linux/drivers/net/ethernet/qlogic/qed/qed_dev_api.h

478 lines
12 KiB
C
Raw Normal View History

/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _QED_DEV_API_H
#define _QED_DEV_API_H
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/qed/qed_chain.h>
#include <linux/qed/qed_if.h>
#include "qed_int.h"
/**
* @brief qed_init_dp - initialize the debug level
*
* @param cdev
* @param dp_module
* @param dp_level
*/
void qed_init_dp(struct qed_dev *cdev,
u32 dp_module,
u8 dp_level);
/**
* @brief qed_init_struct - initialize the device structure to
* its defaults
*
* @param cdev
*/
void qed_init_struct(struct qed_dev *cdev);
/**
* @brief qed_resc_free -
*
* @param cdev
*/
void qed_resc_free(struct qed_dev *cdev);
/**
* @brief qed_resc_alloc -
*
* @param cdev
*
* @return int
*/
int qed_resc_alloc(struct qed_dev *cdev);
/**
* @brief qed_resc_setup -
*
* @param cdev
*/
void qed_resc_setup(struct qed_dev *cdev);
enum qed_override_force_load {
QED_OVERRIDE_FORCE_LOAD_NONE,
QED_OVERRIDE_FORCE_LOAD_ALWAYS,
QED_OVERRIDE_FORCE_LOAD_NEVER,
};
struct qed_drv_load_params {
/* Indicates whether the driver is running over a crash kernel.
* As part of the load request, this will be used for providing the
* driver role to the MFW.
* In case of a crash kernel over PDA - this should be set to false.
*/
bool is_crash_kernel;
/* The timeout value that the MFW should use when locking the engine for
* the driver load process.
* A value of '0' means the default value, and '255' means no timeout.
*/
u8 mfw_timeout_val;
#define QED_LOAD_REQ_LOCK_TO_DEFAULT 0
#define QED_LOAD_REQ_LOCK_TO_NONE 255
/* Avoid engine reset when first PF loads on it */
bool avoid_eng_reset;
/* Allow overriding the default force load behavior */
enum qed_override_force_load override_force_load;
};
struct qed_hw_init_params {
/* Tunneling parameters */
struct qed_tunnel_info *p_tunn;
bool b_hw_start;
/* Interrupt mode [msix, inta, etc.] to use */
enum qed_int_mode int_mode;
/* NPAR tx switching to be used for vports for tx-switching */
bool allow_npar_tx_switch;
/* Binary fw data pointer in binary fw file */
const u8 *bin_fw_data;
/* Driver load parameters */
struct qed_drv_load_params *p_drv_load_params;
};
/**
* @brief qed_hw_init -
*
* @param cdev
* @param p_params
*
* @return int
*/
int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params);
/**
* @brief qed_hw_timers_stop_all - stop the timers HW block
*
* @param cdev
*
* @return void
*/
void qed_hw_timers_stop_all(struct qed_dev *cdev);
/**
* @brief qed_hw_stop -
*
* @param cdev
*
* @return int
*/
int qed_hw_stop(struct qed_dev *cdev);
/**
* @brief qed_hw_stop_fastpath -should be called incase
* slowpath is still required for the device,
* but fastpath is not.
*
* @param cdev
*
qed: Don't use main-ptt in unrelated flows In order to access HW registers driver needs to acquire a PTT entry [mapping between bar memory and internal chip address]. Since acquiring PTT entries could fail [at least in theory] as their number is finite and other flows can hold them, we reserve special PTT entries for 'important' enough flows - ones we want to guarantee that would not be susceptible to such issues. One such special entry is the 'main' PTT which is meant to be used in flows such as chip initialization and de-initialization. However, there are other flows that are also using that same entry for their own purpose, and might run concurrently with the original flows [notice that for most cases using the main-ptt by mistake, such a race is still impossible, at least today]. This patch re-organizes the various functions that currently use the main_ptt in one of two ways: - If a function shouldn't use the main_ptt it starts acquiring and releasing it's own PTT entry and use it instead. Notice if those functions previously couldn't fail, they now can [as acquisition might fail]. - Change the prototypes so that the main_ptt would be received as a parameter [instead of explicitly accessing it]. This prevents the future risk of adding codes that introduces new use-cases for flows using the main_ptt, ones that might be in race with the actual 'main' flows. Signed-off-by: Rahul Verma <Rahul.Verma@cavium.com> Signed-off-by: Yuval Mintz <Yuval.Mintz@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-06 20:58:29 +08:00
* @return int
*/
qed: Don't use main-ptt in unrelated flows In order to access HW registers driver needs to acquire a PTT entry [mapping between bar memory and internal chip address]. Since acquiring PTT entries could fail [at least in theory] as their number is finite and other flows can hold them, we reserve special PTT entries for 'important' enough flows - ones we want to guarantee that would not be susceptible to such issues. One such special entry is the 'main' PTT which is meant to be used in flows such as chip initialization and de-initialization. However, there are other flows that are also using that same entry for their own purpose, and might run concurrently with the original flows [notice that for most cases using the main-ptt by mistake, such a race is still impossible, at least today]. This patch re-organizes the various functions that currently use the main_ptt in one of two ways: - If a function shouldn't use the main_ptt it starts acquiring and releasing it's own PTT entry and use it instead. Notice if those functions previously couldn't fail, they now can [as acquisition might fail]. - Change the prototypes so that the main_ptt would be received as a parameter [instead of explicitly accessing it]. This prevents the future risk of adding codes that introduces new use-cases for flows using the main_ptt, ones that might be in race with the actual 'main' flows. Signed-off-by: Rahul Verma <Rahul.Verma@cavium.com> Signed-off-by: Yuval Mintz <Yuval.Mintz@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-06 20:58:29 +08:00
int qed_hw_stop_fastpath(struct qed_dev *cdev);
/**
* @brief qed_hw_start_fastpath -restart fastpath traffic,
* only if hw_stop_fastpath was called
*
qed: Don't use main-ptt in unrelated flows In order to access HW registers driver needs to acquire a PTT entry [mapping between bar memory and internal chip address]. Since acquiring PTT entries could fail [at least in theory] as their number is finite and other flows can hold them, we reserve special PTT entries for 'important' enough flows - ones we want to guarantee that would not be susceptible to such issues. One such special entry is the 'main' PTT which is meant to be used in flows such as chip initialization and de-initialization. However, there are other flows that are also using that same entry for their own purpose, and might run concurrently with the original flows [notice that for most cases using the main-ptt by mistake, such a race is still impossible, at least today]. This patch re-organizes the various functions that currently use the main_ptt in one of two ways: - If a function shouldn't use the main_ptt it starts acquiring and releasing it's own PTT entry and use it instead. Notice if those functions previously couldn't fail, they now can [as acquisition might fail]. - Change the prototypes so that the main_ptt would be received as a parameter [instead of explicitly accessing it]. This prevents the future risk of adding codes that introduces new use-cases for flows using the main_ptt, ones that might be in race with the actual 'main' flows. Signed-off-by: Rahul Verma <Rahul.Verma@cavium.com> Signed-off-by: Yuval Mintz <Yuval.Mintz@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-06 20:58:29 +08:00
* @param p_hwfn
*
qed: Don't use main-ptt in unrelated flows In order to access HW registers driver needs to acquire a PTT entry [mapping between bar memory and internal chip address]. Since acquiring PTT entries could fail [at least in theory] as their number is finite and other flows can hold them, we reserve special PTT entries for 'important' enough flows - ones we want to guarantee that would not be susceptible to such issues. One such special entry is the 'main' PTT which is meant to be used in flows such as chip initialization and de-initialization. However, there are other flows that are also using that same entry for their own purpose, and might run concurrently with the original flows [notice that for most cases using the main-ptt by mistake, such a race is still impossible, at least today]. This patch re-organizes the various functions that currently use the main_ptt in one of two ways: - If a function shouldn't use the main_ptt it starts acquiring and releasing it's own PTT entry and use it instead. Notice if those functions previously couldn't fail, they now can [as acquisition might fail]. - Change the prototypes so that the main_ptt would be received as a parameter [instead of explicitly accessing it]. This prevents the future risk of adding codes that introduces new use-cases for flows using the main_ptt, ones that might be in race with the actual 'main' flows. Signed-off-by: Rahul Verma <Rahul.Verma@cavium.com> Signed-off-by: Yuval Mintz <Yuval.Mintz@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-06 20:58:29 +08:00
* @return int
*/
qed: Don't use main-ptt in unrelated flows In order to access HW registers driver needs to acquire a PTT entry [mapping between bar memory and internal chip address]. Since acquiring PTT entries could fail [at least in theory] as their number is finite and other flows can hold them, we reserve special PTT entries for 'important' enough flows - ones we want to guarantee that would not be susceptible to such issues. One such special entry is the 'main' PTT which is meant to be used in flows such as chip initialization and de-initialization. However, there are other flows that are also using that same entry for their own purpose, and might run concurrently with the original flows [notice that for most cases using the main-ptt by mistake, such a race is still impossible, at least today]. This patch re-organizes the various functions that currently use the main_ptt in one of two ways: - If a function shouldn't use the main_ptt it starts acquiring and releasing it's own PTT entry and use it instead. Notice if those functions previously couldn't fail, they now can [as acquisition might fail]. - Change the prototypes so that the main_ptt would be received as a parameter [instead of explicitly accessing it]. This prevents the future risk of adding codes that introduces new use-cases for flows using the main_ptt, ones that might be in race with the actual 'main' flows. Signed-off-by: Rahul Verma <Rahul.Verma@cavium.com> Signed-off-by: Yuval Mintz <Yuval.Mintz@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-06 20:58:29 +08:00
int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn);
/**
* @brief qed_hw_prepare -
*
* @param cdev
* @param personality - personality to initialize
*
* @return int
*/
int qed_hw_prepare(struct qed_dev *cdev,
int personality);
/**
* @brief qed_hw_remove -
*
* @param cdev
*/
void qed_hw_remove(struct qed_dev *cdev);
/**
* @brief qed_ptt_acquire - Allocate a PTT window
*
* Should be called at the entry point to the driver (at the beginning of an
* exported function)
*
* @param p_hwfn
*
* @return struct qed_ptt
*/
struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn);
/**
* @brief qed_ptt_release - Release PTT Window
*
* Should be called at the end of a flow - at the end of the function that
* acquired the PTT.
*
*
* @param p_hwfn
* @param p_ptt
*/
void qed_ptt_release(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt);
void qed_reset_vport_stats(struct qed_dev *cdev);
enum qed_dmae_address_type_t {
QED_DMAE_ADDRESS_HOST_VIRT,
QED_DMAE_ADDRESS_HOST_PHYS,
QED_DMAE_ADDRESS_GRC
};
/* value of flags If QED_DMAE_FLAG_RW_REPL_SRC flag is set and the
* source is a block of length DMAE_MAX_RW_SIZE and the
* destination is larger, the source block will be duplicated as
* many times as required to fill the destination block. This is
* used mostly to write a zeroed buffer to destination address
* using DMA
*/
#define QED_DMAE_FLAG_RW_REPL_SRC 0x00000001
#define QED_DMAE_FLAG_VF_SRC 0x00000002
#define QED_DMAE_FLAG_VF_DST 0x00000004
#define QED_DMAE_FLAG_COMPLETION_DST 0x00000008
struct qed_dmae_params {
u32 flags; /* consists of QED_DMAE_FLAG_* values */
u8 src_vfid;
u8 dst_vfid;
};
/**
* @brief qed_dmae_host2grc - copy data from source addr to
* dmae registers using the given ptt
*
* @param p_hwfn
* @param p_ptt
* @param source_addr
* @param grc_addr (dmae_data_offset)
* @param size_in_dwords
* @param flags (one of the flags defined above)
*/
int
qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u64 source_addr,
u32 grc_addr,
u32 size_in_dwords,
u32 flags);
/**
* @brief qed_dmae_grc2host - Read data from dmae data offset
* to source address using the given ptt
*
* @param p_ptt
* @param grc_addr (dmae_data_offset)
* @param dest_addr
* @param size_in_dwords
* @param flags - one of the flags defined above
*/
int qed_dmae_grc2host(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
u32 grc_addr, dma_addr_t dest_addr, u32 size_in_dwords,
u32 flags);
/**
* @brief qed_dmae_host2host - copy data from to source address
* to a destination adress (for SRIOV) using the given ptt
*
* @param p_hwfn
* @param p_ptt
* @param source_addr
* @param dest_addr
* @param size_in_dwords
* @param params
*/
int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
dma_addr_t source_addr,
dma_addr_t dest_addr,
u32 size_in_dwords, struct qed_dmae_params *p_params);
/**
* @brief qed_chain_alloc - Allocate and initialize a chain
*
* @param p_hwfn
* @param intended_use
* @param mode
* @param num_elems
* @param elem_size
* @param p_chain
*
* @return int
*/
int
qed_chain_alloc(struct qed_dev *cdev,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode,
enum qed_chain_cnt_type cnt_type,
u32 num_elems, size_t elem_size, struct qed_chain *p_chain);
/**
* @brief qed_chain_free - Free chain DMA memory
*
* @param p_hwfn
* @param p_chain
*/
void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain);
/**
* @@brief qed_fw_l2_queue - Get absolute L2 queue ID
*
* @param p_hwfn
* @param src_id - relative to p_hwfn
* @param dst_id - absolute per engine
*
* @return int
*/
int qed_fw_l2_queue(struct qed_hwfn *p_hwfn,
u16 src_id,
u16 *dst_id);
/**
* @@brief qed_fw_vport - Get absolute vport ID
*
* @param p_hwfn
* @param src_id - relative to p_hwfn
* @param dst_id - absolute per engine
*
* @return int
*/
int qed_fw_vport(struct qed_hwfn *p_hwfn,
u8 src_id,
u8 *dst_id);
/**
* @@brief qed_fw_rss_eng - Get absolute RSS engine ID
*
* @param p_hwfn
* @param src_id - relative to p_hwfn
* @param dst_id - absolute per engine
*
* @return int
*/
int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
u8 src_id,
u8 *dst_id);
/**
* @brief qed_llh_add_mac_filter - configures a MAC filter in llh
*
* @param p_hwfn
* @param p_ptt
* @param p_filter - MAC to add
*/
int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 *p_filter);
/**
* @brief qed_llh_remove_mac_filter - removes a MAC filter from llh
*
* @param p_hwfn
* @param p_ptt
* @param p_filter - MAC to remove
*/
void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 *p_filter);
enum qed_llh_port_filter_type_t {
QED_LLH_FILTER_ETHERTYPE,
QED_LLH_FILTER_TCP_SRC_PORT,
QED_LLH_FILTER_TCP_DEST_PORT,
QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT,
QED_LLH_FILTER_UDP_SRC_PORT,
QED_LLH_FILTER_UDP_DEST_PORT,
QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT
};
/**
* @brief qed_llh_add_protocol_filter - configures a protocol filter in llh
*
* @param p_hwfn
* @param p_ptt
* @param source_port_or_eth_type - source port or ethertype to add
* @param dest_port - destination port to add
* @param type - type of filters and comparing
*/
int
qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 source_port_or_eth_type,
u16 dest_port,
enum qed_llh_port_filter_type_t type);
/**
* @brief qed_llh_remove_protocol_filter - remove a protocol filter in llh
*
* @param p_hwfn
* @param p_ptt
* @param source_port_or_eth_type - source port or ethertype to add
* @param dest_port - destination port to add
* @param type - type of filters and comparing
*/
void
qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 source_port_or_eth_type,
u16 dest_port,
enum qed_llh_port_filter_type_t type);
/**
* *@brief Cleanup of previous driver remains prior to load
*
* @param p_hwfn
* @param p_ptt
* @param id - For PF, engine-relative. For VF, PF-relative.
* @param is_vf - true iff cleanup is made for a VF.
*
* @return int
*/
int qed_final_cleanup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 id, bool is_vf);
/**
* @brief qed_set_rxq_coalesce - Configure coalesce parameters for an Rx queue
* The fact that we can configure coalescing to up to 511, but on varying
* accuracy [the bigger the value the less accurate] up to a mistake of 3usec
* for the highest values.
*
* @param p_hwfn
* @param p_ptt
* @param coalesce - Coalesce value in micro seconds.
* @param qid - Queue index.
* @param qid - SB Id
*
* @return int
*/
int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
u16 coalesce, u8 qid, u16 sb_id);
/**
* @brief qed_set_txq_coalesce - Configure coalesce parameters for a Tx queue
* While the API allows setting coalescing per-qid, all tx queues sharing a
* SB should be in same range [i.e., either 0-0x7f, 0x80-0xff or 0x100-0x1ff]
* otherwise configuration would break.
*
* @param p_hwfn
* @param p_ptt
* @param coalesce - Coalesce value in micro seconds.
* @param qid - Queue index.
* @param qid - SB Id
*
* @return int
*/
int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
u16 coalesce, u8 qid, u16 sb_id);
const char *qed_hw_get_resc_name(enum qed_resources res_id);
#endif