linux/arch/arm/kernel/perf_event_v7.c

2040 lines
64 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* ARMv7 Cortex-A8 and Cortex-A9 Performance Events handling code.
*
* ARMv7 support: Jean Pihet <jpihet@mvista.com>
* 2010 (c) MontaVista Software, LLC.
*
* Copied from ARMv6 code, with the low level code inspired
* by the ARMv7 Oprofile code.
*
* Cortex-A8 has up to 4 configurable performance counters and
* a single cycle counter.
* Cortex-A9 has up to 31 configurable performance counters and
* a single cycle counter.
*
* All counters can be enabled/disabled and IRQ masked separately. The cycle
* counter and all 4 performance counters together can be reset separately.
*/
#ifdef CONFIG_CPU_V7
#include <asm/cp15.h>
#include <asm/cputype.h>
#include <asm/irq_regs.h>
#include <asm/vfp.h>
#include "../vfp/vfpinstr.h"
#include <linux/of.h>
#include <linux/perf/arm_pmu.h>
#include <linux/platform_device.h>
/*
* Common ARMv7 event types
*
* Note: An implementation may not be able to count all of these events
* but the encodings are considered to be `reserved' in the case that
* they are not available.
*/
#define ARMV7_PERFCTR_PMNC_SW_INCR 0x00
#define ARMV7_PERFCTR_L1_ICACHE_REFILL 0x01
#define ARMV7_PERFCTR_ITLB_REFILL 0x02
#define ARMV7_PERFCTR_L1_DCACHE_REFILL 0x03
#define ARMV7_PERFCTR_L1_DCACHE_ACCESS 0x04
#define ARMV7_PERFCTR_DTLB_REFILL 0x05
#define ARMV7_PERFCTR_MEM_READ 0x06
#define ARMV7_PERFCTR_MEM_WRITE 0x07
#define ARMV7_PERFCTR_INSTR_EXECUTED 0x08
#define ARMV7_PERFCTR_EXC_TAKEN 0x09
#define ARMV7_PERFCTR_EXC_EXECUTED 0x0A
#define ARMV7_PERFCTR_CID_WRITE 0x0B
/*
* ARMV7_PERFCTR_PC_WRITE is equivalent to HW_BRANCH_INSTRUCTIONS.
* It counts:
* - all (taken) branch instructions,
* - instructions that explicitly write the PC,
* - exception generating instructions.
*/
#define ARMV7_PERFCTR_PC_WRITE 0x0C
#define ARMV7_PERFCTR_PC_IMM_BRANCH 0x0D
#define ARMV7_PERFCTR_PC_PROC_RETURN 0x0E
#define ARMV7_PERFCTR_MEM_UNALIGNED_ACCESS 0x0F
#define ARMV7_PERFCTR_PC_BRANCH_MIS_PRED 0x10
#define ARMV7_PERFCTR_CLOCK_CYCLES 0x11
#define ARMV7_PERFCTR_PC_BRANCH_PRED 0x12
/* These events are defined by the PMUv2 supplement (ARM DDI 0457A). */
#define ARMV7_PERFCTR_MEM_ACCESS 0x13
#define ARMV7_PERFCTR_L1_ICACHE_ACCESS 0x14
#define ARMV7_PERFCTR_L1_DCACHE_WB 0x15
#define ARMV7_PERFCTR_L2_CACHE_ACCESS 0x16
#define ARMV7_PERFCTR_L2_CACHE_REFILL 0x17
#define ARMV7_PERFCTR_L2_CACHE_WB 0x18
#define ARMV7_PERFCTR_BUS_ACCESS 0x19
#define ARMV7_PERFCTR_MEM_ERROR 0x1A
#define ARMV7_PERFCTR_INSTR_SPEC 0x1B
#define ARMV7_PERFCTR_TTBR_WRITE 0x1C
#define ARMV7_PERFCTR_BUS_CYCLES 0x1D
#define ARMV7_PERFCTR_CPU_CYCLES 0xFF
/* ARMv7 Cortex-A8 specific event types */
#define ARMV7_A8_PERFCTR_L2_CACHE_ACCESS 0x43
#define ARMV7_A8_PERFCTR_L2_CACHE_REFILL 0x44
#define ARMV7_A8_PERFCTR_L1_ICACHE_ACCESS 0x50
#define ARMV7_A8_PERFCTR_STALL_ISIDE 0x56
/* ARMv7 Cortex-A9 specific event types */
#define ARMV7_A9_PERFCTR_INSTR_CORE_RENAME 0x68
#define ARMV7_A9_PERFCTR_STALL_ICACHE 0x60
#define ARMV7_A9_PERFCTR_STALL_DISPATCH 0x66
/* ARMv7 Cortex-A5 specific event types */
#define ARMV7_A5_PERFCTR_PREFETCH_LINEFILL 0xc2
#define ARMV7_A5_PERFCTR_PREFETCH_LINEFILL_DROP 0xc3
/* ARMv7 Cortex-A15 specific event types */
#define ARMV7_A15_PERFCTR_L1_DCACHE_ACCESS_READ 0x40
#define ARMV7_A15_PERFCTR_L1_DCACHE_ACCESS_WRITE 0x41
#define ARMV7_A15_PERFCTR_L1_DCACHE_REFILL_READ 0x42
#define ARMV7_A15_PERFCTR_L1_DCACHE_REFILL_WRITE 0x43
#define ARMV7_A15_PERFCTR_DTLB_REFILL_L1_READ 0x4C
#define ARMV7_A15_PERFCTR_DTLB_REFILL_L1_WRITE 0x4D
#define ARMV7_A15_PERFCTR_L2_CACHE_ACCESS_READ 0x50
#define ARMV7_A15_PERFCTR_L2_CACHE_ACCESS_WRITE 0x51
#define ARMV7_A15_PERFCTR_L2_CACHE_REFILL_READ 0x52
#define ARMV7_A15_PERFCTR_L2_CACHE_REFILL_WRITE 0x53
#define ARMV7_A15_PERFCTR_PC_WRITE_SPEC 0x76
/* ARMv7 Cortex-A12 specific event types */
#define ARMV7_A12_PERFCTR_L1_DCACHE_ACCESS_READ 0x40
#define ARMV7_A12_PERFCTR_L1_DCACHE_ACCESS_WRITE 0x41
#define ARMV7_A12_PERFCTR_L2_CACHE_ACCESS_READ 0x50
#define ARMV7_A12_PERFCTR_L2_CACHE_ACCESS_WRITE 0x51
#define ARMV7_A12_PERFCTR_PC_WRITE_SPEC 0x76
#define ARMV7_A12_PERFCTR_PF_TLB_REFILL 0xe7
/* ARMv7 Krait specific event types */
#define KRAIT_PMRESR0_GROUP0 0xcc
#define KRAIT_PMRESR1_GROUP0 0xd0
#define KRAIT_PMRESR2_GROUP0 0xd4
#define KRAIT_VPMRESR0_GROUP0 0xd8
#define KRAIT_PERFCTR_L1_ICACHE_ACCESS 0x10011
#define KRAIT_PERFCTR_L1_ICACHE_MISS 0x10010
#define KRAIT_PERFCTR_L1_ITLB_ACCESS 0x12222
#define KRAIT_PERFCTR_L1_DTLB_ACCESS 0x12210
/* ARMv7 Scorpion specific event types */
#define SCORPION_LPM0_GROUP0 0x4c
#define SCORPION_LPM1_GROUP0 0x50
#define SCORPION_LPM2_GROUP0 0x54
#define SCORPION_L2LPM_GROUP0 0x58
#define SCORPION_VLPM_GROUP0 0x5c
#define SCORPION_ICACHE_ACCESS 0x10053
#define SCORPION_ICACHE_MISS 0x10052
#define SCORPION_DTLB_ACCESS 0x12013
#define SCORPION_DTLB_MISS 0x12012
#define SCORPION_ITLB_MISS 0x12021
/*
* Cortex-A8 HW events mapping
*
* The hardware events that we support. We do support cache operations but
* we have harvard caches and no way to combine instruction and data
* accesses/misses in hardware.
*/
static const unsigned armv7_a8_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV7_A8_PERFCTR_STALL_ISIDE,
};
static const unsigned armv7_a8_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
/*
* The performance counters don't differentiate between read and write
* accesses/misses so this isn't strictly correct, but it's the best we
* can do. Writes and reads get combined.
*/
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_A8_PERFCTR_L1_ICACHE_ACCESS,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_ICACHE_REFILL,
[C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_A8_PERFCTR_L2_CACHE_ACCESS,
[C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_A8_PERFCTR_L2_CACHE_REFILL,
[C(LL)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_A8_PERFCTR_L2_CACHE_ACCESS,
[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_A8_PERFCTR_L2_CACHE_REFILL,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
/*
* Cortex-A9 HW events mapping
*/
static const unsigned armv7_a9_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_A9_PERFCTR_INSTR_CORE_RENAME,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV7_A9_PERFCTR_STALL_ICACHE,
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV7_A9_PERFCTR_STALL_DISPATCH,
};
static const unsigned armv7_a9_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
/*
* The performance counters don't differentiate between read and write
* accesses/misses so this isn't strictly correct, but it's the best we
* can do. Writes and reads get combined.
*/
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_ICACHE_REFILL,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
/*
* Cortex-A5 HW events mapping
*/
static const unsigned armv7_a5_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
static const unsigned armv7_a5_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV7_A5_PERFCTR_PREFETCH_LINEFILL,
[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV7_A5_PERFCTR_PREFETCH_LINEFILL_DROP,
[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_ICACHE_ACCESS,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_ICACHE_REFILL,
/*
* The prefetch counters don't differentiate between the I side and the
* D side.
*/
[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV7_A5_PERFCTR_PREFETCH_LINEFILL,
[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV7_A5_PERFCTR_PREFETCH_LINEFILL_DROP,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
/*
* Cortex-A15 HW events mapping
*/
static const unsigned armv7_a15_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_A15_PERFCTR_PC_WRITE_SPEC,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_BUS_CYCLES,
};
static const unsigned armv7_a15_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_A15_PERFCTR_L1_DCACHE_ACCESS_READ,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_A15_PERFCTR_L1_DCACHE_REFILL_READ,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_A15_PERFCTR_L1_DCACHE_ACCESS_WRITE,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_A15_PERFCTR_L1_DCACHE_REFILL_WRITE,
/*
* Not all performance counters differentiate between read and write
* accesses/misses so we're not always strictly correct, but it's the
* best we can do. Writes and reads get combined in these cases.
*/
[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_ICACHE_ACCESS,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_ICACHE_REFILL,
[C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_A15_PERFCTR_L2_CACHE_ACCESS_READ,
[C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_A15_PERFCTR_L2_CACHE_REFILL_READ,
[C(LL)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_A15_PERFCTR_L2_CACHE_ACCESS_WRITE,
[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_A15_PERFCTR_L2_CACHE_REFILL_WRITE,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_A15_PERFCTR_DTLB_REFILL_L1_READ,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_A15_PERFCTR_DTLB_REFILL_L1_WRITE,
[C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
/*
* Cortex-A7 HW events mapping
*/
static const unsigned armv7_a7_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_BUS_CYCLES,
};
static const unsigned armv7_a7_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
/*
* The performance counters don't differentiate between read and write
* accesses/misses so this isn't strictly correct, but it's the best we
* can do. Writes and reads get combined.
*/
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_ICACHE_ACCESS,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_ICACHE_REFILL,
[C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_CACHE_ACCESS,
[C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACHE_REFILL,
[C(LL)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_CACHE_ACCESS,
[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACHE_REFILL,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
/*
* Cortex-A12 HW events mapping
*/
static const unsigned armv7_a12_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_A12_PERFCTR_PC_WRITE_SPEC,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_BUS_CYCLES,
};
static const unsigned armv7_a12_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_A12_PERFCTR_L1_DCACHE_ACCESS_READ,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_A12_PERFCTR_L1_DCACHE_ACCESS_WRITE,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
/*
* Not all performance counters differentiate between read and write
* accesses/misses so we're not always strictly correct, but it's the
* best we can do. Writes and reads get combined in these cases.
*/
[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_ICACHE_ACCESS,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_ICACHE_REFILL,
[C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_A12_PERFCTR_L2_CACHE_ACCESS_READ,
[C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACHE_REFILL,
[C(LL)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_A12_PERFCTR_L2_CACHE_ACCESS_WRITE,
[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACHE_REFILL,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
[C(DTLB)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV7_A12_PERFCTR_PF_TLB_REFILL,
[C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_REFILL,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
/*
* Krait HW events mapping
*/
static const unsigned krait_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
};
static const unsigned krait_perf_map_no_branch[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
};
static const unsigned krait_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
/*
* The performance counters don't differentiate between read and write
* accesses/misses so this isn't strictly correct, but it's the best we
* can do. Writes and reads get combined.
*/
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = KRAIT_PERFCTR_L1_ICACHE_ACCESS,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = KRAIT_PERFCTR_L1_ICACHE_MISS,
[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = KRAIT_PERFCTR_L1_DTLB_ACCESS,
[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = KRAIT_PERFCTR_L1_DTLB_ACCESS,
[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = KRAIT_PERFCTR_L1_ITLB_ACCESS,
[C(ITLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = KRAIT_PERFCTR_L1_ITLB_ACCESS,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
/*
* Scorpion HW events mapping
*/
static const unsigned scorpion_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
};
static const unsigned scorpion_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
/*
* The performance counters don't differentiate between read and write
* accesses/misses so this isn't strictly correct, but it's the best we
* can do. Writes and reads get combined.
*/
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_DCACHE_ACCESS,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_L1_DCACHE_REFILL,
[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = SCORPION_ICACHE_ACCESS,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = SCORPION_ICACHE_MISS,
/*
* Only ITLB misses and DTLB refills are supported. If users want the
* DTLB refills misses a raw counter must be used.
*/
[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = SCORPION_DTLB_ACCESS,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = SCORPION_DTLB_MISS,
[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = SCORPION_DTLB_ACCESS,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = SCORPION_DTLB_MISS,
[C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = SCORPION_ITLB_MISS,
[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = SCORPION_ITLB_MISS,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_BRANCH_PRED,
[C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
};
PMU_FORMAT_ATTR(event, "config:0-7");
static struct attribute *armv7_pmu_format_attrs[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group armv7_pmu_format_attr_group = {
.name = "format",
.attrs = armv7_pmu_format_attrs,
};
#define ARMV7_EVENT_ATTR_RESOLVE(m) #m
#define ARMV7_EVENT_ATTR(name, config) \
PMU_EVENT_ATTR_STRING(name, armv7_event_attr_##name, \
"event=" ARMV7_EVENT_ATTR_RESOLVE(config))
ARMV7_EVENT_ATTR(sw_incr, ARMV7_PERFCTR_PMNC_SW_INCR);
ARMV7_EVENT_ATTR(l1i_cache_refill, ARMV7_PERFCTR_L1_ICACHE_REFILL);
ARMV7_EVENT_ATTR(l1i_tlb_refill, ARMV7_PERFCTR_ITLB_REFILL);
ARMV7_EVENT_ATTR(l1d_cache_refill, ARMV7_PERFCTR_L1_DCACHE_REFILL);
ARMV7_EVENT_ATTR(l1d_cache, ARMV7_PERFCTR_L1_DCACHE_ACCESS);
ARMV7_EVENT_ATTR(l1d_tlb_refill, ARMV7_PERFCTR_DTLB_REFILL);
ARMV7_EVENT_ATTR(ld_retired, ARMV7_PERFCTR_MEM_READ);
ARMV7_EVENT_ATTR(st_retired, ARMV7_PERFCTR_MEM_WRITE);
ARMV7_EVENT_ATTR(inst_retired, ARMV7_PERFCTR_INSTR_EXECUTED);
ARMV7_EVENT_ATTR(exc_taken, ARMV7_PERFCTR_EXC_TAKEN);
ARMV7_EVENT_ATTR(exc_return, ARMV7_PERFCTR_EXC_EXECUTED);
ARMV7_EVENT_ATTR(cid_write_retired, ARMV7_PERFCTR_CID_WRITE);
ARMV7_EVENT_ATTR(pc_write_retired, ARMV7_PERFCTR_PC_WRITE);
ARMV7_EVENT_ATTR(br_immed_retired, ARMV7_PERFCTR_PC_IMM_BRANCH);
ARMV7_EVENT_ATTR(br_return_retired, ARMV7_PERFCTR_PC_PROC_RETURN);
ARMV7_EVENT_ATTR(unaligned_ldst_retired, ARMV7_PERFCTR_MEM_UNALIGNED_ACCESS);
ARMV7_EVENT_ATTR(br_mis_pred, ARMV7_PERFCTR_PC_BRANCH_MIS_PRED);
ARMV7_EVENT_ATTR(cpu_cycles, ARMV7_PERFCTR_CLOCK_CYCLES);
ARMV7_EVENT_ATTR(br_pred, ARMV7_PERFCTR_PC_BRANCH_PRED);
static struct attribute *armv7_pmuv1_event_attrs[] = {
&armv7_event_attr_sw_incr.attr.attr,
&armv7_event_attr_l1i_cache_refill.attr.attr,
&armv7_event_attr_l1i_tlb_refill.attr.attr,
&armv7_event_attr_l1d_cache_refill.attr.attr,
&armv7_event_attr_l1d_cache.attr.attr,
&armv7_event_attr_l1d_tlb_refill.attr.attr,
&armv7_event_attr_ld_retired.attr.attr,
&armv7_event_attr_st_retired.attr.attr,
&armv7_event_attr_inst_retired.attr.attr,
&armv7_event_attr_exc_taken.attr.attr,
&armv7_event_attr_exc_return.attr.attr,
&armv7_event_attr_cid_write_retired.attr.attr,
&armv7_event_attr_pc_write_retired.attr.attr,
&armv7_event_attr_br_immed_retired.attr.attr,
&armv7_event_attr_br_return_retired.attr.attr,
&armv7_event_attr_unaligned_ldst_retired.attr.attr,
&armv7_event_attr_br_mis_pred.attr.attr,
&armv7_event_attr_cpu_cycles.attr.attr,
&armv7_event_attr_br_pred.attr.attr,
NULL,
};
static struct attribute_group armv7_pmuv1_events_attr_group = {
.name = "events",
.attrs = armv7_pmuv1_event_attrs,
};
ARMV7_EVENT_ATTR(mem_access, ARMV7_PERFCTR_MEM_ACCESS);
ARMV7_EVENT_ATTR(l1i_cache, ARMV7_PERFCTR_L1_ICACHE_ACCESS);
ARMV7_EVENT_ATTR(l1d_cache_wb, ARMV7_PERFCTR_L1_DCACHE_WB);
ARMV7_EVENT_ATTR(l2d_cache, ARMV7_PERFCTR_L2_CACHE_ACCESS);
ARMV7_EVENT_ATTR(l2d_cache_refill, ARMV7_PERFCTR_L2_CACHE_REFILL);
ARMV7_EVENT_ATTR(l2d_cache_wb, ARMV7_PERFCTR_L2_CACHE_WB);
ARMV7_EVENT_ATTR(bus_access, ARMV7_PERFCTR_BUS_ACCESS);
ARMV7_EVENT_ATTR(memory_error, ARMV7_PERFCTR_MEM_ERROR);
ARMV7_EVENT_ATTR(inst_spec, ARMV7_PERFCTR_INSTR_SPEC);
ARMV7_EVENT_ATTR(ttbr_write_retired, ARMV7_PERFCTR_TTBR_WRITE);
ARMV7_EVENT_ATTR(bus_cycles, ARMV7_PERFCTR_BUS_CYCLES);
static struct attribute *armv7_pmuv2_event_attrs[] = {
&armv7_event_attr_sw_incr.attr.attr,
&armv7_event_attr_l1i_cache_refill.attr.attr,
&armv7_event_attr_l1i_tlb_refill.attr.attr,
&armv7_event_attr_l1d_cache_refill.attr.attr,
&armv7_event_attr_l1d_cache.attr.attr,
&armv7_event_attr_l1d_tlb_refill.attr.attr,
&armv7_event_attr_ld_retired.attr.attr,
&armv7_event_attr_st_retired.attr.attr,
&armv7_event_attr_inst_retired.attr.attr,
&armv7_event_attr_exc_taken.attr.attr,
&armv7_event_attr_exc_return.attr.attr,
&armv7_event_attr_cid_write_retired.attr.attr,
&armv7_event_attr_pc_write_retired.attr.attr,
&armv7_event_attr_br_immed_retired.attr.attr,
&armv7_event_attr_br_return_retired.attr.attr,
&armv7_event_attr_unaligned_ldst_retired.attr.attr,
&armv7_event_attr_br_mis_pred.attr.attr,
&armv7_event_attr_cpu_cycles.attr.attr,
&armv7_event_attr_br_pred.attr.attr,
&armv7_event_attr_mem_access.attr.attr,
&armv7_event_attr_l1i_cache.attr.attr,
&armv7_event_attr_l1d_cache_wb.attr.attr,
&armv7_event_attr_l2d_cache.attr.attr,
&armv7_event_attr_l2d_cache_refill.attr.attr,
&armv7_event_attr_l2d_cache_wb.attr.attr,
&armv7_event_attr_bus_access.attr.attr,
&armv7_event_attr_memory_error.attr.attr,
&armv7_event_attr_inst_spec.attr.attr,
&armv7_event_attr_ttbr_write_retired.attr.attr,
&armv7_event_attr_bus_cycles.attr.attr,
NULL,
};
static struct attribute_group armv7_pmuv2_events_attr_group = {
.name = "events",
.attrs = armv7_pmuv2_event_attrs,
};
/*
* Perf Events' indices
*/
#define ARMV7_IDX_CYCLE_COUNTER 0
#define ARMV7_IDX_COUNTER0 1
#define ARMV7_IDX_COUNTER_LAST(cpu_pmu) \
(ARMV7_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
#define ARMV7_MAX_COUNTERS 32
#define ARMV7_COUNTER_MASK (ARMV7_MAX_COUNTERS - 1)
/*
* ARMv7 low level PMNC access
*/
/*
* Perf Event to low level counters mapping
*/
#define ARMV7_IDX_TO_COUNTER(x) \
(((x) - ARMV7_IDX_COUNTER0) & ARMV7_COUNTER_MASK)
/*
* Per-CPU PMNC: config reg
*/
#define ARMV7_PMNC_E (1 << 0) /* Enable all counters */
#define ARMV7_PMNC_P (1 << 1) /* Reset all counters */
#define ARMV7_PMNC_C (1 << 2) /* Cycle counter reset */
#define ARMV7_PMNC_D (1 << 3) /* CCNT counts every 64th cpu cycle */
#define ARMV7_PMNC_X (1 << 4) /* Export to ETM */
#define ARMV7_PMNC_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
#define ARMV7_PMNC_N_SHIFT 11 /* Number of counters supported */
#define ARMV7_PMNC_N_MASK 0x1f
#define ARMV7_PMNC_MASK 0x3f /* Mask for writable bits */
/*
* FLAG: counters overflow flag status reg
*/
#define ARMV7_FLAG_MASK 0xffffffff /* Mask for writable bits */
#define ARMV7_OVERFLOWED_MASK ARMV7_FLAG_MASK
/*
* PMXEVTYPER: Event selection reg
*/
#define ARMV7_EVTYPE_MASK 0xc80000ff /* Mask for writable bits */
#define ARMV7_EVTYPE_EVENT 0xff /* Mask for EVENT bits */
/*
* Event filters for PMUv2
*/
#define ARMV7_EXCLUDE_PL1 (1 << 31)
#define ARMV7_EXCLUDE_USER (1 << 30)
#define ARMV7_INCLUDE_HYP (1 << 27)
/*
* Secure debug enable reg
*/
#define ARMV7_SDER_SUNIDEN BIT(1) /* Permit non-invasive debug */
static inline u32 armv7_pmnc_read(void)
{
u32 val;
asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r"(val));
return val;
}
static inline void armv7_pmnc_write(u32 val)
{
val &= ARMV7_PMNC_MASK;
isb();
asm volatile("mcr p15, 0, %0, c9, c12, 0" : : "r"(val));
}
static inline int armv7_pmnc_has_overflowed(u32 pmnc)
{
return pmnc & ARMV7_OVERFLOWED_MASK;
}
static inline int armv7_pmnc_counter_valid(struct arm_pmu *cpu_pmu, int idx)
{
return idx >= ARMV7_IDX_CYCLE_COUNTER &&
idx <= ARMV7_IDX_COUNTER_LAST(cpu_pmu);
}
static inline int armv7_pmnc_counter_has_overflowed(u32 pmnc, int idx)
{
return pmnc & BIT(ARMV7_IDX_TO_COUNTER(idx));
}
static inline void armv7_pmnc_select_counter(int idx)
{
u32 counter = ARMV7_IDX_TO_COUNTER(idx);
asm volatile("mcr p15, 0, %0, c9, c12, 5" : : "r" (counter));
isb();
}
static inline u32 armv7pmu_read_counter(struct perf_event *event)
{
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
u32 value = 0;
if (!armv7_pmnc_counter_valid(cpu_pmu, idx)) {
pr_err("CPU%u reading wrong counter %d\n",
smp_processor_id(), idx);
} else if (idx == ARMV7_IDX_CYCLE_COUNTER) {
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (value));
} else {
armv7_pmnc_select_counter(idx);
asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r" (value));
}
return value;
}
static inline void armv7pmu_write_counter(struct perf_event *event, u32 value)
{
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
if (!armv7_pmnc_counter_valid(cpu_pmu, idx)) {
pr_err("CPU%u writing wrong counter %d\n",
smp_processor_id(), idx);
} else if (idx == ARMV7_IDX_CYCLE_COUNTER) {
asm volatile("mcr p15, 0, %0, c9, c13, 0" : : "r" (value));
} else {
armv7_pmnc_select_counter(idx);
asm volatile("mcr p15, 0, %0, c9, c13, 2" : : "r" (value));
}
}
static inline void armv7_pmnc_write_evtsel(int idx, u32 val)
{
armv7_pmnc_select_counter(idx);
val &= ARMV7_EVTYPE_MASK;
asm volatile("mcr p15, 0, %0, c9, c13, 1" : : "r" (val));
}
static inline void armv7_pmnc_enable_counter(int idx)
{
u32 counter = ARMV7_IDX_TO_COUNTER(idx);
asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (BIT(counter)));
}
static inline void armv7_pmnc_disable_counter(int idx)
{
u32 counter = ARMV7_IDX_TO_COUNTER(idx);
asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (BIT(counter)));
}
static inline void armv7_pmnc_enable_intens(int idx)
{
u32 counter = ARMV7_IDX_TO_COUNTER(idx);
asm volatile("mcr p15, 0, %0, c9, c14, 1" : : "r" (BIT(counter)));
}
static inline void armv7_pmnc_disable_intens(int idx)
{
u32 counter = ARMV7_IDX_TO_COUNTER(idx);
asm volatile("mcr p15, 0, %0, c9, c14, 2" : : "r" (BIT(counter)));
isb();
/* Clear the overflow flag in case an interrupt is pending. */
asm volatile("mcr p15, 0, %0, c9, c12, 3" : : "r" (BIT(counter)));
isb();
}
static inline u32 armv7_pmnc_getreset_flags(void)
{
u32 val;
/* Read */
asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
/* Write to clear flags */
val &= ARMV7_FLAG_MASK;
asm volatile("mcr p15, 0, %0, c9, c12, 3" : : "r" (val));
return val;
}
#ifdef DEBUG
static void armv7_pmnc_dump_regs(struct arm_pmu *cpu_pmu)
{
u32 val;
unsigned int cnt;
pr_info("PMNC registers dump:\n");
asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r" (val));
pr_info("PMNC =0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r" (val));
pr_info("CNTENS=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c14, 1" : "=r" (val));
pr_info("INTENS=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
pr_info("FLAGS =0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 5" : "=r" (val));
pr_info("SELECT=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (val));
pr_info("CCNT =0x%08x\n", val);
for (cnt = ARMV7_IDX_COUNTER0;
cnt <= ARMV7_IDX_COUNTER_LAST(cpu_pmu); cnt++) {
armv7_pmnc_select_counter(cnt);
asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r" (val));
pr_info("CNT[%d] count =0x%08x\n",
ARMV7_IDX_TO_COUNTER(cnt), val);
asm volatile("mrc p15, 0, %0, c9, c13, 1" : "=r" (val));
pr_info("CNT[%d] evtsel=0x%08x\n",
ARMV7_IDX_TO_COUNTER(cnt), val);
}
}
#endif
static void armv7pmu_enable_event(struct perf_event *event)
{
unsigned long flags;
struct hw_perf_event *hwc = &event->hw;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
int idx = hwc->idx;
if (!armv7_pmnc_counter_valid(cpu_pmu, idx)) {
pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
smp_processor_id(), idx);
return;
}
/*
* Enable counter and interrupt, and set the counter to count
* the event that we're interested in.
*/
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/*
* Disable counter
*/
armv7_pmnc_disable_counter(idx);
/*
* Set event (if destined for PMNx counters)
* We only need to set the event for the cycle counter if we
* have the ability to perform event filtering.
*/
if (cpu_pmu->set_event_filter || idx != ARMV7_IDX_CYCLE_COUNTER)
armv7_pmnc_write_evtsel(idx, hwc->config_base);
/*
* Enable interrupt for this counter
*/
armv7_pmnc_enable_intens(idx);
/*
* Enable counter
*/
armv7_pmnc_enable_counter(idx);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void armv7pmu_disable_event(struct perf_event *event)
{
unsigned long flags;
struct hw_perf_event *hwc = &event->hw;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
int idx = hwc->idx;
if (!armv7_pmnc_counter_valid(cpu_pmu, idx)) {
pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
smp_processor_id(), idx);
return;
}
/*
* Disable counter and interrupt
*/
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/*
* Disable counter
*/
armv7_pmnc_disable_counter(idx);
/*
* Disable interrupt for this counter
*/
armv7_pmnc_disable_intens(idx);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static irqreturn_t armv7pmu_handle_irq(int irq_num, void *dev)
{
u32 pmnc;
struct perf_sample_data data;
struct arm_pmu *cpu_pmu = (struct arm_pmu *)dev;
struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
struct pt_regs *regs;
int idx;
/*
* Get and reset the IRQ flags
*/
pmnc = armv7_pmnc_getreset_flags();
/*
* Did an overflow occur?
*/
if (!armv7_pmnc_has_overflowed(pmnc))
return IRQ_NONE;
/*
* Handle the counter(s) overflow(s)
*/
regs = get_irq_regs();
for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
/* Ignore if we don't have an event. */
if (!event)
continue;
/*
* We have a single interrupt for all counters. Check that
* each counter has overflowed before we process it.
*/
if (!armv7_pmnc_counter_has_overflowed(pmnc, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event);
perf_sample_data_init(&data, 0, hwc->last_period);
if (!armpmu_event_set_period(event))
continue;
if (perf_event_overflow(event, &data, regs))
cpu_pmu->disable(event);
}
/*
* Handle the pending perf events.
*
* Note: this call *must* be run with interrupts disabled. For
* platforms that can have the PMU interrupts raised as an NMI, this
* will not work.
*/
irq_work_run();
return IRQ_HANDLED;
}
static void armv7pmu_start(struct arm_pmu *cpu_pmu)
{
unsigned long flags;
struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/* Enable all counters */
armv7_pmnc_write(armv7_pmnc_read() | ARMV7_PMNC_E);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void armv7pmu_stop(struct arm_pmu *cpu_pmu)
{
unsigned long flags;
struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/* Disable all counters */
armv7_pmnc_write(armv7_pmnc_read() & ~ARMV7_PMNC_E);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static int armv7pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
int idx;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
unsigned long evtype = hwc->config_base & ARMV7_EVTYPE_EVENT;
/* Always place a cycle counter into the cycle counter. */
if (evtype == ARMV7_PERFCTR_CPU_CYCLES) {
if (test_and_set_bit(ARMV7_IDX_CYCLE_COUNTER, cpuc->used_mask))
return -EAGAIN;
return ARMV7_IDX_CYCLE_COUNTER;
}
/*
* For anything other than a cycle counter, try and use
* the events counters
*/
for (idx = ARMV7_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
if (!test_and_set_bit(idx, cpuc->used_mask))
return idx;
}
/* The counters are all in use. */
return -EAGAIN;
}
/*
* Add an event filter to a given event. This will only work for PMUv2 PMUs.
*/
static int armv7pmu_set_event_filter(struct hw_perf_event *event,
struct perf_event_attr *attr)
{
unsigned long config_base = 0;
if (attr->exclude_idle)
return -EPERM;
if (attr->exclude_user)
config_base |= ARMV7_EXCLUDE_USER;
if (attr->exclude_kernel)
config_base |= ARMV7_EXCLUDE_PL1;
if (!attr->exclude_hv)
config_base |= ARMV7_INCLUDE_HYP;
/*
* Install the filter into config_base as this is used to
* construct the event type.
*/
event->config_base = config_base;
return 0;
}
static void armv7pmu_reset(void *info)
{
struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
u32 idx, nb_cnt = cpu_pmu->num_events, val;
if (cpu_pmu->secure_access) {
asm volatile("mrc p15, 0, %0, c1, c1, 1" : "=r" (val));
val |= ARMV7_SDER_SUNIDEN;
asm volatile("mcr p15, 0, %0, c1, c1, 1" : : "r" (val));
}
/* The counter and interrupt enable registers are unknown at reset. */
for (idx = ARMV7_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx) {
armv7_pmnc_disable_counter(idx);
armv7_pmnc_disable_intens(idx);
}
/* Initialize & Reset PMNC: C and P bits */
armv7_pmnc_write(ARMV7_PMNC_P | ARMV7_PMNC_C);
}
static int armv7_a8_map_event(struct perf_event *event)
{
return armpmu_map_event(event, &armv7_a8_perf_map,
&armv7_a8_perf_cache_map, 0xFF);
}
static int armv7_a9_map_event(struct perf_event *event)
{
return armpmu_map_event(event, &armv7_a9_perf_map,
&armv7_a9_perf_cache_map, 0xFF);
}
static int armv7_a5_map_event(struct perf_event *event)
{
return armpmu_map_event(event, &armv7_a5_perf_map,
&armv7_a5_perf_cache_map, 0xFF);
}
static int armv7_a15_map_event(struct perf_event *event)
{
return armpmu_map_event(event, &armv7_a15_perf_map,
&armv7_a15_perf_cache_map, 0xFF);
}
static int armv7_a7_map_event(struct perf_event *event)
{
return armpmu_map_event(event, &armv7_a7_perf_map,
&armv7_a7_perf_cache_map, 0xFF);
}
static int armv7_a12_map_event(struct perf_event *event)
{
return armpmu_map_event(event, &armv7_a12_perf_map,
&armv7_a12_perf_cache_map, 0xFF);
}
static int krait_map_event(struct perf_event *event)
{
return armpmu_map_event(event, &krait_perf_map,
&krait_perf_cache_map, 0xFFFFF);
}
static int krait_map_event_no_branch(struct perf_event *event)
{
return armpmu_map_event(event, &krait_perf_map_no_branch,
&krait_perf_cache_map, 0xFFFFF);
}
static int scorpion_map_event(struct perf_event *event)
{
return armpmu_map_event(event, &scorpion_perf_map,
&scorpion_perf_cache_map, 0xFFFFF);
}
static void armv7pmu_init(struct arm_pmu *cpu_pmu)
{
cpu_pmu->handle_irq = armv7pmu_handle_irq;
cpu_pmu->enable = armv7pmu_enable_event;
cpu_pmu->disable = armv7pmu_disable_event;
cpu_pmu->read_counter = armv7pmu_read_counter;
cpu_pmu->write_counter = armv7pmu_write_counter;
cpu_pmu->get_event_idx = armv7pmu_get_event_idx;
cpu_pmu->start = armv7pmu_start;
cpu_pmu->stop = armv7pmu_stop;
cpu_pmu->reset = armv7pmu_reset;
cpu_pmu->max_period = (1LLU << 32) - 1;
};
static void armv7_read_num_pmnc_events(void *info)
{
int *nb_cnt = info;
/* Read the nb of CNTx counters supported from PMNC */
*nb_cnt = (armv7_pmnc_read() >> ARMV7_PMNC_N_SHIFT) & ARMV7_PMNC_N_MASK;
/* Add the CPU cycles counter */
*nb_cnt += 1;
}
static int armv7_probe_num_events(struct arm_pmu *arm_pmu)
{
return smp_call_function_any(&arm_pmu->supported_cpus,
armv7_read_num_pmnc_events,
&arm_pmu->num_events, 1);
}
static int armv7_a8_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_cortex_a8";
cpu_pmu->map_event = armv7_a8_map_event;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] =
&armv7_pmuv1_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] =
&armv7_pmu_format_attr_group;
return armv7_probe_num_events(cpu_pmu);
}
static int armv7_a9_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_cortex_a9";
cpu_pmu->map_event = armv7_a9_map_event;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] =
&armv7_pmuv1_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] =
&armv7_pmu_format_attr_group;
return armv7_probe_num_events(cpu_pmu);
}
static int armv7_a5_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_cortex_a5";
cpu_pmu->map_event = armv7_a5_map_event;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] =
&armv7_pmuv1_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] =
&armv7_pmu_format_attr_group;
return armv7_probe_num_events(cpu_pmu);
}
static int armv7_a15_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_cortex_a15";
cpu_pmu->map_event = armv7_a15_map_event;
cpu_pmu->set_event_filter = armv7pmu_set_event_filter;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] =
&armv7_pmuv2_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] =
&armv7_pmu_format_attr_group;
return armv7_probe_num_events(cpu_pmu);
}
static int armv7_a7_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_cortex_a7";
cpu_pmu->map_event = armv7_a7_map_event;
cpu_pmu->set_event_filter = armv7pmu_set_event_filter;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] =
&armv7_pmuv2_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] =
&armv7_pmu_format_attr_group;
return armv7_probe_num_events(cpu_pmu);
}
static int armv7_a12_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_cortex_a12";
cpu_pmu->map_event = armv7_a12_map_event;
cpu_pmu->set_event_filter = armv7pmu_set_event_filter;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] =
&armv7_pmuv2_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] =
&armv7_pmu_format_attr_group;
return armv7_probe_num_events(cpu_pmu);
}
static int armv7_a17_pmu_init(struct arm_pmu *cpu_pmu)
{
int ret = armv7_a12_pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_cortex_a17";
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] =
&armv7_pmuv2_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] =
&armv7_pmu_format_attr_group;
return ret;
}
/*
* Krait Performance Monitor Region Event Selection Register (PMRESRn)
*
* 31 30 24 16 8 0
* +--------------------------------+
* PMRESR0 | EN | CC | CC | CC | CC | N = 1, R = 0
* +--------------------------------+
* PMRESR1 | EN | CC | CC | CC | CC | N = 1, R = 1
* +--------------------------------+
* PMRESR2 | EN | CC | CC | CC | CC | N = 1, R = 2
* +--------------------------------+
* VPMRESR0 | EN | CC | CC | CC | CC | N = 2, R = ?
* +--------------------------------+
* EN | G=3 | G=2 | G=1 | G=0
*
* Event Encoding:
*
* hwc->config_base = 0xNRCCG
*
* N = prefix, 1 for Krait CPU (PMRESRn), 2 for Venum VFP (VPMRESR)
* R = region register
* CC = class of events the group G is choosing from
* G = group or particular event
*
* Example: 0x12021 is a Krait CPU event in PMRESR2's group 1 with code 2
*
* A region (R) corresponds to a piece of the CPU (execution unit, instruction
* unit, etc.) while the event code (CC) corresponds to a particular class of
* events (interrupts for example). An event code is broken down into
* groups (G) that can be mapped into the PMU (irq, fiqs, and irq+fiqs for
* example).
*/
#define KRAIT_EVENT (1 << 16)
#define VENUM_EVENT (2 << 16)
#define KRAIT_EVENT_MASK (KRAIT_EVENT | VENUM_EVENT)
#define PMRESRn_EN BIT(31)
#define EVENT_REGION(event) (((event) >> 12) & 0xf) /* R */
#define EVENT_GROUP(event) ((event) & 0xf) /* G */
#define EVENT_CODE(event) (((event) >> 4) & 0xff) /* CC */
#define EVENT_VENUM(event) (!!(event & VENUM_EVENT)) /* N=2 */
#define EVENT_CPU(event) (!!(event & KRAIT_EVENT)) /* N=1 */
static u32 krait_read_pmresrn(int n)
{
u32 val;
switch (n) {
case 0:
asm volatile("mrc p15, 1, %0, c9, c15, 0" : "=r" (val));
break;
case 1:
asm volatile("mrc p15, 1, %0, c9, c15, 1" : "=r" (val));
break;
case 2:
asm volatile("mrc p15, 1, %0, c9, c15, 2" : "=r" (val));
break;
default:
BUG(); /* Should be validated in krait_pmu_get_event_idx() */
}
return val;
}
static void krait_write_pmresrn(int n, u32 val)
{
switch (n) {
case 0:
asm volatile("mcr p15, 1, %0, c9, c15, 0" : : "r" (val));
break;
case 1:
asm volatile("mcr p15, 1, %0, c9, c15, 1" : : "r" (val));
break;
case 2:
asm volatile("mcr p15, 1, %0, c9, c15, 2" : : "r" (val));
break;
default:
BUG(); /* Should be validated in krait_pmu_get_event_idx() */
}
}
static u32 venum_read_pmresr(void)
{
u32 val;
asm volatile("mrc p10, 7, %0, c11, c0, 0" : "=r" (val));
return val;
}
static void venum_write_pmresr(u32 val)
{
asm volatile("mcr p10, 7, %0, c11, c0, 0" : : "r" (val));
}
static void venum_pre_pmresr(u32 *venum_orig_val, u32 *fp_orig_val)
{
u32 venum_new_val;
u32 fp_new_val;
BUG_ON(preemptible());
/* CPACR Enable CP10 and CP11 access */
*venum_orig_val = get_copro_access();
venum_new_val = *venum_orig_val | CPACC_SVC(10) | CPACC_SVC(11);
set_copro_access(venum_new_val);
/* Enable FPEXC */
*fp_orig_val = fmrx(FPEXC);
fp_new_val = *fp_orig_val | FPEXC_EN;
fmxr(FPEXC, fp_new_val);
}
static void venum_post_pmresr(u32 venum_orig_val, u32 fp_orig_val)
{
BUG_ON(preemptible());
/* Restore FPEXC */
fmxr(FPEXC, fp_orig_val);
isb();
/* Restore CPACR */
set_copro_access(venum_orig_val);
}
static u32 krait_get_pmresrn_event(unsigned int region)
{
static const u32 pmresrn_table[] = { KRAIT_PMRESR0_GROUP0,
KRAIT_PMRESR1_GROUP0,
KRAIT_PMRESR2_GROUP0 };
return pmresrn_table[region];
}
static void krait_evt_setup(int idx, u32 config_base)
{
u32 val;
u32 mask;
u32 vval, fval;
unsigned int region = EVENT_REGION(config_base);
unsigned int group = EVENT_GROUP(config_base);
unsigned int code = EVENT_CODE(config_base);
unsigned int group_shift;
bool venum_event = EVENT_VENUM(config_base);
group_shift = group * 8;
mask = 0xff << group_shift;
/* Configure evtsel for the region and group */
if (venum_event)
val = KRAIT_VPMRESR0_GROUP0;
else
val = krait_get_pmresrn_event(region);
val += group;
/* Mix in mode-exclusion bits */
val |= config_base & (ARMV7_EXCLUDE_USER | ARMV7_EXCLUDE_PL1);
armv7_pmnc_write_evtsel(idx, val);
if (venum_event) {
venum_pre_pmresr(&vval, &fval);
val = venum_read_pmresr();
val &= ~mask;
val |= code << group_shift;
val |= PMRESRn_EN;
venum_write_pmresr(val);
venum_post_pmresr(vval, fval);
} else {
val = krait_read_pmresrn(region);
val &= ~mask;
val |= code << group_shift;
val |= PMRESRn_EN;
krait_write_pmresrn(region, val);
}
}
static u32 clear_pmresrn_group(u32 val, int group)
{
u32 mask;
int group_shift;
group_shift = group * 8;
mask = 0xff << group_shift;
val &= ~mask;
/* Don't clear enable bit if entire region isn't disabled */
if (val & ~PMRESRn_EN)
return val |= PMRESRn_EN;
return 0;
}
static void krait_clearpmu(u32 config_base)
{
u32 val;
u32 vval, fval;
unsigned int region = EVENT_REGION(config_base);
unsigned int group = EVENT_GROUP(config_base);
bool venum_event = EVENT_VENUM(config_base);
if (venum_event) {
venum_pre_pmresr(&vval, &fval);
val = venum_read_pmresr();
val = clear_pmresrn_group(val, group);
venum_write_pmresr(val);
venum_post_pmresr(vval, fval);
} else {
val = krait_read_pmresrn(region);
val = clear_pmresrn_group(val, group);
krait_write_pmresrn(region, val);
}
}
static void krait_pmu_disable_event(struct perf_event *event)
{
unsigned long flags;
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
/* Disable counter and interrupt */
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/* Disable counter */
armv7_pmnc_disable_counter(idx);
/*
* Clear pmresr code (if destined for PMNx counters)
*/
if (hwc->config_base & KRAIT_EVENT_MASK)
krait_clearpmu(hwc->config_base);
/* Disable interrupt for this counter */
armv7_pmnc_disable_intens(idx);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void krait_pmu_enable_event(struct perf_event *event)
{
unsigned long flags;
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
/*
* Enable counter and interrupt, and set the counter to count
* the event that we're interested in.
*/
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/* Disable counter */
armv7_pmnc_disable_counter(idx);
/*
* Set event (if destined for PMNx counters)
* We set the event for the cycle counter because we
* have the ability to perform event filtering.
*/
if (hwc->config_base & KRAIT_EVENT_MASK)
krait_evt_setup(idx, hwc->config_base);
else
armv7_pmnc_write_evtsel(idx, hwc->config_base);
/* Enable interrupt for this counter */
armv7_pmnc_enable_intens(idx);
/* Enable counter */
armv7_pmnc_enable_counter(idx);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void krait_pmu_reset(void *info)
{
u32 vval, fval;
struct arm_pmu *cpu_pmu = info;
u32 idx, nb_cnt = cpu_pmu->num_events;
armv7pmu_reset(info);
/* Clear all pmresrs */
krait_write_pmresrn(0, 0);
krait_write_pmresrn(1, 0);
krait_write_pmresrn(2, 0);
venum_pre_pmresr(&vval, &fval);
venum_write_pmresr(0);
venum_post_pmresr(vval, fval);
/* Reset PMxEVNCTCR to sane default */
for (idx = ARMV7_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx) {
armv7_pmnc_select_counter(idx);
asm volatile("mcr p15, 0, %0, c9, c15, 0" : : "r" (0));
}
}
static int krait_event_to_bit(struct perf_event *event, unsigned int region,
unsigned int group)
{
int bit;
struct hw_perf_event *hwc = &event->hw;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
if (hwc->config_base & VENUM_EVENT)
bit = KRAIT_VPMRESR0_GROUP0;
else
bit = krait_get_pmresrn_event(region);
bit -= krait_get_pmresrn_event(0);
bit += group;
/*
* Lower bits are reserved for use by the counters (see
* armv7pmu_get_event_idx() for more info)
*/
bit += ARMV7_IDX_COUNTER_LAST(cpu_pmu) + 1;
return bit;
}
/*
* We check for column exclusion constraints here.
* Two events cant use the same group within a pmresr register.
*/
static int krait_pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
int idx;
int bit = -1;
struct hw_perf_event *hwc = &event->hw;
unsigned int region = EVENT_REGION(hwc->config_base);
unsigned int code = EVENT_CODE(hwc->config_base);
unsigned int group = EVENT_GROUP(hwc->config_base);
bool venum_event = EVENT_VENUM(hwc->config_base);
bool krait_event = EVENT_CPU(hwc->config_base);
if (venum_event || krait_event) {
/* Ignore invalid events */
if (group > 3 || region > 2)
return -EINVAL;
if (venum_event && (code & 0xe0))
return -EINVAL;
bit = krait_event_to_bit(event, region, group);
if (test_and_set_bit(bit, cpuc->used_mask))
return -EAGAIN;
}
idx = armv7pmu_get_event_idx(cpuc, event);
if (idx < 0 && bit >= 0)
clear_bit(bit, cpuc->used_mask);
return idx;
}
static void krait_pmu_clear_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
int bit;
struct hw_perf_event *hwc = &event->hw;
unsigned int region = EVENT_REGION(hwc->config_base);
unsigned int group = EVENT_GROUP(hwc->config_base);
bool venum_event = EVENT_VENUM(hwc->config_base);
bool krait_event = EVENT_CPU(hwc->config_base);
if (venum_event || krait_event) {
bit = krait_event_to_bit(event, region, group);
clear_bit(bit, cpuc->used_mask);
}
}
static int krait_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_krait";
/* Some early versions of Krait don't support PC write events */
if (of_property_read_bool(cpu_pmu->plat_device->dev.of_node,
"qcom,no-pc-write"))
cpu_pmu->map_event = krait_map_event_no_branch;
else
cpu_pmu->map_event = krait_map_event;
cpu_pmu->set_event_filter = armv7pmu_set_event_filter;
cpu_pmu->reset = krait_pmu_reset;
cpu_pmu->enable = krait_pmu_enable_event;
cpu_pmu->disable = krait_pmu_disable_event;
cpu_pmu->get_event_idx = krait_pmu_get_event_idx;
cpu_pmu->clear_event_idx = krait_pmu_clear_event_idx;
return armv7_probe_num_events(cpu_pmu);
}
/*
* Scorpion Local Performance Monitor Register (LPMn)
*
* 31 30 24 16 8 0
* +--------------------------------+
* LPM0 | EN | CC | CC | CC | CC | N = 1, R = 0
* +--------------------------------+
* LPM1 | EN | CC | CC | CC | CC | N = 1, R = 1
* +--------------------------------+
* LPM2 | EN | CC | CC | CC | CC | N = 1, R = 2
* +--------------------------------+
* L2LPM | EN | CC | CC | CC | CC | N = 1, R = 3
* +--------------------------------+
* VLPM | EN | CC | CC | CC | CC | N = 2, R = ?
* +--------------------------------+
* EN | G=3 | G=2 | G=1 | G=0
*
*
* Event Encoding:
*
* hwc->config_base = 0xNRCCG
*
* N = prefix, 1 for Scorpion CPU (LPMn/L2LPM), 2 for Venum VFP (VLPM)
* R = region register
* CC = class of events the group G is choosing from
* G = group or particular event
*
* Example: 0x12021 is a Scorpion CPU event in LPM2's group 1 with code 2
*
* A region (R) corresponds to a piece of the CPU (execution unit, instruction
* unit, etc.) while the event code (CC) corresponds to a particular class of
* events (interrupts for example). An event code is broken down into
* groups (G) that can be mapped into the PMU (irq, fiqs, and irq+fiqs for
* example).
*/
static u32 scorpion_read_pmresrn(int n)
{
u32 val;
switch (n) {
case 0:
asm volatile("mrc p15, 0, %0, c15, c0, 0" : "=r" (val));
break;
case 1:
asm volatile("mrc p15, 1, %0, c15, c0, 0" : "=r" (val));
break;
case 2:
asm volatile("mrc p15, 2, %0, c15, c0, 0" : "=r" (val));
break;
case 3:
asm volatile("mrc p15, 3, %0, c15, c2, 0" : "=r" (val));
break;
default:
BUG(); /* Should be validated in scorpion_pmu_get_event_idx() */
}
return val;
}
static void scorpion_write_pmresrn(int n, u32 val)
{
switch (n) {
case 0:
asm volatile("mcr p15, 0, %0, c15, c0, 0" : : "r" (val));
break;
case 1:
asm volatile("mcr p15, 1, %0, c15, c0, 0" : : "r" (val));
break;
case 2:
asm volatile("mcr p15, 2, %0, c15, c0, 0" : : "r" (val));
break;
case 3:
asm volatile("mcr p15, 3, %0, c15, c2, 0" : : "r" (val));
break;
default:
BUG(); /* Should be validated in scorpion_pmu_get_event_idx() */
}
}
static u32 scorpion_get_pmresrn_event(unsigned int region)
{
static const u32 pmresrn_table[] = { SCORPION_LPM0_GROUP0,
SCORPION_LPM1_GROUP0,
SCORPION_LPM2_GROUP0,
SCORPION_L2LPM_GROUP0 };
return pmresrn_table[region];
}
static void scorpion_evt_setup(int idx, u32 config_base)
{
u32 val;
u32 mask;
u32 vval, fval;
unsigned int region = EVENT_REGION(config_base);
unsigned int group = EVENT_GROUP(config_base);
unsigned int code = EVENT_CODE(config_base);
unsigned int group_shift;
bool venum_event = EVENT_VENUM(config_base);
group_shift = group * 8;
mask = 0xff << group_shift;
/* Configure evtsel for the region and group */
if (venum_event)
val = SCORPION_VLPM_GROUP0;
else
val = scorpion_get_pmresrn_event(region);
val += group;
/* Mix in mode-exclusion bits */
val |= config_base & (ARMV7_EXCLUDE_USER | ARMV7_EXCLUDE_PL1);
armv7_pmnc_write_evtsel(idx, val);
asm volatile("mcr p15, 0, %0, c9, c15, 0" : : "r" (0));
if (venum_event) {
venum_pre_pmresr(&vval, &fval);
val = venum_read_pmresr();
val &= ~mask;
val |= code << group_shift;
val |= PMRESRn_EN;
venum_write_pmresr(val);
venum_post_pmresr(vval, fval);
} else {
val = scorpion_read_pmresrn(region);
val &= ~mask;
val |= code << group_shift;
val |= PMRESRn_EN;
scorpion_write_pmresrn(region, val);
}
}
static void scorpion_clearpmu(u32 config_base)
{
u32 val;
u32 vval, fval;
unsigned int region = EVENT_REGION(config_base);
unsigned int group = EVENT_GROUP(config_base);
bool venum_event = EVENT_VENUM(config_base);
if (venum_event) {
venum_pre_pmresr(&vval, &fval);
val = venum_read_pmresr();
val = clear_pmresrn_group(val, group);
venum_write_pmresr(val);
venum_post_pmresr(vval, fval);
} else {
val = scorpion_read_pmresrn(region);
val = clear_pmresrn_group(val, group);
scorpion_write_pmresrn(region, val);
}
}
static void scorpion_pmu_disable_event(struct perf_event *event)
{
unsigned long flags;
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
/* Disable counter and interrupt */
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/* Disable counter */
armv7_pmnc_disable_counter(idx);
/*
* Clear pmresr code (if destined for PMNx counters)
*/
if (hwc->config_base & KRAIT_EVENT_MASK)
scorpion_clearpmu(hwc->config_base);
/* Disable interrupt for this counter */
armv7_pmnc_disable_intens(idx);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void scorpion_pmu_enable_event(struct perf_event *event)
{
unsigned long flags;
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
/*
* Enable counter and interrupt, and set the counter to count
* the event that we're interested in.
*/
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/* Disable counter */
armv7_pmnc_disable_counter(idx);
/*
* Set event (if destined for PMNx counters)
* We don't set the event for the cycle counter because we
* don't have the ability to perform event filtering.
*/
if (hwc->config_base & KRAIT_EVENT_MASK)
scorpion_evt_setup(idx, hwc->config_base);
else if (idx != ARMV7_IDX_CYCLE_COUNTER)
armv7_pmnc_write_evtsel(idx, hwc->config_base);
/* Enable interrupt for this counter */
armv7_pmnc_enable_intens(idx);
/* Enable counter */
armv7_pmnc_enable_counter(idx);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void scorpion_pmu_reset(void *info)
{
u32 vval, fval;
struct arm_pmu *cpu_pmu = info;
u32 idx, nb_cnt = cpu_pmu->num_events;
armv7pmu_reset(info);
/* Clear all pmresrs */
scorpion_write_pmresrn(0, 0);
scorpion_write_pmresrn(1, 0);
scorpion_write_pmresrn(2, 0);
scorpion_write_pmresrn(3, 0);
venum_pre_pmresr(&vval, &fval);
venum_write_pmresr(0);
venum_post_pmresr(vval, fval);
/* Reset PMxEVNCTCR to sane default */
for (idx = ARMV7_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx) {
armv7_pmnc_select_counter(idx);
asm volatile("mcr p15, 0, %0, c9, c15, 0" : : "r" (0));
}
}
static int scorpion_event_to_bit(struct perf_event *event, unsigned int region,
unsigned int group)
{
int bit;
struct hw_perf_event *hwc = &event->hw;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
if (hwc->config_base & VENUM_EVENT)
bit = SCORPION_VLPM_GROUP0;
else
bit = scorpion_get_pmresrn_event(region);
bit -= scorpion_get_pmresrn_event(0);
bit += group;
/*
* Lower bits are reserved for use by the counters (see
* armv7pmu_get_event_idx() for more info)
*/
bit += ARMV7_IDX_COUNTER_LAST(cpu_pmu) + 1;
return bit;
}
/*
* We check for column exclusion constraints here.
* Two events cant use the same group within a pmresr register.
*/
static int scorpion_pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
int idx;
int bit = -1;
struct hw_perf_event *hwc = &event->hw;
unsigned int region = EVENT_REGION(hwc->config_base);
unsigned int group = EVENT_GROUP(hwc->config_base);
bool venum_event = EVENT_VENUM(hwc->config_base);
bool scorpion_event = EVENT_CPU(hwc->config_base);
if (venum_event || scorpion_event) {
/* Ignore invalid events */
if (group > 3 || region > 3)
return -EINVAL;
bit = scorpion_event_to_bit(event, region, group);
if (test_and_set_bit(bit, cpuc->used_mask))
return -EAGAIN;
}
idx = armv7pmu_get_event_idx(cpuc, event);
if (idx < 0 && bit >= 0)
clear_bit(bit, cpuc->used_mask);
return idx;
}
static void scorpion_pmu_clear_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
int bit;
struct hw_perf_event *hwc = &event->hw;
unsigned int region = EVENT_REGION(hwc->config_base);
unsigned int group = EVENT_GROUP(hwc->config_base);
bool venum_event = EVENT_VENUM(hwc->config_base);
bool scorpion_event = EVENT_CPU(hwc->config_base);
if (venum_event || scorpion_event) {
bit = scorpion_event_to_bit(event, region, group);
clear_bit(bit, cpuc->used_mask);
}
}
static int scorpion_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_scorpion";
cpu_pmu->map_event = scorpion_map_event;
cpu_pmu->reset = scorpion_pmu_reset;
cpu_pmu->enable = scorpion_pmu_enable_event;
cpu_pmu->disable = scorpion_pmu_disable_event;
cpu_pmu->get_event_idx = scorpion_pmu_get_event_idx;
cpu_pmu->clear_event_idx = scorpion_pmu_clear_event_idx;
return armv7_probe_num_events(cpu_pmu);
}
static int scorpion_mp_pmu_init(struct arm_pmu *cpu_pmu)
{
armv7pmu_init(cpu_pmu);
cpu_pmu->name = "armv7_scorpion_mp";
cpu_pmu->map_event = scorpion_map_event;
cpu_pmu->reset = scorpion_pmu_reset;
cpu_pmu->enable = scorpion_pmu_enable_event;
cpu_pmu->disable = scorpion_pmu_disable_event;
cpu_pmu->get_event_idx = scorpion_pmu_get_event_idx;
cpu_pmu->clear_event_idx = scorpion_pmu_clear_event_idx;
return armv7_probe_num_events(cpu_pmu);
}
static const struct of_device_id armv7_pmu_of_device_ids[] = {
{.compatible = "arm,cortex-a17-pmu", .data = armv7_a17_pmu_init},
{.compatible = "arm,cortex-a15-pmu", .data = armv7_a15_pmu_init},
{.compatible = "arm,cortex-a12-pmu", .data = armv7_a12_pmu_init},
{.compatible = "arm,cortex-a9-pmu", .data = armv7_a9_pmu_init},
{.compatible = "arm,cortex-a8-pmu", .data = armv7_a8_pmu_init},
{.compatible = "arm,cortex-a7-pmu", .data = armv7_a7_pmu_init},
{.compatible = "arm,cortex-a5-pmu", .data = armv7_a5_pmu_init},
{.compatible = "qcom,krait-pmu", .data = krait_pmu_init},
{.compatible = "qcom,scorpion-pmu", .data = scorpion_pmu_init},
{.compatible = "qcom,scorpion-mp-pmu", .data = scorpion_mp_pmu_init},
{},
};
static const struct pmu_probe_info armv7_pmu_probe_table[] = {
ARM_PMU_PROBE(ARM_CPU_PART_CORTEX_A8, armv7_a8_pmu_init),
ARM_PMU_PROBE(ARM_CPU_PART_CORTEX_A9, armv7_a9_pmu_init),
{ /* sentinel value */ }
};
static int armv7_pmu_device_probe(struct platform_device *pdev)
{
return arm_pmu_device_probe(pdev, armv7_pmu_of_device_ids,
armv7_pmu_probe_table);
}
static struct platform_driver armv7_pmu_driver = {
.driver = {
.name = "armv7-pmu",
.of_match_table = armv7_pmu_of_device_ids,
},
.probe = armv7_pmu_device_probe,
};
builtin_platform_driver(armv7_pmu_driver);
#endif /* CONFIG_CPU_V7 */