linux/sound/soc/sh/rcar/ssi.c

1341 lines
29 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
//
// Renesas R-Car SSIU/SSI support
//
// Copyright (C) 2013 Renesas Solutions Corp.
// Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
//
// Based on fsi.c
// Kuninori Morimoto <morimoto.kuninori@renesas.com>
/*
* you can enable below define if you don't need
* SSI interrupt status debug message when debugging
* see rsnd_dbg_irq_status()
*
* #define RSND_DEBUG_NO_IRQ_STATUS 1
*/
#include <sound/simple_card_utils.h>
#include <linux/delay.h>
#include "rsnd.h"
#define RSND_SSI_NAME_SIZE 16
/*
* SSICR
*/
#define FORCE (1 << 31) /* Fixed */
#define DMEN (1 << 28) /* DMA Enable */
#define UIEN (1 << 27) /* Underflow Interrupt Enable */
#define OIEN (1 << 26) /* Overflow Interrupt Enable */
#define IIEN (1 << 25) /* Idle Mode Interrupt Enable */
#define DIEN (1 << 24) /* Data Interrupt Enable */
#define CHNL_4 (1 << 22) /* Channels */
#define CHNL_6 (2 << 22) /* Channels */
#define CHNL_8 (3 << 22) /* Channels */
#define DWL_MASK (7 << 19) /* Data Word Length mask */
#define DWL_8 (0 << 19) /* Data Word Length */
#define DWL_16 (1 << 19) /* Data Word Length */
#define DWL_18 (2 << 19) /* Data Word Length */
#define DWL_20 (3 << 19) /* Data Word Length */
#define DWL_22 (4 << 19) /* Data Word Length */
#define DWL_24 (5 << 19) /* Data Word Length */
#define DWL_32 (6 << 19) /* Data Word Length */
/*
* System word length
*/
#define SWL_16 (1 << 16) /* R/W System Word Length */
#define SWL_24 (2 << 16) /* R/W System Word Length */
#define SWL_32 (3 << 16) /* R/W System Word Length */
#define SCKD (1 << 15) /* Serial Bit Clock Direction */
#define SWSD (1 << 14) /* Serial WS Direction */
#define SCKP (1 << 13) /* Serial Bit Clock Polarity */
#define SWSP (1 << 12) /* Serial WS Polarity */
#define SDTA (1 << 10) /* Serial Data Alignment */
#define PDTA (1 << 9) /* Parallel Data Alignment */
#define DEL (1 << 8) /* Serial Data Delay */
#define CKDV(v) (v << 4) /* Serial Clock Division Ratio */
#define TRMD (1 << 1) /* Transmit/Receive Mode Select */
#define EN (1 << 0) /* SSI Module Enable */
/*
* SSISR
*/
#define UIRQ (1 << 27) /* Underflow Error Interrupt Status */
#define OIRQ (1 << 26) /* Overflow Error Interrupt Status */
#define IIRQ (1 << 25) /* Idle Mode Interrupt Status */
#define DIRQ (1 << 24) /* Data Interrupt Status Flag */
/*
* SSIWSR
*/
#define CONT (1 << 8) /* WS Continue Function */
#define WS_MODE (1 << 0) /* WS Mode */
#define SSI_NAME "ssi"
struct rsnd_ssi {
struct rsnd_mod mod;
u32 flags;
u32 cr_own;
u32 cr_clk;
u32 cr_mode;
u32 cr_en;
u32 wsr;
int chan;
int rate;
int irq;
unsigned int usrcnt;
/* for PIO */
int byte_pos;
int byte_per_period;
int next_period_byte;
};
/* flags */
#define RSND_SSI_CLK_PIN_SHARE (1 << 0)
#define RSND_SSI_NO_BUSIF (1 << 1) /* SSI+DMA without BUSIF */
#define RSND_SSI_PROBED (1 << 2)
#define for_each_rsnd_ssi(pos, priv, i) \
for (i = 0; \
(i < rsnd_ssi_nr(priv)) && \
((pos) = ((struct rsnd_ssi *)(priv)->ssi + i)); \
i++)
#define rsnd_ssi_get(priv, id) ((struct rsnd_ssi *)(priv->ssi) + id)
#define rsnd_ssi_nr(priv) ((priv)->ssi_nr)
#define rsnd_mod_to_ssi(_mod) container_of((_mod), struct rsnd_ssi, mod)
#define rsnd_ssi_is_parent(ssi, io) ((ssi) == rsnd_io_to_mod_ssip(io))
#define rsnd_ssi_is_multi_secondary(mod, io) \
(rsnd_ssi_multi_secondaries(io) & (1 << rsnd_mod_id(mod)))
#define rsnd_ssi_is_run_mods(mod, io) \
(rsnd_ssi_run_mods(io) & (1 << rsnd_mod_id(mod)))
#define rsnd_ssi_can_output_clk(mod) (!__rsnd_ssi_is_pin_sharing(mod))
static int rsnd_ssi_is_dma_mode(struct rsnd_mod *mod);
int rsnd_ssi_use_busif(struct rsnd_dai_stream *io)
{
struct rsnd_mod *mod = rsnd_io_to_mod_ssi(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
int use_busif = 0;
if (!rsnd_ssi_is_dma_mode(mod))
return 0;
if (!(rsnd_flags_has(ssi, RSND_SSI_NO_BUSIF)))
use_busif = 1;
if (rsnd_io_to_mod_src(io))
use_busif = 1;
return use_busif;
}
static void rsnd_ssi_status_clear(struct rsnd_mod *mod)
{
rsnd_mod_write(mod, SSISR, 0);
}
static u32 rsnd_ssi_status_get(struct rsnd_mod *mod)
{
return rsnd_mod_read(mod, SSISR);
}
static void rsnd_ssi_status_check(struct rsnd_mod *mod,
u32 bit)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
u32 status;
int i;
for (i = 0; i < 1024; i++) {
status = rsnd_ssi_status_get(mod);
if (status & bit)
return;
udelay(5);
}
dev_warn(dev, "%s status check failed\n", rsnd_mod_name(mod));
}
static u32 rsnd_ssi_multi_secondaries(struct rsnd_dai_stream *io)
{
struct rsnd_mod *mod;
enum rsnd_mod_type types[] = {
RSND_MOD_SSIM1,
RSND_MOD_SSIM2,
RSND_MOD_SSIM3,
};
int i, mask;
mask = 0;
for (i = 0; i < ARRAY_SIZE(types); i++) {
mod = rsnd_io_to_mod(io, types[i]);
if (!mod)
continue;
mask |= 1 << rsnd_mod_id(mod);
}
return mask;
}
static u32 rsnd_ssi_run_mods(struct rsnd_dai_stream *io)
{
struct rsnd_mod *ssi_mod = rsnd_io_to_mod_ssi(io);
struct rsnd_mod *ssi_parent_mod = rsnd_io_to_mod_ssip(io);
u32 mods;
mods = rsnd_ssi_multi_secondaries_runtime(io) |
1 << rsnd_mod_id(ssi_mod);
if (ssi_parent_mod)
mods |= 1 << rsnd_mod_id(ssi_parent_mod);
return mods;
}
u32 rsnd_ssi_multi_secondaries_runtime(struct rsnd_dai_stream *io)
{
if (rsnd_runtime_is_multi_ssi(io))
return rsnd_ssi_multi_secondaries(io);
return 0;
}
static u32 rsnd_rdai_width_to_swl(struct rsnd_dai *rdai)
{
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
struct device *dev = rsnd_priv_to_dev(priv);
int width = rsnd_rdai_width_get(rdai);
switch (width) {
case 32: return SWL_32;
case 24: return SWL_24;
case 16: return SWL_16;
}
dev_err(dev, "unsupported slot width value: %d\n", width);
return 0;
}
unsigned int rsnd_ssi_clk_query(struct rsnd_dai *rdai,
int param1, int param2, int *idx)
{
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
int ssi_clk_mul_table[] = {
1, 2, 4, 8, 16, 6, 12,
};
int j, ret;
unsigned int main_rate;
int width = rsnd_rdai_width_get(rdai);
for (j = 0; j < ARRAY_SIZE(ssi_clk_mul_table); j++) {
/*
* It will set SSIWSR.CONT here, but SSICR.CKDV = 000
* with it is not allowed. (SSIWSR.WS_MODE with
* SSICR.CKDV = 000 is not allowed either).
* Skip it. See SSICR.CKDV
*/
if (j == 0)
continue;
main_rate = width * param1 * param2 * ssi_clk_mul_table[j];
ret = rsnd_adg_clk_query(priv, main_rate);
if (ret < 0)
continue;
if (idx)
*idx = j;
return main_rate;
}
return 0;
}
static int rsnd_ssi_master_clk_start(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_io_to_priv(io);
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
int chan = rsnd_runtime_channel_for_ssi(io);
int idx, ret;
unsigned int main_rate;
unsigned int rate = rsnd_io_is_play(io) ?
rsnd_src_get_out_rate(priv, io) :
rsnd_src_get_in_rate(priv, io);
if (!rsnd_rdai_is_clk_master(rdai))
return 0;
if (!rsnd_ssi_can_output_clk(mod))
return 0;
if (rsnd_ssi_is_multi_secondary(mod, io))
return 0;
if (rsnd_runtime_is_tdm_split(io))
chan = rsnd_io_converted_chan(io);
chan = rsnd_channel_normalization(chan);
if (ssi->usrcnt > 0) {
if (ssi->rate != rate) {
dev_err(dev, "SSI parent/child should use same rate\n");
return -EINVAL;
}
if (ssi->chan != chan) {
dev_err(dev, "SSI parent/child should use same chan\n");
return -EINVAL;
}
return 0;
}
main_rate = rsnd_ssi_clk_query(rdai, rate, chan, &idx);
if (!main_rate) {
dev_err(dev, "unsupported clock rate\n");
return -EIO;
}
ret = rsnd_adg_ssi_clk_try_start(mod, main_rate);
if (ret < 0)
return ret;
/*
* SSI clock will be output contiguously
* by below settings.
* This means, rsnd_ssi_master_clk_start()
* and rsnd_ssi_register_setup() are necessary
* for SSI parent
*
* SSICR : FORCE, SCKD, SWSD
* SSIWSR : CONT
*/
ssi->cr_clk = FORCE | rsnd_rdai_width_to_swl(rdai) |
SCKD | SWSD | CKDV(idx);
ssi->wsr = CONT;
ssi->rate = rate;
ssi->chan = chan;
dev_dbg(dev, "%s outputs %d chan %u Hz\n",
rsnd_mod_name(mod), chan, rate);
return 0;
}
static void rsnd_ssi_master_clk_stop(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
if (!rsnd_rdai_is_clk_master(rdai))
return;
if (!rsnd_ssi_can_output_clk(mod))
return;
if (ssi->usrcnt > 1)
return;
ssi->cr_clk = 0;
ssi->rate = 0;
ssi->chan = 0;
rsnd_adg_ssi_clk_stop(mod);
}
static void rsnd_ssi_config_init(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
struct device *dev = rsnd_priv_to_dev(priv);
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
u32 cr_own = ssi->cr_own;
u32 cr_mode = ssi->cr_mode;
u32 wsr = ssi->wsr;
int width;
int is_tdm, is_tdm_split;
int id = rsnd_mod_id(mod);
int i;
u32 sys_int_enable = 0;
is_tdm = rsnd_runtime_is_tdm(io);
is_tdm_split = rsnd_runtime_is_tdm_split(io);
if (is_tdm)
dev_dbg(dev, "TDM mode\n");
if (is_tdm_split)
dev_dbg(dev, "TDM Split mode\n");
cr_own |= FORCE | rsnd_rdai_width_to_swl(rdai);
if (rdai->bit_clk_inv)
cr_own |= SCKP;
if (rdai->frm_clk_inv && !is_tdm)
cr_own |= SWSP;
if (rdai->data_alignment)
cr_own |= SDTA;
if (rdai->sys_delay)
cr_own |= DEL;
/*
* TDM Mode
* see
* rsnd_ssiu_init_gen2()
*/
wsr = ssi->wsr;
if (is_tdm || is_tdm_split) {
wsr |= WS_MODE;
cr_own |= CHNL_8;
}
/*
* We shouldn't exchange SWSP after running.
* This means, parent needs to care it.
*/
if (rsnd_ssi_is_parent(mod, io))
goto init_end;
if (rsnd_io_is_play(io))
cr_own |= TRMD;
cr_own &= ~DWL_MASK;
width = snd_pcm_format_width(runtime->format);
if (is_tdm_split) {
/*
* The SWL and DWL bits in SSICR should be fixed at 32-bit
* setting when TDM split mode.
* see datasheet
* Operation :: TDM Format Split Function (TDM Split Mode)
*/
width = 32;
}
switch (width) {
case 8:
cr_own |= DWL_8;
break;
case 16:
cr_own |= DWL_16;
break;
case 24:
cr_own |= DWL_24;
break;
case 32:
cr_own |= DWL_32;
break;
}
if (rsnd_ssi_is_dma_mode(mod)) {
cr_mode = UIEN | OIEN | /* over/under run */
DMEN; /* DMA : enable DMA */
} else {
cr_mode = DIEN; /* PIO : enable Data interrupt */
}
/* enable busif buffer over/under run interrupt. */
if (is_tdm || is_tdm_split) {
switch (id) {
case 0:
case 1:
case 2:
case 3:
case 4:
for (i = 0; i < 4; i++) {
sys_int_enable = rsnd_mod_read(mod,
SSI_SYS_INT_ENABLE(i * 2));
sys_int_enable |= 0xf << (id * 4);
rsnd_mod_write(mod,
SSI_SYS_INT_ENABLE(i * 2),
sys_int_enable);
}
break;
case 9:
for (i = 0; i < 4; i++) {
sys_int_enable = rsnd_mod_read(mod,
SSI_SYS_INT_ENABLE((i * 2) + 1));
sys_int_enable |= 0xf << 4;
rsnd_mod_write(mod,
SSI_SYS_INT_ENABLE((i * 2) + 1),
sys_int_enable);
}
break;
}
}
init_end:
ssi->cr_own = cr_own;
ssi->cr_mode = cr_mode;
ssi->wsr = wsr;
}
static void rsnd_ssi_register_setup(struct rsnd_mod *mod)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
rsnd_mod_write(mod, SSIWSR, ssi->wsr);
rsnd_mod_write(mod, SSICR, ssi->cr_own |
ssi->cr_clk |
ssi->cr_mode |
ssi->cr_en);
}
/*
* SSI mod common functions
*/
static int rsnd_ssi_init(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
ssi->usrcnt++;
rsnd_mod_power_on(mod);
rsnd_ssi_config_init(mod, io);
rsnd_ssi_register_setup(mod);
/* clear error status */
rsnd_ssi_status_clear(mod);
return 0;
}
static int rsnd_ssi_quit(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct device *dev = rsnd_priv_to_dev(priv);
int is_tdm, is_tdm_split;
int id = rsnd_mod_id(mod);
int i;
u32 sys_int_enable = 0;
is_tdm = rsnd_runtime_is_tdm(io);
is_tdm_split = rsnd_runtime_is_tdm_split(io);
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
if (!ssi->usrcnt) {
dev_err(dev, "%s usrcnt error\n", rsnd_mod_name(mod));
return -EIO;
}
rsnd_ssi_master_clk_stop(mod, io);
rsnd_mod_power_off(mod);
ssi->usrcnt--;
if (!ssi->usrcnt) {
ssi->cr_own = 0;
ssi->cr_mode = 0;
ssi->wsr = 0;
}
/* disable busif buffer over/under run interrupt. */
if (is_tdm || is_tdm_split) {
switch (id) {
case 0:
case 1:
case 2:
case 3:
case 4:
for (i = 0; i < 4; i++) {
sys_int_enable = rsnd_mod_read(mod,
SSI_SYS_INT_ENABLE(i * 2));
sys_int_enable &= ~(0xf << (id * 4));
rsnd_mod_write(mod,
SSI_SYS_INT_ENABLE(i * 2),
sys_int_enable);
}
break;
case 9:
for (i = 0; i < 4; i++) {
sys_int_enable = rsnd_mod_read(mod,
SSI_SYS_INT_ENABLE((i * 2) + 1));
sys_int_enable &= ~(0xf << 4);
rsnd_mod_write(mod,
SSI_SYS_INT_ENABLE((i * 2) + 1),
sys_int_enable);
}
break;
}
}
return 0;
}
static int rsnd_ssi_hw_params(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
unsigned int fmt_width = snd_pcm_format_width(params_format(params));
if (fmt_width > rdai->chan_width) {
struct rsnd_priv *priv = rsnd_io_to_priv(io);
struct device *dev = rsnd_priv_to_dev(priv);
dev_err(dev, "invalid combination of slot-width and format-data-width\n");
return -EINVAL;
}
return 0;
}
static int rsnd_ssi_start(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
/*
* EN will be set via SSIU :: SSI_CONTROL
* if Multi channel mode
*/
if (rsnd_ssi_multi_secondaries_runtime(io))
return 0;
/*
* EN is for data output.
* SSI parent EN is not needed.
*/
if (rsnd_ssi_is_parent(mod, io))
return 0;
ssi->cr_en = EN;
rsnd_mod_write(mod, SSICR, ssi->cr_own |
ssi->cr_clk |
ssi->cr_mode |
ssi->cr_en);
return 0;
}
static int rsnd_ssi_stop(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
u32 cr;
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
if (rsnd_ssi_is_parent(mod, io))
return 0;
cr = ssi->cr_own |
ssi->cr_clk;
/*
* disable all IRQ,
* Playback: Wait all data was sent
* Capture: It might not receave data. Do nothing
*/
if (rsnd_io_is_play(io)) {
rsnd_mod_write(mod, SSICR, cr | ssi->cr_en);
rsnd_ssi_status_check(mod, DIRQ);
}
/* In multi-SSI mode, stop is performed by setting ssi0129 in
* SSI_CONTROL to 0 (in rsnd_ssio_stop_gen2). Do nothing here.
*/
if (rsnd_ssi_multi_secondaries_runtime(io))
return 0;
/*
* disable SSI,
* and, wait idle state
*/
rsnd_mod_write(mod, SSICR, cr); /* disabled all */
rsnd_ssi_status_check(mod, IIRQ);
ssi->cr_en = 0;
return 0;
}
static int rsnd_ssi_irq(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv,
int enable)
{
u32 val = 0;
int is_tdm, is_tdm_split;
int id = rsnd_mod_id(mod);
is_tdm = rsnd_runtime_is_tdm(io);
is_tdm_split = rsnd_runtime_is_tdm_split(io);
if (rsnd_is_gen1(priv))
return 0;
if (rsnd_ssi_is_parent(mod, io))
return 0;
if (!rsnd_ssi_is_run_mods(mod, io))
return 0;
if (enable)
val = rsnd_ssi_is_dma_mode(mod) ? 0x0e000000 : 0x0f000000;
if (is_tdm || is_tdm_split) {
switch (id) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 9:
val |= 0x0000ff00;
break;
}
}
rsnd_mod_write(mod, SSI_INT_ENABLE, val);
return 0;
}
static bool rsnd_ssi_pio_interrupt(struct rsnd_mod *mod,
struct rsnd_dai_stream *io);
static void __rsnd_ssi_interrupt(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
int is_dma = rsnd_ssi_is_dma_mode(mod);
u32 status;
bool elapsed = false;
bool stop = false;
int id = rsnd_mod_id(mod);
int i;
int is_tdm, is_tdm_split;
is_tdm = rsnd_runtime_is_tdm(io);
is_tdm_split = rsnd_runtime_is_tdm_split(io);
spin_lock(&priv->lock);
/* ignore all cases if not working */
if (!rsnd_io_is_working(io))
goto rsnd_ssi_interrupt_out;
status = rsnd_ssi_status_get(mod);
/* PIO only */
if (!is_dma && (status & DIRQ))
elapsed = rsnd_ssi_pio_interrupt(mod, io);
/* DMA only */
if (is_dma && (status & (UIRQ | OIRQ))) {
rsnd_dbg_irq_status(dev, "%s err status : 0x%08x\n",
rsnd_mod_name(mod), status);
stop = true;
}
status = 0;
if (is_tdm || is_tdm_split) {
switch (id) {
case 0:
case 1:
case 2:
case 3:
case 4:
for (i = 0; i < 4; i++) {
status = rsnd_mod_read(mod,
SSI_SYS_STATUS(i * 2));
status &= 0xf << (id * 4);
if (status) {
rsnd_dbg_irq_status(dev,
"%s err status : 0x%08x\n",
rsnd_mod_name(mod), status);
rsnd_mod_write(mod,
SSI_SYS_STATUS(i * 2),
0xf << (id * 4));
stop = true;
break;
}
}
break;
case 9:
for (i = 0; i < 4; i++) {
status = rsnd_mod_read(mod,
SSI_SYS_STATUS((i * 2) + 1));
status &= 0xf << 4;
if (status) {
rsnd_dbg_irq_status(dev,
"%s err status : 0x%08x\n",
rsnd_mod_name(mod), status);
rsnd_mod_write(mod,
SSI_SYS_STATUS((i * 2) + 1),
0xf << 4);
stop = true;
break;
}
}
break;
}
}
rsnd_ssi_status_clear(mod);
rsnd_ssi_interrupt_out:
spin_unlock(&priv->lock);
if (elapsed)
rsnd_dai_period_elapsed(io);
if (stop)
snd_pcm_stop_xrun(io->substream);
}
static irqreturn_t rsnd_ssi_interrupt(int irq, void *data)
{
struct rsnd_mod *mod = data;
rsnd_mod_interrupt(mod, __rsnd_ssi_interrupt);
return IRQ_HANDLED;
}
static u32 *rsnd_ssi_get_status(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
enum rsnd_mod_type type)
{
/*
* SSIP (= SSI parent) needs to be special, otherwise,
* 2nd SSI might doesn't start. see also rsnd_mod_call()
*
* We can't include parent SSI status on SSI, because we don't know
* how many SSI requests parent SSI. Thus, it is localed on "io" now.
* ex) trouble case
* Playback: SSI0
* Capture : SSI1 (needs SSI0)
*
* 1) start Capture -> SSI0/SSI1 are started.
* 2) start Playback -> SSI0 doesn't work, because it is already
* marked as "started" on 1)
*
* OTOH, using each mod's status is good for MUX case.
* It doesn't need to start in 2nd start
* ex)
* IO-0: SRC0 -> CTU1 -+-> MUX -> DVC -> SSIU -> SSI0
* |
* IO-1: SRC1 -> CTU2 -+
*
* 1) start IO-0 -> start SSI0
* 2) start IO-1 -> SSI0 doesn't need to start, because it is
* already started on 1)
*/
if (type == RSND_MOD_SSIP)
return &io->parent_ssi_status;
return rsnd_mod_get_status(mod, io, type);
}
/*
* SSI PIO
*/
static void rsnd_ssi_parent_attach(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
if (!__rsnd_ssi_is_pin_sharing(mod))
return;
if (!rsnd_rdai_is_clk_master(rdai))
return;
if (rsnd_ssi_is_multi_secondary(mod, io))
return;
switch (rsnd_mod_id(mod)) {
case 1:
case 2:
case 9:
rsnd_dai_connect(rsnd_ssi_mod_get(priv, 0), io, RSND_MOD_SSIP);
break;
case 4:
rsnd_dai_connect(rsnd_ssi_mod_get(priv, 3), io, RSND_MOD_SSIP);
break;
case 8:
rsnd_dai_connect(rsnd_ssi_mod_get(priv, 7), io, RSND_MOD_SSIP);
break;
}
}
static int rsnd_ssi_pcm_new(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct snd_soc_pcm_runtime *rtd)
{
/*
* rsnd_rdai_is_clk_master() will be enabled after set_fmt,
* and, pcm_new will be called after it.
* This function reuse pcm_new at this point.
*/
rsnd_ssi_parent_attach(mod, io);
return 0;
}
static int rsnd_ssi_common_probe(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
int ret = 0;
/*
* SSIP/SSIU/IRQ are not needed on
* SSI Multi secondaries
*/
if (rsnd_ssi_is_multi_secondary(mod, io))
return 0;
/*
* It can't judge ssi parent at this point
* see rsnd_ssi_pcm_new()
*/
/*
* SSI might be called again as PIO fallback
* It is easy to manual handling for IRQ request/free
*
* OTOH, this function might be called many times if platform is
* using MIX. It needs xxx_attach() many times on xxx_probe().
* Because of it, we can't control .probe/.remove calling count by
* mod->status.
* But it don't need to call request_irq() many times.
* Let's control it by RSND_SSI_PROBED flag.
*/
if (!rsnd_flags_has(ssi, RSND_SSI_PROBED)) {
ret = request_irq(ssi->irq,
rsnd_ssi_interrupt,
IRQF_SHARED,
dev_name(dev), mod);
rsnd_flags_set(ssi, RSND_SSI_PROBED);
}
return ret;
}
static int rsnd_ssi_common_remove(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct rsnd_mod *pure_ssi_mod = rsnd_io_to_mod_ssi(io);
/* Do nothing if non SSI (= SSI parent, multi SSI) mod */
if (pure_ssi_mod != mod)
return 0;
/* PIO will request IRQ again */
if (rsnd_flags_has(ssi, RSND_SSI_PROBED)) {
free_irq(ssi->irq, mod);
rsnd_flags_del(ssi, RSND_SSI_PROBED);
}
return 0;
}
/*
* SSI PIO functions
*/
static bool rsnd_ssi_pio_interrupt(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
u32 *buf = (u32 *)(runtime->dma_area + ssi->byte_pos);
int shift = 0;
int byte_pos;
bool elapsed = false;
if (snd_pcm_format_width(runtime->format) == 24)
shift = 8;
/*
* 8/16/32 data can be assesse to TDR/RDR register
* directly as 32bit data
* see rsnd_ssi_init()
*/
if (rsnd_io_is_play(io))
rsnd_mod_write(mod, SSITDR, (*buf) << shift);
else
*buf = (rsnd_mod_read(mod, SSIRDR) >> shift);
byte_pos = ssi->byte_pos + sizeof(*buf);
if (byte_pos >= ssi->next_period_byte) {
int period_pos = byte_pos / ssi->byte_per_period;
if (period_pos >= runtime->periods) {
byte_pos = 0;
period_pos = 0;
}
ssi->next_period_byte = (period_pos + 1) * ssi->byte_per_period;
elapsed = true;
}
WRITE_ONCE(ssi->byte_pos, byte_pos);
return elapsed;
}
static int rsnd_ssi_pio_init(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
if (!rsnd_ssi_is_parent(mod, io)) {
ssi->byte_pos = 0;
ssi->byte_per_period = runtime->period_size *
runtime->channels *
samples_to_bytes(runtime, 1);
ssi->next_period_byte = ssi->byte_per_period;
}
return rsnd_ssi_init(mod, io, priv);
}
static int rsnd_ssi_pio_pointer(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
snd_pcm_uframes_t *pointer)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
*pointer = bytes_to_frames(runtime, READ_ONCE(ssi->byte_pos));
return 0;
}
ASoC: rsnd: fixup not to call clk_get/set under non-atomic Clocking operations clk_get/set_rate, are non-atomic, they shouldn't be called in soc_pcm_trigger() which is atomic. Following issue was found due to execution of clk_get_rate() causes sleep in soc_pcm_trigger(), which shouldn't be blocked. We can reproduce this issue by following > enable CONFIG_DEBUG_ATOMIC_SLEEP=y > compile, and boot > mount -t debugfs none /sys/kernel/debug > while true; do cat /sys/kernel/debug/clk/clk_summary > /dev/null; done & > while true; do aplay xxx; done This patch adds support to .prepare callback, and moves non-atomic clocking operations to it. As .prepare is non-atomic, it is always called before trigger_start/trigger_stop. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:620 in_atomic(): 1, irqs_disabled(): 128, pid: 2242, name: aplay INFO: lockdep is turned off. irq event stamp: 5964 hardirqs last enabled at (5963): [<ffff200008e59e40>] mutex_lock_nested+0x6e8/0x6f0 hardirqs last disabled at (5964): [<ffff200008e623f0>] _raw_spin_lock_irqsave+0x24/0x68 softirqs last enabled at (5502): [<ffff200008081838>] __do_softirq+0x560/0x10c0 softirqs last disabled at (5495): [<ffff2000080c2e78>] irq_exit+0x160/0x25c Preemption disabled at:[ 62.904063] [<ffff200008be4d48>] snd_pcm_stream_lock+0xb4/0xc0 CPU: 2 PID: 2242 Comm: aplay Tainted: G B C 4.9.54+ #186 Hardware name: Renesas Salvator-X board based on r8a7795 (DT) Call trace: [<ffff20000808fe48>] dump_backtrace+0x0/0x37c [<ffff2000080901d8>] show_stack+0x14/0x1c [<ffff2000086f4458>] dump_stack+0xfc/0x154 [<ffff2000081134a0>] ___might_sleep+0x57c/0x58c [<ffff2000081136b8>] __might_sleep+0x208/0x21c [<ffff200008e5980c>] mutex_lock_nested+0xb4/0x6f0 [<ffff2000087cac74>] clk_prepare_lock+0xb0/0x184 [<ffff2000087cb094>] clk_core_get_rate+0x14/0x54 [<ffff2000087cb0f4>] clk_get_rate+0x20/0x34 [<ffff20000113aa00>] rsnd_adg_ssi_clk_try_start+0x158/0x4f8 [snd_soc_rcar] [<ffff20000113da00>] rsnd_ssi_init+0x668/0x7a0 [snd_soc_rcar] [<ffff200001133ff4>] rsnd_soc_dai_trigger+0x4bc/0xcf8 [snd_soc_rcar] [<ffff200008c1af24>] soc_pcm_trigger+0x2a4/0x2d4 Fixes: e7d850dd10f4 ("ASoC: rsnd: use mod base common method on SSI-parent") Signed-off-by: Jiada Wang <jiada_wang@mentor.com> Signed-off-by: Timo Wischer <twischer@de.adit-jv.com> [Kuninori: tidyup for upstream] Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Tested-by: Hiroyuki Yokoyama <hiroyuki.yokoyama.vx@renesas.com> Signed-off-by: Mark Brown <broonie@kernel.org> Cc: stable@vger.kernel.org
2018-09-03 15:08:58 +08:00
static int rsnd_ssi_prepare(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
return rsnd_ssi_master_clk_start(mod, io);
}
static struct rsnd_mod_ops rsnd_ssi_pio_ops = {
.name = SSI_NAME,
.probe = rsnd_ssi_common_probe,
.remove = rsnd_ssi_common_remove,
.init = rsnd_ssi_pio_init,
.quit = rsnd_ssi_quit,
.start = rsnd_ssi_start,
.stop = rsnd_ssi_stop,
.irq = rsnd_ssi_irq,
.pointer = rsnd_ssi_pio_pointer,
.pcm_new = rsnd_ssi_pcm_new,
.hw_params = rsnd_ssi_hw_params,
.prepare = rsnd_ssi_prepare,
.get_status = rsnd_ssi_get_status,
};
static int rsnd_ssi_dma_probe(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
int ret;
/*
* SSIP/SSIU/IRQ/DMA are not needed on
* SSI Multi secondaries
*/
if (rsnd_ssi_is_multi_secondary(mod, io))
return 0;
ret = rsnd_ssi_common_probe(mod, io, priv);
if (ret)
return ret;
/* SSI probe might be called many times in MUX multi path */
ret = rsnd_dma_attach(io, mod, &io->dma);
return ret;
}
static int rsnd_ssi_fallback(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct device *dev = rsnd_priv_to_dev(priv);
/*
* fallback to PIO
*
* SSI .probe might be called again.
* see
* rsnd_rdai_continuance_probe()
*/
mod->ops = &rsnd_ssi_pio_ops;
dev_info(dev, "%s fallback to PIO mode\n", rsnd_mod_name(mod));
return 0;
}
static struct dma_chan *rsnd_ssi_dma_req(struct rsnd_dai_stream *io,
struct rsnd_mod *mod)
{
ASoC: rsnd: 1st DMAC dma-names cares subnode Renesas R-Car sound (= rsnd) needs 2 DMAC which are called as Audio DMAC (= 1st DMAC) and Audio DMAC peri peri (2nd DMAC). And rsnd had assumed that 1st / 2nd DMACs are implemented as DMAEngine. But, in result of DMA ML discussion, 2nd DMAC was concluded that it is not a general purpose DMAC (2nd DMAC is for Device to Device inside sound system). Additionally, current DMAEngine can't support Device to Device, and we don't have correct DT bindings for it at this point. So the easiest solution for it is that move it from DMAEngine to rsnd driver. dma-names on DT was implemented as no difference between 1st / 2nd DMAC's, since rsnd had assumed that both DMACs are implemented as DMAEngine. That style was "src_dst". But now, 2nd DMAC was implemented as non DMAEngine, and it doesn't need dma-names anymore. So, this dma-names rule is no longer needed. And additionally, dma-names was assumed that it has all (= SSI/SSIU/SRC/DVC) nodes under sound node. In upstream code, no SoC/platform is supporting DMA for rsnd driver yet. This means there is no compatible issue if this patch changes dma-names's rule of DT. This patch assumes dma-names for 1st DMAC are tx/rx base, and listed in each SSI/SRC/DVC subnode ex) rcar_sound,dvc { dvc0: dvc@0 { dmas = <&audma0 0xbc>; dma-names = "tx"; }; ... rcar_sound,src { src0: src@0 { ... dmas = <&audma0 0x85>, <&audma1 0x9a>; dma-names = "rx", "tx"; }; ... rcar_sound,ssi { ssi0: ssi@0 { ... dmas = <&audma0 0x01>, <&audma1 0x02>, <&audma0 0x15>, <&audma1 0x16>; dma-names = "rx", "tx", "rxu", "txu"; }; ... Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-02-20 18:31:23 +08:00
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
int is_play = rsnd_io_is_play(io);
char *name;
/*
* It should use "rcar_sound,ssiu" on DT.
* But, we need to keep compatibility for old version.
*
* If it has "rcar_sound.ssiu", it will be used.
* If not, "rcar_sound.ssi" will be used.
* see
* rsnd_ssiu_dma_req()
* rsnd_dma_of_path()
*/
if (rsnd_ssi_use_busif(io))
ASoC: rsnd: 1st DMAC dma-names cares subnode Renesas R-Car sound (= rsnd) needs 2 DMAC which are called as Audio DMAC (= 1st DMAC) and Audio DMAC peri peri (2nd DMAC). And rsnd had assumed that 1st / 2nd DMACs are implemented as DMAEngine. But, in result of DMA ML discussion, 2nd DMAC was concluded that it is not a general purpose DMAC (2nd DMAC is for Device to Device inside sound system). Additionally, current DMAEngine can't support Device to Device, and we don't have correct DT bindings for it at this point. So the easiest solution for it is that move it from DMAEngine to rsnd driver. dma-names on DT was implemented as no difference between 1st / 2nd DMAC's, since rsnd had assumed that both DMACs are implemented as DMAEngine. That style was "src_dst". But now, 2nd DMAC was implemented as non DMAEngine, and it doesn't need dma-names anymore. So, this dma-names rule is no longer needed. And additionally, dma-names was assumed that it has all (= SSI/SSIU/SRC/DVC) nodes under sound node. In upstream code, no SoC/platform is supporting DMA for rsnd driver yet. This means there is no compatible issue if this patch changes dma-names's rule of DT. This patch assumes dma-names for 1st DMAC are tx/rx base, and listed in each SSI/SRC/DVC subnode ex) rcar_sound,dvc { dvc0: dvc@0 { dmas = <&audma0 0xbc>; dma-names = "tx"; }; ... rcar_sound,src { src0: src@0 { ... dmas = <&audma0 0x85>, <&audma1 0x9a>; dma-names = "rx", "tx"; }; ... rcar_sound,ssi { ssi0: ssi@0 { ... dmas = <&audma0 0x01>, <&audma1 0x02>, <&audma0 0x15>, <&audma1 0x16>; dma-names = "rx", "tx", "rxu", "txu"; }; ... Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-02-20 18:31:23 +08:00
name = is_play ? "rxu" : "txu";
else
name = is_play ? "rx" : "tx";
return rsnd_dma_request_channel(rsnd_ssi_of_node(priv),
mod, name);
}
static struct rsnd_mod_ops rsnd_ssi_dma_ops = {
.name = SSI_NAME,
.dma_req = rsnd_ssi_dma_req,
.probe = rsnd_ssi_dma_probe,
.remove = rsnd_ssi_common_remove,
.init = rsnd_ssi_init,
.quit = rsnd_ssi_quit,
.start = rsnd_ssi_start,
.stop = rsnd_ssi_stop,
.irq = rsnd_ssi_irq,
.pcm_new = rsnd_ssi_pcm_new,
.fallback = rsnd_ssi_fallback,
.hw_params = rsnd_ssi_hw_params,
.prepare = rsnd_ssi_prepare,
.get_status = rsnd_ssi_get_status,
};
static int rsnd_ssi_is_dma_mode(struct rsnd_mod *mod)
{
return mod->ops == &rsnd_ssi_dma_ops;
}
/*
* ssi mod function
*/
static void rsnd_ssi_connect(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
enum rsnd_mod_type types[] = {
RSND_MOD_SSI,
RSND_MOD_SSIM1,
RSND_MOD_SSIM2,
RSND_MOD_SSIM3,
};
enum rsnd_mod_type type;
int i;
/* try SSI -> SSIM1 -> SSIM2 -> SSIM3 */
for (i = 0; i < ARRAY_SIZE(types); i++) {
type = types[i];
if (!rsnd_io_to_mod(io, type)) {
rsnd_dai_connect(mod, io, type);
rsnd_rdai_channels_set(rdai, (i + 1) * 2);
rsnd_rdai_ssi_lane_set(rdai, (i + 1));
return;
}
}
}
void rsnd_parse_connect_ssi(struct rsnd_dai *rdai,
struct device_node *playback,
struct device_node *capture)
{
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
struct device_node *node;
struct device_node *np;
struct rsnd_mod *mod;
int i;
node = rsnd_ssi_of_node(priv);
if (!node)
return;
i = 0;
for_each_child_of_node(node, np) {
mod = rsnd_ssi_mod_get(priv, i);
if (np == playback)
rsnd_ssi_connect(mod, &rdai->playback);
if (np == capture)
rsnd_ssi_connect(mod, &rdai->capture);
i++;
}
of_node_put(node);
}
struct rsnd_mod *rsnd_ssi_mod_get(struct rsnd_priv *priv, int id)
{
if (WARN_ON(id < 0 || id >= rsnd_ssi_nr(priv)))
id = 0;
return rsnd_mod_get(rsnd_ssi_get(priv, id));
}
int __rsnd_ssi_is_pin_sharing(struct rsnd_mod *mod)
{
if (!mod)
return 0;
return !!(rsnd_flags_has(rsnd_mod_to_ssi(mod), RSND_SSI_CLK_PIN_SHARE));
}
int rsnd_ssi_probe(struct rsnd_priv *priv)
{
struct device_node *node;
struct device_node *np;
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_mod_ops *ops;
struct clk *clk;
struct rsnd_ssi *ssi;
char name[RSND_SSI_NAME_SIZE];
int i, nr, ret;
node = rsnd_ssi_of_node(priv);
if (!node)
return -EINVAL;
nr = of_get_child_count(node);
if (!nr) {
ret = -EINVAL;
goto rsnd_ssi_probe_done;
}
treewide: devm_kzalloc() -> devm_kcalloc() The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc(). This patch replaces cases of: devm_kzalloc(handle, a * b, gfp) with: devm_kcalloc(handle, a * b, gfp) as well as handling cases of: devm_kzalloc(handle, a * b * c, gfp) with: devm_kzalloc(handle, array3_size(a, b, c), gfp) as it's slightly less ugly than: devm_kcalloc(handle, array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: devm_kzalloc(handle, 4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. Some manual whitespace fixes were needed in this patch, as Coccinelle really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...". The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ expression HANDLE; type TYPE; expression THING, E; @@ ( devm_kzalloc(HANDLE, - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | devm_kzalloc(HANDLE, - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression HANDLE; expression COUNT; typedef u8; typedef __u8; @@ ( devm_kzalloc(HANDLE, - sizeof(u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ expression HANDLE; type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ expression HANDLE; identifier SIZE, COUNT; @@ - devm_kzalloc + devm_kcalloc (HANDLE, - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression HANDLE; expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression HANDLE; expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ expression HANDLE; identifier STRIDE, SIZE, COUNT; @@ ( devm_kzalloc(HANDLE, - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression HANDLE; expression E1, E2, E3; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression HANDLE; expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, sizeof(THING) * C2, ...) | devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...) | devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, C1 * C2, ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * E2 + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * (E2) + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:07:58 +08:00
ssi = devm_kcalloc(dev, nr, sizeof(*ssi), GFP_KERNEL);
if (!ssi) {
ret = -ENOMEM;
goto rsnd_ssi_probe_done;
}
priv->ssi = ssi;
priv->ssi_nr = nr;
i = 0;
for_each_child_of_node(node, np) {
if (!of_device_is_available(np))
goto skip;
ssi = rsnd_ssi_get(priv, i);
snprintf(name, RSND_SSI_NAME_SIZE, "%s.%d",
SSI_NAME, i);
clk = devm_clk_get(dev, name);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
of_node_put(np);
goto rsnd_ssi_probe_done;
}
if (of_get_property(np, "shared-pin", NULL))
rsnd_flags_set(ssi, RSND_SSI_CLK_PIN_SHARE);
if (of_get_property(np, "no-busif", NULL))
rsnd_flags_set(ssi, RSND_SSI_NO_BUSIF);
ssi->irq = irq_of_parse_and_map(np, 0);
if (!ssi->irq) {
ret = -EINVAL;
of_node_put(np);
goto rsnd_ssi_probe_done;
}
if (of_property_read_bool(np, "pio-transfer"))
ops = &rsnd_ssi_pio_ops;
else
ops = &rsnd_ssi_dma_ops;
ret = rsnd_mod_init(priv, rsnd_mod_get(ssi), ops, clk,
RSND_MOD_SSI, i);
if (ret) {
of_node_put(np);
goto rsnd_ssi_probe_done;
}
skip:
i++;
}
ret = 0;
rsnd_ssi_probe_done:
of_node_put(node);
return ret;
}
void rsnd_ssi_remove(struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi;
int i;
for_each_rsnd_ssi(ssi, priv, i) {
rsnd_mod_quit(rsnd_mod_get(ssi));
}
}