;
|
|
};
|
|
|
|
/**
|
|
* struct efx_ptp_timeset - Synchronisation between host and MC
|
|
* @host_start: Host time immediately before hardware timestamp taken
|
|
* @seconds: Hardware timestamp, seconds
|
|
* @nanoseconds: Hardware timestamp, nanoseconds
|
|
* @host_end: Host time immediately after hardware timestamp taken
|
|
* @waitns: Number of nanoseconds between hardware timestamp being read and
|
|
* host end time being seen
|
|
* @window: Difference of host_end and host_start
|
|
* @valid: Whether this timeset is valid
|
|
*/
|
|
struct efx_ptp_timeset {
|
|
u32 host_start;
|
|
u32 seconds;
|
|
u32 nanoseconds;
|
|
u32 host_end;
|
|
u32 waitns;
|
|
u32 window; /* Derived: end - start, allowing for wrap */
|
|
};
|
|
|
|
/**
|
|
* struct efx_ptp_data - Precision Time Protocol (PTP) state
|
|
* @channel: The PTP channel
|
|
* @rxq: Receive queue (awaiting timestamps)
|
|
* @txq: Transmit queue
|
|
* @evt_list: List of MC receive events awaiting packets
|
|
* @evt_free_list: List of free events
|
|
* @evt_lock: Lock for manipulating evt_list and evt_free_list
|
|
* @rx_evts: Instantiated events (on evt_list and evt_free_list)
|
|
* @workwq: Work queue for processing pending PTP operations
|
|
* @work: Work task
|
|
* @reset_required: A serious error has occurred and the PTP task needs to be
|
|
* reset (disable, enable).
|
|
* @rxfilter_event: Receive filter when operating
|
|
* @rxfilter_general: Receive filter when operating
|
|
* @config: Current timestamp configuration
|
|
* @enabled: PTP operation enabled
|
|
* @mode: Mode in which PTP operating (PTP version)
|
|
* @evt_frags: Partly assembled PTP events
|
|
* @evt_frag_idx: Current fragment number
|
|
* @evt_code: Last event code
|
|
* @start: Address at which MC indicates ready for synchronisation
|
|
* @host_time_pps: Host time at last PPS
|
|
* @last_sync_ns: Last number of nanoseconds between readings when synchronising
|
|
* @base_sync_ns: Number of nanoseconds for last synchronisation.
|
|
* @base_sync_valid: Whether base_sync_time is valid.
|
|
* @current_adjfreq: Current ppb adjustment.
|
|
* @phc_clock: Pointer to registered phc device
|
|
* @phc_clock_info: Registration structure for phc device
|
|
* @pps_work: pps work task for handling pps events
|
|
* @pps_workwq: pps work queue
|
|
* @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
|
|
* @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
|
|
* allocations in main data path).
|
|
* @debug_ptp_dir: PTP debugfs directory
|
|
* @missed_rx_sync: Number of packets received without syncrhonisation.
|
|
* @good_syncs: Number of successful synchronisations.
|
|
* @no_time_syncs: Number of synchronisations with no good times.
|
|
* @bad_sync_durations: Number of synchronisations with bad durations.
|
|
* @bad_syncs: Number of failed synchronisations.
|
|
* @last_sync_time: Number of nanoseconds for last synchronisation.
|
|
* @sync_timeouts: Number of synchronisation timeouts
|
|
* @fast_syncs: Number of synchronisations requiring short delay
|
|
* @min_sync_delta: Minimum time between event and synchronisation
|
|
* @max_sync_delta: Maximum time between event and synchronisation
|
|
* @average_sync_delta: Average time between event and synchronisation.
|
|
* Modified moving average.
|
|
* @last_sync_delta: Last time between event and synchronisation
|
|
* @mc_stats: Context value for MC statistics
|
|
* @timeset: Last set of synchronisation statistics.
|
|
*/
|
|
struct efx_ptp_data {
|
|
struct efx_channel *channel;
|
|
struct sk_buff_head rxq;
|
|
struct sk_buff_head txq;
|
|
struct list_head evt_list;
|
|
struct list_head evt_free_list;
|
|
spinlock_t evt_lock;
|
|
struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
|
|
struct workqueue_struct *workwq;
|
|
struct work_struct work;
|
|
bool reset_required;
|
|
u32 rxfilter_event;
|
|
u32 rxfilter_general;
|
|
bool rxfilter_installed;
|
|
struct hwtstamp_config config;
|
|
bool enabled;
|
|
unsigned int mode;
|
|
efx_qword_t evt_frags[MAX_EVENT_FRAGS];
|
|
int evt_frag_idx;
|
|
int evt_code;
|
|
struct efx_buffer start;
|
|
struct pps_event_time host_time_pps;
|
|
unsigned last_sync_ns;
|
|
unsigned base_sync_ns;
|
|
bool base_sync_valid;
|
|
s64 current_adjfreq;
|
|
struct ptp_clock *phc_clock;
|
|
struct ptp_clock_info phc_clock_info;
|
|
struct work_struct pps_work;
|
|
struct workqueue_struct *pps_workwq;
|
|
bool nic_ts_enabled;
|
|
MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
|
|
struct efx_ptp_timeset
|
|
timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
|
|
};
|
|
|
|
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
|
|
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
|
|
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
|
|
static int efx_phc_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec *e_ts);
|
|
static int efx_phc_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *request, int on);
|
|
|
|
/* Enable MCDI PTP support. */
|
|
static int efx_ptp_enable(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
|
|
efx->ptp_data->channel->channel);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
|
|
|
|
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
/* Disable MCDI PTP support.
|
|
*
|
|
* Note that this function should never rely on the presence of ptp_data -
|
|
* may be called before that exists.
|
|
*/
|
|
static int efx_ptp_disable(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
|
|
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(q))) {
|
|
local_bh_disable();
|
|
netif_receive_skb(skb);
|
|
local_bh_enable();
|
|
}
|
|
}
|
|
|
|
static void efx_ptp_handle_no_channel(struct efx_nic *efx)
|
|
{
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"ERROR: PTP requires MSI-X and 1 additional interrupt"
|
|
"vector. PTP disabled\n");
|
|
}
|
|
|
|
/* Repeatedly send the host time to the MC which will capture the hardware
|
|
* time.
|
|
*/
|
|
static void efx_ptp_send_times(struct efx_nic *efx,
|
|
struct pps_event_time *last_time)
|
|
{
|
|
struct pps_event_time now;
|
|
struct timespec limit;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct timespec start;
|
|
int *mc_running = ptp->start.addr;
|
|
|
|
pps_get_ts(&now);
|
|
start = now.ts_real;
|
|
limit = now.ts_real;
|
|
timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
|
|
|
|
/* Write host time for specified period or until MC is done */
|
|
while ((timespec_compare(&now.ts_real, &limit) < 0) &&
|
|
ACCESS_ONCE(*mc_running)) {
|
|
struct timespec update_time;
|
|
unsigned int host_time;
|
|
|
|
/* Don't update continuously to avoid saturating the PCIe bus */
|
|
update_time = now.ts_real;
|
|
timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
|
|
do {
|
|
pps_get_ts(&now);
|
|
} while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
|
|
ACCESS_ONCE(*mc_running));
|
|
|
|
/* Synchronise NIC with single word of time only */
|
|
host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
|
|
now.ts_real.tv_nsec);
|
|
/* Update host time in NIC memory */
|
|
_efx_writed(efx, cpu_to_le32(host_time),
|
|
FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
|
|
}
|
|
*last_time = now;
|
|
}
|
|
|
|
/* Read a timeset from the MC's results and partial process. */
|
|
static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
|
|
struct efx_ptp_timeset *timeset)
|
|
{
|
|
unsigned start_ns, end_ns;
|
|
|
|
timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
|
|
timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
|
|
timeset->nanoseconds = MCDI_DWORD(data,
|
|
PTP_OUT_SYNCHRONIZE_NANOSECONDS);
|
|
timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
|
|
timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
|
|
|
|
/* Ignore seconds */
|
|
start_ns = timeset->host_start & MC_NANOSECOND_MASK;
|
|
end_ns = timeset->host_end & MC_NANOSECOND_MASK;
|
|
/* Allow for rollover */
|
|
if (end_ns < start_ns)
|
|
end_ns += NSEC_PER_SEC;
|
|
/* Determine duration of operation */
|
|
timeset->window = end_ns - start_ns;
|
|
}
|
|
|
|
/* Process times received from MC.
|
|
*
|
|
* Extract times from returned results, and establish the minimum value
|
|
* seen. The minimum value represents the "best" possible time and events
|
|
* too much greater than this are rejected - the machine is, perhaps, too
|
|
* busy. A number of readings are taken so that, hopefully, at least one good
|
|
* synchronisation will be seen in the results.
|
|
*/
|
|
static int
|
|
efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
|
|
size_t response_length,
|
|
const struct pps_event_time *last_time)
|
|
{
|
|
unsigned number_readings =
|
|
MCDI_VAR_ARRAY_LEN(response_length,
|
|
PTP_OUT_SYNCHRONIZE_TIMESET);
|
|
unsigned i;
|
|
unsigned total;
|
|
unsigned ngood = 0;
|
|
unsigned last_good = 0;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
u32 last_sec;
|
|
u32 start_sec;
|
|
struct timespec delta;
|
|
|
|
if (number_readings == 0)
|
|
return -EAGAIN;
|
|
|
|
/* Read the set of results and increment stats for any results that
|
|
* appera to be erroneous.
|
|
*/
|
|
for (i = 0; i < number_readings; i++) {
|
|
efx_ptp_read_timeset(
|
|
MCDI_ARRAY_STRUCT_PTR(synch_buf,
|
|
PTP_OUT_SYNCHRONIZE_TIMESET, i),
|
|
&ptp->timeset[i]);
|
|
}
|
|
|
|
/* Find the last good host-MC synchronization result. The MC times
|
|
* when it finishes reading the host time so the corrected window time
|
|
* should be fairly constant for a given platform.
|
|
*/
|
|
total = 0;
|
|
for (i = 0; i < number_readings; i++)
|
|
if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
|
|
unsigned win;
|
|
|
|
win = ptp->timeset[i].window - ptp->timeset[i].waitns;
|
|
if (win >= MIN_SYNCHRONISATION_NS &&
|
|
win < MAX_SYNCHRONISATION_NS) {
|
|
total += ptp->timeset[i].window;
|
|
ngood++;
|
|
last_good = i;
|
|
}
|
|
}
|
|
|
|
if (ngood == 0) {
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"PTP no suitable synchronisations %dns\n",
|
|
ptp->base_sync_ns);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* Average minimum this synchronisation */
|
|
ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
|
|
if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
|
|
ptp->base_sync_valid = true;
|
|
ptp->base_sync_ns = ptp->last_sync_ns;
|
|
}
|
|
|
|
/* Calculate delay from actual PPS to last_time */
|
|
delta.tv_nsec =
|
|
ptp->timeset[last_good].nanoseconds +
|
|
last_time->ts_real.tv_nsec -
|
|
(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
|
|
|
|
/* It is possible that the seconds rolled over between taking
|
|
* the start reading and the last value written by the host. The
|
|
* timescales are such that a gap of more than one second is never
|
|
* expected.
|
|
*/
|
|
start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
|
|
last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
|
|
if (start_sec != last_sec) {
|
|
if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
|
|
netif_warn(efx, hw, efx->net_dev,
|
|
"PTP bad synchronisation seconds\n");
|
|
return -EAGAIN;
|
|
} else {
|
|
delta.tv_sec = 1;
|
|
}
|
|
} else {
|
|
delta.tv_sec = 0;
|
|
}
|
|
|
|
ptp->host_time_pps = *last_time;
|
|
pps_sub_ts(&ptp->host_time_pps, delta);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Synchronize times between the host and the MC */
|
|
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
|
|
size_t response_length;
|
|
int rc;
|
|
unsigned long timeout;
|
|
struct pps_event_time last_time = {};
|
|
unsigned int loops = 0;
|
|
int *start = ptp->start.addr;
|
|
|
|
MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
|
|
MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
|
|
num_readings);
|
|
MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
|
|
ptp->start.dma_addr);
|
|
|
|
/* Clear flag that signals MC ready */
|
|
ACCESS_ONCE(*start) = 0;
|
|
efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
|
|
MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
|
|
|
|
/* Wait for start from MCDI (or timeout) */
|
|
timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
|
|
while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
|
|
udelay(20); /* Usually start MCDI execution quickly */
|
|
loops++;
|
|
}
|
|
|
|
if (ACCESS_ONCE(*start))
|
|
efx_ptp_send_times(efx, &last_time);
|
|
|
|
/* Collect results */
|
|
rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
|
|
MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
|
|
synch_buf, sizeof(synch_buf),
|
|
&response_length);
|
|
if (rc == 0)
|
|
rc = efx_ptp_process_times(efx, synch_buf, response_length,
|
|
&last_time);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Transmit a PTP packet, via the MCDI interface, to the wire. */
|
|
static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
struct efx_ptp_data *ptp_data = efx->ptp_data;
|
|
struct skb_shared_hwtstamps timestamps;
|
|
int rc = -EIO;
|
|
MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
|
|
size_t len;
|
|
|
|
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
|
|
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
|
|
if (skb_shinfo(skb)->nr_frags != 0) {
|
|
rc = skb_linearize(skb);
|
|
if (rc != 0)
|
|
goto fail;
|
|
}
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
rc = skb_checksum_help(skb);
|
|
if (rc != 0)
|
|
goto fail;
|
|
}
|
|
skb_copy_from_linear_data(skb,
|
|
MCDI_PTR(ptp_data->txbuf,
|
|
PTP_IN_TRANSMIT_PACKET),
|
|
skb->len);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
|
|
ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
|
|
txtime, sizeof(txtime), &len);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
memset(×tamps, 0, sizeof(timestamps));
|
|
timestamps.hwtstamp = ktime_set(
|
|
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
|
|
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
|
|
|
|
skb_tstamp_tx(skb, ×tamps);
|
|
|
|
rc = 0;
|
|
|
|
fail:
|
|
dev_kfree_skb(skb);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct list_head *cursor;
|
|
struct list_head *next;
|
|
|
|
/* Drop time-expired events */
|
|
spin_lock_bh(&ptp->evt_lock);
|
|
if (!list_empty(&ptp->evt_list)) {
|
|
list_for_each_safe(cursor, next, &ptp->evt_list) {
|
|
struct efx_ptp_event_rx *evt;
|
|
|
|
evt = list_entry(cursor, struct efx_ptp_event_rx,
|
|
link);
|
|
if (time_after(jiffies, evt->expiry)) {
|
|
list_move(&evt->link, &ptp->evt_free_list);
|
|
netif_warn(efx, hw, efx->net_dev,
|
|
"PTP rx event dropped\n");
|
|
}
|
|
}
|
|
}
|
|
spin_unlock_bh(&ptp->evt_lock);
|
|
}
|
|
|
|
static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
bool evts_waiting;
|
|
struct list_head *cursor;
|
|
struct list_head *next;
|
|
struct efx_ptp_match *match;
|
|
enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
|
|
|
|
spin_lock_bh(&ptp->evt_lock);
|
|
evts_waiting = !list_empty(&ptp->evt_list);
|
|
spin_unlock_bh(&ptp->evt_lock);
|
|
|
|
if (!evts_waiting)
|
|
return PTP_PACKET_STATE_UNMATCHED;
|
|
|
|
match = (struct efx_ptp_match *)skb->cb;
|
|
/* Look for a matching timestamp in the event queue */
|
|
spin_lock_bh(&ptp->evt_lock);
|
|
list_for_each_safe(cursor, next, &ptp->evt_list) {
|
|
struct efx_ptp_event_rx *evt;
|
|
|
|
evt = list_entry(cursor, struct efx_ptp_event_rx, link);
|
|
if ((evt->seq0 == match->words[0]) &&
|
|
(evt->seq1 == match->words[1])) {
|
|
struct skb_shared_hwtstamps *timestamps;
|
|
|
|
/* Match - add in hardware timestamp */
|
|
timestamps = skb_hwtstamps(skb);
|
|
timestamps->hwtstamp = evt->hwtimestamp;
|
|
|
|
match->state = PTP_PACKET_STATE_MATCHED;
|
|
rc = PTP_PACKET_STATE_MATCHED;
|
|
list_move(&evt->link, &ptp->evt_free_list);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_bh(&ptp->evt_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Process any queued receive events and corresponding packets
|
|
*
|
|
* q is returned with all the packets that are ready for delivery.
|
|
* true is returned if at least one of those packets requires
|
|
* synchronisation.
|
|
*/
|
|
static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
bool rc = false;
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(&ptp->rxq))) {
|
|
struct efx_ptp_match *match;
|
|
|
|
match = (struct efx_ptp_match *)skb->cb;
|
|
if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
|
|
__skb_queue_tail(q, skb);
|
|
} else if (efx_ptp_match_rx(efx, skb) ==
|
|
PTP_PACKET_STATE_MATCHED) {
|
|
rc = true;
|
|
__skb_queue_tail(q, skb);
|
|
} else if (time_after(jiffies, match->expiry)) {
|
|
match->state = PTP_PACKET_STATE_TIMED_OUT;
|
|
netif_warn(efx, rx_err, efx->net_dev,
|
|
"PTP packet - no timestamp seen\n");
|
|
__skb_queue_tail(q, skb);
|
|
} else {
|
|
/* Replace unprocessed entry and stop */
|
|
skb_queue_head(&ptp->rxq, skb);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Complete processing of a received packet */
|
|
static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
local_bh_disable();
|
|
netif_receive_skb(skb);
|
|
local_bh_enable();
|
|
}
|
|
|
|
static int efx_ptp_start(struct efx_nic *efx)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct efx_filter_spec rxfilter;
|
|
int rc;
|
|
|
|
ptp->reset_required = false;
|
|
|
|
/* Must filter on both event and general ports to ensure
|
|
* that there is no packet re-ordering.
|
|
*/
|
|
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
|
|
efx_rx_queue_index(
|
|
efx_channel_get_rx_queue(ptp->channel)));
|
|
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
|
|
htonl(PTP_ADDRESS),
|
|
htons(PTP_EVENT_PORT));
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
rc = efx_filter_insert_filter(efx, &rxfilter, true);
|
|
if (rc < 0)
|
|
return rc;
|
|
ptp->rxfilter_event = rc;
|
|
|
|
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
|
|
efx_rx_queue_index(
|
|
efx_channel_get_rx_queue(ptp->channel)));
|
|
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
|
|
htonl(PTP_ADDRESS),
|
|
htons(PTP_GENERAL_PORT));
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
rc = efx_filter_insert_filter(efx, &rxfilter, true);
|
|
if (rc < 0)
|
|
goto fail;
|
|
ptp->rxfilter_general = rc;
|
|
|
|
rc = efx_ptp_enable(efx);
|
|
if (rc != 0)
|
|
goto fail2;
|
|
|
|
ptp->evt_frag_idx = 0;
|
|
ptp->current_adjfreq = 0;
|
|
ptp->rxfilter_installed = true;
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
ptp->rxfilter_general);
|
|
fail:
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
ptp->rxfilter_event);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ptp_stop(struct efx_nic *efx)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
int rc = efx_ptp_disable(efx);
|
|
struct list_head *cursor;
|
|
struct list_head *next;
|
|
|
|
if (ptp->rxfilter_installed) {
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
ptp->rxfilter_general);
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
ptp->rxfilter_event);
|
|
ptp->rxfilter_installed = false;
|
|
}
|
|
|
|
/* Make sure RX packets are really delivered */
|
|
efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
|
|
skb_queue_purge(&efx->ptp_data->txq);
|
|
|
|
/* Drop any pending receive events */
|
|
spin_lock_bh(&efx->ptp_data->evt_lock);
|
|
list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
|
|
list_move(cursor, &efx->ptp_data->evt_free_list);
|
|
}
|
|
spin_unlock_bh(&efx->ptp_data->evt_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void efx_ptp_pps_worker(struct work_struct *work)
|
|
{
|
|
struct efx_ptp_data *ptp =
|
|
container_of(work, struct efx_ptp_data, pps_work);
|
|
struct efx_nic *efx = ptp->channel->efx;
|
|
struct ptp_clock_event ptp_evt;
|
|
|
|
if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
|
|
return;
|
|
|
|
ptp_evt.type = PTP_CLOCK_PPSUSR;
|
|
ptp_evt.pps_times = ptp->host_time_pps;
|
|
ptp_clock_event(ptp->phc_clock, &ptp_evt);
|
|
}
|
|
|
|
/* Process any pending transmissions and timestamp any received packets.
|
|
*/
|
|
static void efx_ptp_worker(struct work_struct *work)
|
|
{
|
|
struct efx_ptp_data *ptp_data =
|
|
container_of(work, struct efx_ptp_data, work);
|
|
struct efx_nic *efx = ptp_data->channel->efx;
|
|
struct sk_buff *skb;
|
|
struct sk_buff_head tempq;
|
|
|
|
if (ptp_data->reset_required) {
|
|
efx_ptp_stop(efx);
|
|
efx_ptp_start(efx);
|
|
return;
|
|
}
|
|
|
|
efx_ptp_drop_time_expired_events(efx);
|
|
|
|
__skb_queue_head_init(&tempq);
|
|
if (efx_ptp_process_events(efx, &tempq) ||
|
|
!skb_queue_empty(&ptp_data->txq)) {
|
|
|
|
while ((skb = skb_dequeue(&ptp_data->txq)))
|
|
efx_ptp_xmit_skb(efx, skb);
|
|
}
|
|
|
|
while ((skb = __skb_dequeue(&tempq)))
|
|
efx_ptp_process_rx(efx, skb);
|
|
}
|
|
|
|
/* Initialise PTP channel and state.
|
|
*
|
|
* Setting core_index to zero causes the queue to be initialised and doesn't
|
|
* overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
|
|
*/
|
|
static int efx_ptp_probe_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_ptp_data *ptp;
|
|
int rc = 0;
|
|
unsigned int pos;
|
|
|
|
channel->irq_moderation = 0;
|
|
channel->rx_queue.core_index = 0;
|
|
|
|
ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
|
|
efx->ptp_data = ptp;
|
|
if (!efx->ptp_data)
|
|
return -ENOMEM;
|
|
|
|
rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
ptp->channel = channel;
|
|
skb_queue_head_init(&ptp->rxq);
|
|
skb_queue_head_init(&ptp->txq);
|
|
ptp->workwq = create_singlethread_workqueue("sfc_ptp");
|
|
if (!ptp->workwq) {
|
|
rc = -ENOMEM;
|
|
goto fail2;
|
|
}
|
|
|
|
INIT_WORK(&ptp->work, efx_ptp_worker);
|
|
ptp->config.flags = 0;
|
|
ptp->config.tx_type = HWTSTAMP_TX_OFF;
|
|
ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
|
|
INIT_LIST_HEAD(&ptp->evt_list);
|
|
INIT_LIST_HEAD(&ptp->evt_free_list);
|
|
spin_lock_init(&ptp->evt_lock);
|
|
for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
|
|
list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
|
|
|
|
ptp->phc_clock_info.owner = THIS_MODULE;
|
|
snprintf(ptp->phc_clock_info.name,
|
|
sizeof(ptp->phc_clock_info.name),
|
|
"%pm", efx->net_dev->perm_addr);
|
|
ptp->phc_clock_info.max_adj = MAX_PPB;
|
|
ptp->phc_clock_info.n_alarm = 0;
|
|
ptp->phc_clock_info.n_ext_ts = 0;
|
|
ptp->phc_clock_info.n_per_out = 0;
|
|
ptp->phc_clock_info.pps = 1;
|
|
ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
|
|
ptp->phc_clock_info.adjtime = efx_phc_adjtime;
|
|
ptp->phc_clock_info.gettime = efx_phc_gettime;
|
|
ptp->phc_clock_info.settime = efx_phc_settime;
|
|
ptp->phc_clock_info.enable = efx_phc_enable;
|
|
|
|
ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
|
|
&efx->pci_dev->dev);
|
|
if (IS_ERR(ptp->phc_clock)) {
|
|
rc = PTR_ERR(ptp->phc_clock);
|
|
goto fail3;
|
|
}
|
|
|
|
INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
|
|
ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
|
|
if (!ptp->pps_workwq) {
|
|
rc = -ENOMEM;
|
|
goto fail4;
|
|
}
|
|
ptp->nic_ts_enabled = false;
|
|
|
|
return 0;
|
|
fail4:
|
|
ptp_clock_unregister(efx->ptp_data->phc_clock);
|
|
|
|
fail3:
|
|
destroy_workqueue(efx->ptp_data->workwq);
|
|
|
|
fail2:
|
|
efx_nic_free_buffer(efx, &ptp->start);
|
|
|
|
fail1:
|
|
kfree(efx->ptp_data);
|
|
efx->ptp_data = NULL;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void efx_ptp_remove_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
if (!efx->ptp_data)
|
|
return;
|
|
|
|
(void)efx_ptp_disable(channel->efx);
|
|
|
|
cancel_work_sync(&efx->ptp_data->work);
|
|
cancel_work_sync(&efx->ptp_data->pps_work);
|
|
|
|
skb_queue_purge(&efx->ptp_data->rxq);
|
|
skb_queue_purge(&efx->ptp_data->txq);
|
|
|
|
ptp_clock_unregister(efx->ptp_data->phc_clock);
|
|
|
|
destroy_workqueue(efx->ptp_data->workwq);
|
|
destroy_workqueue(efx->ptp_data->pps_workwq);
|
|
|
|
efx_nic_free_buffer(efx, &efx->ptp_data->start);
|
|
kfree(efx->ptp_data);
|
|
}
|
|
|
|
static void efx_ptp_get_channel_name(struct efx_channel *channel,
|
|
char *buf, size_t len)
|
|
{
|
|
snprintf(buf, len, "%s-ptp", channel->efx->name);
|
|
}
|
|
|
|
/* Determine whether this packet should be processed by the PTP module
|
|
* or transmitted conventionally.
|
|
*/
|
|
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
return efx->ptp_data &&
|
|
efx->ptp_data->enabled &&
|
|
skb->len >= PTP_MIN_LENGTH &&
|
|
skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
|
|
likely(skb->protocol == htons(ETH_P_IP)) &&
|
|
ip_hdr(skb)->protocol == IPPROTO_UDP &&
|
|
udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
|
|
}
|
|
|
|
/* Receive a PTP packet. Packets are queued until the arrival of
|
|
* the receive timestamp from the MC - this will probably occur after the
|
|
* packet arrival because of the processing in the MC.
|
|
*/
|
|
static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
|
|
u8 *match_data_012, *match_data_345;
|
|
unsigned int version;
|
|
|
|
match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
|
|
|
|
/* Correct version? */
|
|
if (ptp->mode == MC_CMD_PTP_MODE_V1) {
|
|
if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
|
|
return false;
|
|
}
|
|
version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
|
|
if (version != PTP_VERSION_V1) {
|
|
return false;
|
|
}
|
|
|
|
/* PTP V1 uses all six bytes of the UUID to match the packet
|
|
* to the timestamp
|
|
*/
|
|
match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
|
|
match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
|
|
} else {
|
|
if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
|
|
return false;
|
|
}
|
|
version = skb->data[PTP_V2_VERSION_OFFSET];
|
|
if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
|
|
return false;
|
|
}
|
|
|
|
/* The original V2 implementation uses bytes 2-7 of
|
|
* the UUID to match the packet to the timestamp. This
|
|
* discards two of the bytes of the MAC address used
|
|
* to create the UUID (SF bug 33070). The PTP V2
|
|
* enhanced mode fixes this issue and uses bytes 0-2
|
|
* and byte 5-7 of the UUID.
|
|
*/
|
|
match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
|
|
if (ptp->mode == MC_CMD_PTP_MODE_V2) {
|
|
match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
|
|
} else {
|
|
match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
|
|
BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
|
|
}
|
|
}
|
|
|
|
/* Does this packet require timestamping? */
|
|
if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
|
|
struct skb_shared_hwtstamps *timestamps;
|
|
|
|
match->state = PTP_PACKET_STATE_UNMATCHED;
|
|
|
|
/* Clear all timestamps held: filled in later */
|
|
timestamps = skb_hwtstamps(skb);
|
|
memset(timestamps, 0, sizeof(*timestamps));
|
|
|
|
/* We expect the sequence number to be in the same position in
|
|
* the packet for PTP V1 and V2
|
|
*/
|
|
BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
|
|
BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
|
|
|
|
/* Extract UUID/Sequence information */
|
|
match->words[0] = (match_data_012[0] |
|
|
(match_data_012[1] << 8) |
|
|
(match_data_012[2] << 16) |
|
|
(match_data_345[0] << 24));
|
|
match->words[1] = (match_data_345[1] |
|
|
(match_data_345[2] << 8) |
|
|
(skb->data[PTP_V1_SEQUENCE_OFFSET +
|
|
PTP_V1_SEQUENCE_LENGTH - 1] <<
|
|
16));
|
|
} else {
|
|
match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
|
|
}
|
|
|
|
skb_queue_tail(&ptp->rxq, skb);
|
|
queue_work(ptp->workwq, &ptp->work);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Transmit a PTP packet. This has to be transmitted by the MC
|
|
* itself, through an MCDI call. MCDI calls aren't permitted
|
|
* in the transmit path so defer the actual transmission to a suitable worker.
|
|
*/
|
|
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
|
skb_queue_tail(&ptp->txq, skb);
|
|
|
|
if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
|
|
(skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
|
|
efx_xmit_hwtstamp_pending(skb);
|
|
queue_work(ptp->workwq, &ptp->work);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
|
|
unsigned int new_mode)
|
|
{
|
|
if ((enable_wanted != efx->ptp_data->enabled) ||
|
|
(enable_wanted && (efx->ptp_data->mode != new_mode))) {
|
|
int rc;
|
|
|
|
if (enable_wanted) {
|
|
/* Change of mode requires disable */
|
|
if (efx->ptp_data->enabled &&
|
|
(efx->ptp_data->mode != new_mode)) {
|
|
efx->ptp_data->enabled = false;
|
|
rc = efx_ptp_stop(efx);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
|
|
/* Set new operating mode and establish
|
|
* baseline synchronisation, which must
|
|
* succeed.
|
|
*/
|
|
efx->ptp_data->mode = new_mode;
|
|
rc = efx_ptp_start(efx);
|
|
if (rc == 0) {
|
|
rc = efx_ptp_synchronize(efx,
|
|
PTP_SYNC_ATTEMPTS * 2);
|
|
if (rc != 0)
|
|
efx_ptp_stop(efx);
|
|
}
|
|
} else {
|
|
rc = efx_ptp_stop(efx);
|
|
}
|
|
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
efx->ptp_data->enabled = enable_wanted;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
|
|
{
|
|
bool enable_wanted = false;
|
|
unsigned int new_mode;
|
|
int rc;
|
|
|
|
if (init->flags)
|
|
return -EINVAL;
|
|
|
|
if ((init->tx_type != HWTSTAMP_TX_OFF) &&
|
|
(init->tx_type != HWTSTAMP_TX_ON))
|
|
return -ERANGE;
|
|
|
|
new_mode = efx->ptp_data->mode;
|
|
/* Determine whether any PTP HW operations are required */
|
|
switch (init->rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
|
|
new_mode = MC_CMD_PTP_MODE_V1;
|
|
enable_wanted = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
/* Although these three are accepted only IPV4 packets will be
|
|
* timestamped
|
|
*/
|
|
init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
|
|
new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
|
|
enable_wanted = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
/* Non-IP + IPv6 timestamping not supported */
|
|
return -ERANGE;
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
if (init->tx_type != HWTSTAMP_TX_OFF)
|
|
enable_wanted = true;
|
|
|
|
/* Old versions of the firmware do not support the improved
|
|
* UUID filtering option (SF bug 33070). If the firmware does
|
|
* not accept the enhanced mode, fall back to the standard PTP
|
|
* v2 UUID filtering.
|
|
*/
|
|
rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
|
|
if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
|
|
rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
efx->ptp_data->config = *init;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
|
if (!ptp)
|
|
return;
|
|
|
|
ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
|
|
SOF_TIMESTAMPING_RX_HARDWARE |
|
|
SOF_TIMESTAMPING_RAW_HARDWARE);
|
|
ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
|
|
ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
|
|
ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
|
|
1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
|
|
1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
|
|
1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
|
|
1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
|
|
1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
|
|
1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
|
|
}
|
|
|
|
int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct hwtstamp_config config;
|
|
int rc;
|
|
|
|
/* Not a PTP enabled port */
|
|
if (!efx->ptp_data)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
rc = efx_ptp_ts_init(efx, &config);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return copy_to_user(ifr->ifr_data, &config, sizeof(config))
|
|
? -EFAULT : 0;
|
|
}
|
|
|
|
static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"PTP unexpected event length: got %d expected %d\n",
|
|
ptp->evt_frag_idx, expected_frag_len);
|
|
ptp->reset_required = true;
|
|
queue_work(ptp->workwq, &ptp->work);
|
|
}
|
|
|
|
/* Process a completed receive event. Put it on the event queue and
|
|
* start worker thread. This is required because event and their
|
|
* correspoding packets may come in either order.
|
|
*/
|
|
static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
|
|
{
|
|
struct efx_ptp_event_rx *evt = NULL;
|
|
|
|
if (ptp->evt_frag_idx != 3) {
|
|
ptp_event_failure(efx, 3);
|
|
return;
|
|
}
|
|
|
|
spin_lock_bh(&ptp->evt_lock);
|
|
if (!list_empty(&ptp->evt_free_list)) {
|
|
evt = list_first_entry(&ptp->evt_free_list,
|
|
struct efx_ptp_event_rx, link);
|
|
list_del(&evt->link);
|
|
|
|
evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
|
|
evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
|
|
MCDI_EVENT_SRC) |
|
|
(EFX_QWORD_FIELD(ptp->evt_frags[1],
|
|
MCDI_EVENT_SRC) << 8) |
|
|
(EFX_QWORD_FIELD(ptp->evt_frags[0],
|
|
MCDI_EVENT_SRC) << 16));
|
|
evt->hwtimestamp = ktime_set(
|
|
EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
|
|
EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
|
|
evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
|
|
list_add_tail(&evt->link, &ptp->evt_list);
|
|
|
|
queue_work(ptp->workwq, &ptp->work);
|
|
} else {
|
|
netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
|
|
}
|
|
spin_unlock_bh(&ptp->evt_lock);
|
|
}
|
|
|
|
static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
|
|
{
|
|
int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
|
|
if (ptp->evt_frag_idx != 1) {
|
|
ptp_event_failure(efx, 1);
|
|
return;
|
|
}
|
|
|
|
netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
|
|
}
|
|
|
|
static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
|
|
{
|
|
if (ptp->nic_ts_enabled)
|
|
queue_work(ptp->pps_workwq, &ptp->pps_work);
|
|
}
|
|
|
|
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
|
|
|
|
if (!ptp->enabled)
|
|
return;
|
|
|
|
if (ptp->evt_frag_idx == 0) {
|
|
ptp->evt_code = code;
|
|
} else if (ptp->evt_code != code) {
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"PTP out of sequence event %d\n", code);
|
|
ptp->evt_frag_idx = 0;
|
|
}
|
|
|
|
ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
|
|
if (!MCDI_EVENT_FIELD(*ev, CONT)) {
|
|
/* Process resulting event */
|
|
switch (code) {
|
|
case MCDI_EVENT_CODE_PTP_RX:
|
|
ptp_event_rx(efx, ptp);
|
|
break;
|
|
case MCDI_EVENT_CODE_PTP_FAULT:
|
|
ptp_event_fault(efx, ptp);
|
|
break;
|
|
case MCDI_EVENT_CODE_PTP_PPS:
|
|
ptp_event_pps(efx, ptp);
|
|
break;
|
|
default:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"PTP unknown event %d\n", code);
|
|
break;
|
|
}
|
|
ptp->evt_frag_idx = 0;
|
|
} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"PTP too many event fragments\n");
|
|
ptp->evt_frag_idx = 0;
|
|
}
|
|
}
|
|
|
|
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
|
|
{
|
|
struct efx_ptp_data *ptp_data = container_of(ptp,
|
|
struct efx_ptp_data,
|
|
phc_clock_info);
|
|
struct efx_nic *efx = ptp_data->channel->efx;
|
|
MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
|
|
s64 adjustment_ns;
|
|
int rc;
|
|
|
|
if (delta > MAX_PPB)
|
|
delta = MAX_PPB;
|
|
else if (delta < -MAX_PPB)
|
|
delta = -MAX_PPB;
|
|
|
|
/* Convert ppb to fixed point ns. */
|
|
adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
|
|
(PPB_EXTRA_BITS + MAX_PPB_BITS));
|
|
|
|
MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
|
|
MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
|
|
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
|
|
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
|
|
NULL, 0, NULL);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
ptp_data->current_adjfreq = delta;
|
|
return 0;
|
|
}
|
|
|
|
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
struct efx_ptp_data *ptp_data = container_of(ptp,
|
|
struct efx_ptp_data,
|
|
phc_clock_info);
|
|
struct efx_nic *efx = ptp_data->channel->efx;
|
|
struct timespec delta_ts = ns_to_timespec(delta);
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
|
|
MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, 0);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
|
|
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
|
|
{
|
|
struct efx_ptp_data *ptp_data = container_of(ptp,
|
|
struct efx_ptp_data,
|
|
phc_clock_info);
|
|
struct efx_nic *efx = ptp_data->channel->efx;
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), NULL);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
|
|
ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
|
|
return 0;
|
|
}
|
|
|
|
static int efx_phc_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec *e_ts)
|
|
{
|
|
/* Get the current NIC time, efx_phc_gettime.
|
|
* Subtract from the desired time to get the offset
|
|
* call efx_phc_adjtime with the offset
|
|
*/
|
|
int rc;
|
|
struct timespec time_now;
|
|
struct timespec delta;
|
|
|
|
rc = efx_phc_gettime(ptp, &time_now);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
delta = timespec_sub(*e_ts, time_now);
|
|
|
|
rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_phc_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *request,
|
|
int enable)
|
|
{
|
|
struct efx_ptp_data *ptp_data = container_of(ptp,
|
|
struct efx_ptp_data,
|
|
phc_clock_info);
|
|
if (request->type != PTP_CLK_REQ_PPS)
|
|
return -EOPNOTSUPP;
|
|
|
|
ptp_data->nic_ts_enabled = !!enable;
|
|
return 0;
|
|
}
|
|
|
|
static const struct efx_channel_type efx_ptp_channel_type = {
|
|
.handle_no_channel = efx_ptp_handle_no_channel,
|
|
.pre_probe = efx_ptp_probe_channel,
|
|
.post_remove = efx_ptp_remove_channel,
|
|
.get_name = efx_ptp_get_channel_name,
|
|
/* no copy operation; there is no need to reallocate this channel */
|
|
.receive_skb = efx_ptp_rx,
|
|
.keep_eventq = false,
|
|
};
|
|
|
|
void efx_ptp_probe(struct efx_nic *efx)
|
|
{
|
|
/* Check whether PTP is implemented on this NIC. The DISABLE
|
|
* operation will succeed if and only if it is implemented.
|
|
*/
|
|
if (efx_ptp_disable(efx) == 0)
|
|
efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
|
|
&efx_ptp_channel_type;
|
|
}
|