linux/arch/s390/kvm/kvm-s390.c

1531 lines
38 KiB
C
Raw Normal View History

/*
* hosting zSeries kernel virtual machines
*
* Copyright IBM Corp. 2008, 2009
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
* Christian Borntraeger <borntraeger@de.ibm.com>
* Heiko Carstens <heiko.carstens@de.ibm.com>
* Christian Ehrhardt <ehrhardt@de.ibm.com>
* Jason J. Herne <jjherne@us.ibm.com>
*/
#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/hrtimer.h>
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/slab.h>
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
#include <linux/timer.h>
#include <asm/asm-offsets.h>
#include <asm/lowcore.h>
#include <asm/pgtable.h>
#include <asm/nmi.h>
#include <asm/switch_to.h>
#include <asm/facility.h>
#include <asm/sclp.h>
#include "kvm-s390.h"
#include "gaccess.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "trace-s390.h"
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "userspace_handled", VCPU_STAT(exit_userspace) },
{ "exit_null", VCPU_STAT(exit_null) },
{ "exit_validity", VCPU_STAT(exit_validity) },
{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
{ "exit_external_request", VCPU_STAT(exit_external_request) },
{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
{ "exit_instruction", VCPU_STAT(exit_instruction) },
{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
{ "instruction_spx", VCPU_STAT(instruction_spx) },
{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
{ "instruction_stap", VCPU_STAT(instruction_stap) },
{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
{ "instruction_essa", VCPU_STAT(instruction_essa) },
{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
{ "diagnose_10", VCPU_STAT(diagnose_10) },
{ "diagnose_44", VCPU_STAT(diagnose_44) },
{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
{ NULL }
};
unsigned long *vfacilities;
static struct gmap_notifier gmap_notifier;
/* test availability of vfacility */
static inline int test_vfacility(unsigned long nr)
{
return __test_facility(nr, (void *) vfacilities);
}
/* Section: not file related */
int kvm_arch_hardware_enable(void *garbage)
{
/* every s390 is virtualization enabled ;-) */
return 0;
}
void kvm_arch_hardware_disable(void *garbage)
{
}
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);
int kvm_arch_hardware_setup(void)
{
gmap_notifier.notifier_call = kvm_gmap_notifier;
gmap_register_ipte_notifier(&gmap_notifier);
return 0;
}
void kvm_arch_hardware_unsetup(void)
{
gmap_unregister_ipte_notifier(&gmap_notifier);
}
void kvm_arch_check_processor_compat(void *rtn)
{
}
int kvm_arch_init(void *opaque)
{
return 0;
}
void kvm_arch_exit(void)
{
}
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
if (ioctl == KVM_S390_ENABLE_SIE)
return s390_enable_sie();
return -EINVAL;
}
int kvm_dev_ioctl_check_extension(long ext)
{
int r;
switch (ext) {
case KVM_CAP_S390_PSW:
case KVM_CAP_S390_GMAP:
case KVM_CAP_SYNC_MMU:
#ifdef CONFIG_KVM_S390_UCONTROL
case KVM_CAP_S390_UCONTROL:
#endif
case KVM_CAP_ASYNC_PF:
case KVM_CAP_SYNC_REGS:
case KVM_CAP_ONE_REG:
case KVM_CAP_ENABLE_CAP:
case KVM_CAP_S390_CSS_SUPPORT:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_DEVICE_CTRL:
case KVM_CAP_ENABLE_CAP_VM:
case KVM_CAP_VM_ATTRIBUTES:
r = 1;
break;
case KVM_CAP_NR_VCPUS:
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_NR_MEMSLOTS:
r = KVM_USER_MEM_SLOTS;
break;
case KVM_CAP_S390_COW:
s390/mm: implement software dirty bits The s390 architecture is unique in respect to dirty page detection, it uses the change bit in the per-page storage key to track page modifications. All other architectures track dirty bits by means of page table entries. This property of s390 has caused numerous problems in the past, e.g. see git commit ef5d437f71afdf4a "mm: fix XFS oops due to dirty pages without buffers on s390". To avoid future issues in regard to per-page dirty bits convert s390 to a fault based software dirty bit detection mechanism. All user page table entries which are marked as clean will be hardware read-only, even if the pte is supposed to be writable. A write by the user process will trigger a protection fault which will cause the user pte to be marked as dirty and the hardware read-only bit is removed. With this change the dirty bit in the storage key is irrelevant for Linux as a host, but the storage key is still required for KVM guests. The effect is that page_test_and_clear_dirty and the related code can be removed. The referenced bit in the storage key is still used by the page_test_and_clear_young primitive to provide page age information. For page cache pages of mappings with mapping_cap_account_dirty there will not be any change in behavior as the dirty bit tracking already uses read-only ptes to control the amount of dirty pages. Only for swap cache pages and pages of mappings without mapping_cap_account_dirty there can be additional protection faults. To avoid an excessive number of additional faults the mk_pte primitive checks for PageDirty if the pgprot value allows for writes and pre-dirties the pte. That avoids all additional faults for tmpfs and shmem pages until these pages are added to the swap cache. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2012-11-07 20:17:37 +08:00
r = MACHINE_HAS_ESOP;
break;
default:
r = 0;
}
return r;
}
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
struct kvm_memory_slot *memslot)
{
gfn_t cur_gfn, last_gfn;
unsigned long address;
struct gmap *gmap = kvm->arch.gmap;
down_read(&gmap->mm->mmap_sem);
/* Loop over all guest pages */
last_gfn = memslot->base_gfn + memslot->npages;
for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
address = gfn_to_hva_memslot(memslot, cur_gfn);
if (gmap_test_and_clear_dirty(address, gmap))
mark_page_dirty(kvm, cur_gfn);
}
up_read(&gmap->mm->mmap_sem);
}
/* Section: vm related */
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
int r;
unsigned long n;
struct kvm_memory_slot *memslot;
int is_dirty = 0;
mutex_lock(&kvm->slots_lock);
r = -EINVAL;
if (log->slot >= KVM_USER_MEM_SLOTS)
goto out;
memslot = id_to_memslot(kvm->memslots, log->slot);
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
kvm_s390_sync_dirty_log(kvm, memslot);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* Clear the dirty log */
if (is_dirty) {
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_S390_IRQCHIP:
kvm->arch.use_irqchip = 1;
r = 0;
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
return -ENXIO;
}
static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
default:
ret = -ENXIO;
break;
}
return ret;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
struct kvm_device_attr attr;
int r;
switch (ioctl) {
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
case KVM_S390_INTERRUPT: {
struct kvm_s390_interrupt s390int;
r = -EFAULT;
if (copy_from_user(&s390int, argp, sizeof(s390int)))
break;
r = kvm_s390_inject_vm(kvm, &s390int);
break;
}
case KVM_ENABLE_CAP: {
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
break;
r = kvm_vm_ioctl_enable_cap(kvm, &cap);
break;
}
case KVM_CREATE_IRQCHIP: {
struct kvm_irq_routing_entry routing;
r = -EINVAL;
if (kvm->arch.use_irqchip) {
/* Set up dummy routing. */
memset(&routing, 0, sizeof(routing));
kvm_set_irq_routing(kvm, &routing, 0, 0);
r = 0;
}
break;
}
case KVM_SET_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
break;
r = kvm_s390_vm_set_attr(kvm, &attr);
break;
}
case KVM_GET_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
break;
r = kvm_s390_vm_get_attr(kvm, &attr);
break;
}
case KVM_HAS_DEVICE_ATTR: {
r = -EFAULT;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
break;
r = kvm_s390_vm_has_attr(kvm, &attr);
break;
}
default:
r = -ENOTTY;
}
return r;
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
int rc;
char debug_name[16];
static unsigned long sca_offset;
rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
if (type & ~KVM_VM_S390_UCONTROL)
goto out_err;
if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
goto out_err;
#else
if (type)
goto out_err;
#endif
rc = s390_enable_sie();
if (rc)
goto out_err;
rc = -ENOMEM;
kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
if (!kvm->arch.sca)
goto out_err;
spin_lock(&kvm_lock);
sca_offset = (sca_offset + 16) & 0x7f0;
kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
spin_unlock(&kvm_lock);
sprintf(debug_name, "kvm-%u", current->pid);
kvm->arch.dbf = debug_register(debug_name, 8, 2, 8 * sizeof(long));
if (!kvm->arch.dbf)
goto out_nodbf;
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
spin_lock_init(&kvm->arch.float_int.lock);
INIT_LIST_HEAD(&kvm->arch.float_int.list);
debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
VM_EVENT(kvm, 3, "%s", "vm created");
if (type & KVM_VM_S390_UCONTROL) {
kvm->arch.gmap = NULL;
} else {
kvm->arch.gmap = gmap_alloc(current->mm);
if (!kvm->arch.gmap)
goto out_nogmap;
kvm->arch.gmap->private = kvm;
kvm->arch.gmap->pfault_enabled = 0;
}
kvm->arch.css_support = 0;
kvm->arch.use_irqchip = 0;
return 0;
out_nogmap:
debug_unregister(kvm->arch.dbf);
out_nodbf:
free_page((unsigned long)(kvm->arch.sca));
out_err:
return rc;
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
VCPU_EVENT(vcpu, 3, "%s", "free cpu");
trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
kvm_clear_async_pf_completion_queue(vcpu);
if (!kvm_is_ucontrol(vcpu->kvm)) {
clear_bit(63 - vcpu->vcpu_id,
(unsigned long *) &vcpu->kvm->arch.sca->mcn);
if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
(__u64) vcpu->arch.sie_block)
vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
}
smp_mb();
if (kvm_is_ucontrol(vcpu->kvm))
gmap_free(vcpu->arch.gmap);
if (vcpu->arch.sie_block->cbrlo)
__free_page(__pfn_to_page(
vcpu->arch.sie_block->cbrlo >> PAGE_SHIFT));
free_page((unsigned long)(vcpu->arch.sie_block));
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vcpu);
}
static void kvm_free_vcpus(struct kvm *kvm)
{
unsigned int i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_arch_vcpu_destroy(vcpu);
mutex_lock(&kvm->lock);
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
kvm->vcpus[i] = NULL;
atomic_set(&kvm->online_vcpus, 0);
mutex_unlock(&kvm->lock);
}
void kvm_arch_sync_events(struct kvm *kvm)
{
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
kvm_free_vcpus(kvm);
free_page((unsigned long)(kvm->arch.sca));
debug_unregister(kvm->arch.dbf);
if (!kvm_is_ucontrol(kvm))
gmap_free(kvm->arch.gmap);
kvm_s390_destroy_adapters(kvm);
}
/* Section: vcpu related */
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
kvm_clear_async_pf_completion_queue(vcpu);
if (kvm_is_ucontrol(vcpu->kvm)) {
vcpu->arch.gmap = gmap_alloc(current->mm);
if (!vcpu->arch.gmap)
return -ENOMEM;
vcpu->arch.gmap->private = vcpu->kvm;
return 0;
}
vcpu->arch.gmap = vcpu->kvm->arch.gmap;
vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
KVM_SYNC_GPRS |
KVM_SYNC_ACRS |
KVM_SYNC_CRS;
return 0;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
/* Nothing todo */
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
save_fp_ctl(&vcpu->arch.host_fpregs.fpc);
save_fp_regs(vcpu->arch.host_fpregs.fprs);
save_access_regs(vcpu->arch.host_acrs);
restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
restore_access_regs(vcpu->run->s.regs.acrs);
gmap_enable(vcpu->arch.gmap);
atomic_set_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
atomic_clear_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
gmap_disable(vcpu->arch.gmap);
save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
save_fp_regs(vcpu->arch.guest_fpregs.fprs);
save_access_regs(vcpu->run->s.regs.acrs);
restore_fp_ctl(&vcpu->arch.host_fpregs.fpc);
restore_fp_regs(vcpu->arch.host_fpregs.fprs);
restore_access_regs(vcpu->arch.host_acrs);
}
static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
/* this equals initial cpu reset in pop, but we don't switch to ESA */
vcpu->arch.sie_block->gpsw.mask = 0UL;
vcpu->arch.sie_block->gpsw.addr = 0UL;
kvm_s390_set_prefix(vcpu, 0);
vcpu->arch.sie_block->cputm = 0UL;
vcpu->arch.sie_block->ckc = 0UL;
vcpu->arch.sie_block->todpr = 0;
memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
vcpu->arch.sie_block->gcr[0] = 0xE0UL;
vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
vcpu->arch.guest_fpregs.fpc = 0;
asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
vcpu->arch.sie_block->gbea = 1;
vcpu->arch.sie_block->pp = 0;
vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
kvm_clear_async_pf_completion_queue(vcpu);
atomic_set_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
kvm_s390_clear_local_irqs(vcpu);
}
int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
struct page *cbrl;
atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
CPUSTAT_SM |
CPUSTAT_STOPPED |
CPUSTAT_GED);
vcpu->arch.sie_block->ecb = 6;
if (test_vfacility(50) && test_vfacility(73))
vcpu->arch.sie_block->ecb |= 0x10;
vcpu->arch.sie_block->ecb2 = 8;
vcpu->arch.sie_block->eca = 0xC1002001U;
vcpu->arch.sie_block->fac = (int) (long) vfacilities;
vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
if (kvm_enabled_cmma()) {
cbrl = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (cbrl) {
vcpu->arch.sie_block->ecb2 |= 0x80;
vcpu->arch.sie_block->ecb2 &= ~0x08;
vcpu->arch.sie_block->cbrlo = page_to_phys(cbrl);
}
}
hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
tasklet_init(&vcpu->arch.tasklet, kvm_s390_tasklet,
(unsigned long) vcpu);
vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
get_cpu_id(&vcpu->arch.cpu_id);
vcpu->arch.cpu_id.version = 0xff;
return 0;
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
unsigned int id)
{
struct kvm_vcpu *vcpu;
struct sie_page *sie_page;
int rc = -EINVAL;
if (id >= KVM_MAX_VCPUS)
goto out;
rc = -ENOMEM;
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu)
goto out;
sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
if (!sie_page)
goto out_free_cpu;
vcpu->arch.sie_block = &sie_page->sie_block;
vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
vcpu->arch.sie_block->icpua = id;
if (!kvm_is_ucontrol(kvm)) {
if (!kvm->arch.sca) {
WARN_ON_ONCE(1);
goto out_free_cpu;
}
if (!kvm->arch.sca->cpu[id].sda)
kvm->arch.sca->cpu[id].sda =
(__u64) vcpu->arch.sie_block;
vcpu->arch.sie_block->scaoh =
(__u32)(((__u64)kvm->arch.sca) >> 32);
vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
}
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
spin_lock_init(&vcpu->arch.local_int.lock);
INIT_LIST_HEAD(&vcpu->arch.local_int.list);
vcpu->arch.local_int.float_int = &kvm->arch.float_int;
vcpu->arch.local_int.wq = &vcpu->wq;
vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
rc = kvm_vcpu_init(vcpu, kvm, id);
if (rc)
goto out_free_sie_block;
VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
vcpu->arch.sie_block);
trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
return vcpu;
out_free_sie_block:
free_page((unsigned long)(vcpu->arch.sie_block));
out_free_cpu:
kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
return ERR_PTR(rc);
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return kvm_cpu_has_interrupt(vcpu);
}
void s390_vcpu_block(struct kvm_vcpu *vcpu)
{
atomic_set_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}
void s390_vcpu_unblock(struct kvm_vcpu *vcpu)
{
atomic_clear_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}
/*
* Kick a guest cpu out of SIE and wait until SIE is not running.
* If the CPU is not running (e.g. waiting as idle) the function will
* return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
atomic_set_mask(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
cpu_relax();
}
/* Kick a guest cpu out of SIE and prevent SIE-reentry */
void exit_sie_sync(struct kvm_vcpu *vcpu)
{
s390_vcpu_block(vcpu);
exit_sie(vcpu);
}
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
int i;
struct kvm *kvm = gmap->private;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
/* match against both prefix pages */
if (vcpu->arch.sie_block->prefix == (address & ~0x1000UL)) {
VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
exit_sie_sync(vcpu);
}
}
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
/* kvm common code refers to this, but never calls it */
BUG();
return 0;
}
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
struct kvm_one_reg *reg)
{
int r = -EINVAL;
switch (reg->id) {
case KVM_REG_S390_TODPR:
r = put_user(vcpu->arch.sie_block->todpr,
(u32 __user *)reg->addr);
break;
case KVM_REG_S390_EPOCHDIFF:
r = put_user(vcpu->arch.sie_block->epoch,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_CPU_TIMER:
r = put_user(vcpu->arch.sie_block->cputm,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_CLOCK_COMP:
r = put_user(vcpu->arch.sie_block->ckc,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFTOKEN:
r = put_user(vcpu->arch.pfault_token,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFCOMPARE:
r = put_user(vcpu->arch.pfault_compare,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFSELECT:
r = put_user(vcpu->arch.pfault_select,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PP:
r = put_user(vcpu->arch.sie_block->pp,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_GBEA:
r = put_user(vcpu->arch.sie_block->gbea,
(u64 __user *)reg->addr);
break;
default:
break;
}
return r;
}
static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
struct kvm_one_reg *reg)
{
int r = -EINVAL;
switch (reg->id) {
case KVM_REG_S390_TODPR:
r = get_user(vcpu->arch.sie_block->todpr,
(u32 __user *)reg->addr);
break;
case KVM_REG_S390_EPOCHDIFF:
r = get_user(vcpu->arch.sie_block->epoch,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_CPU_TIMER:
r = get_user(vcpu->arch.sie_block->cputm,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_CLOCK_COMP:
r = get_user(vcpu->arch.sie_block->ckc,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFTOKEN:
r = get_user(vcpu->arch.pfault_token,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFCOMPARE:
r = get_user(vcpu->arch.pfault_compare,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PFSELECT:
r = get_user(vcpu->arch.pfault_select,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_PP:
r = get_user(vcpu->arch.sie_block->pp,
(u64 __user *)reg->addr);
break;
case KVM_REG_S390_GBEA:
r = get_user(vcpu->arch.sie_block->gbea,
(u64 __user *)reg->addr);
break;
default:
break;
}
return r;
}
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
kvm_s390_vcpu_initial_reset(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
restore_access_regs(vcpu->run->s.regs.acrs);
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
if (test_fp_ctl(fpu->fpc))
return -EINVAL;
memcpy(&vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
vcpu->arch.guest_fpregs.fpc = fpu->fpc;
restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
memcpy(&fpu->fprs, &vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
fpu->fpc = vcpu->arch.guest_fpregs.fpc;
return 0;
}
static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
int rc = 0;
if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_STOPPED))
rc = -EBUSY;
else {
vcpu->run->psw_mask = psw.mask;
vcpu->run->psw_addr = psw.addr;
}
return rc;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return -EINVAL; /* not implemented yet */
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
return -EINVAL; /* not implemented yet */
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL; /* not implemented yet */
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL; /* not implemented yet */
}
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
/*
* We use MMU_RELOAD just to re-arm the ipte notifier for the
* guest prefix page. gmap_ipte_notify will wait on the ptl lock.
* This ensures that the ipte instruction for this request has
* already finished. We might race against a second unmapper that
* wants to set the blocking bit. Lets just retry the request loop.
*/
while (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
int rc;
rc = gmap_ipte_notify(vcpu->arch.gmap,
vcpu->arch.sie_block->prefix,
PAGE_SIZE * 2);
if (rc)
return rc;
s390_vcpu_unblock(vcpu);
}
return 0;
}
static long kvm_arch_fault_in_sync(struct kvm_vcpu *vcpu)
{
long rc;
hva_t fault = gmap_fault(current->thread.gmap_addr, vcpu->arch.gmap);
struct mm_struct *mm = current->mm;
down_read(&mm->mmap_sem);
rc = get_user_pages(current, mm, fault, 1, 1, 0, NULL, NULL);
up_read(&mm->mmap_sem);
return rc;
}
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
unsigned long token)
{
struct kvm_s390_interrupt inti;
inti.parm64 = token;
if (start_token) {
inti.type = KVM_S390_INT_PFAULT_INIT;
WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &inti));
} else {
inti.type = KVM_S390_INT_PFAULT_DONE;
WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
}
}
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
/* s390 will always inject the page directly */
}
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
/*
* s390 will always inject the page directly,
* but we still want check_async_completion to cleanup
*/
return true;
}
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
hva_t hva;
struct kvm_arch_async_pf arch;
int rc;
if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
return 0;
if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
vcpu->arch.pfault_compare)
return 0;
if (psw_extint_disabled(vcpu))
return 0;
if (kvm_cpu_has_interrupt(vcpu))
return 0;
if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
return 0;
if (!vcpu->arch.gmap->pfault_enabled)
return 0;
hva = gmap_fault(current->thread.gmap_addr, vcpu->arch.gmap);
if (copy_from_guest(vcpu, &arch.pfault_token, vcpu->arch.pfault_token, 8))
return 0;
rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
return rc;
}
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
{
int rc, cpuflags;
/*
* On s390 notifications for arriving pages will be delivered directly
* to the guest but the house keeping for completed pfaults is
* handled outside the worker.
*/
kvm_check_async_pf_completion(vcpu);
memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
if (need_resched())
schedule();
if (test_thread_flag(TIF_MCCK_PENDING))
s390_handle_mcck();
if (!kvm_is_ucontrol(vcpu->kvm))
kvm_s390_deliver_pending_interrupts(vcpu);
rc = kvm_s390_handle_requests(vcpu);
if (rc)
return rc;
vcpu->arch.sie_block->icptcode = 0;
cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
trace_kvm_s390_sie_enter(vcpu, cpuflags);
return 0;
}
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
int rc = -1;
VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
vcpu->arch.sie_block->icptcode);
trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
if (exit_reason >= 0) {
rc = 0;
} else if (kvm_is_ucontrol(vcpu->kvm)) {
vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
vcpu->run->s390_ucontrol.trans_exc_code =
current->thread.gmap_addr;
vcpu->run->s390_ucontrol.pgm_code = 0x10;
rc = -EREMOTE;
} else if (current->thread.gmap_pfault) {
trace_kvm_s390_major_guest_pfault(vcpu);
current->thread.gmap_pfault = 0;
if (kvm_arch_setup_async_pf(vcpu) ||
(kvm_arch_fault_in_sync(vcpu) >= 0))
rc = 0;
}
if (rc == -1) {
VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
trace_kvm_s390_sie_fault(vcpu);
rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}
memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
if (rc == 0) {
if (kvm_is_ucontrol(vcpu->kvm))
/* Don't exit for host interrupts. */
rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
else
rc = kvm_handle_sie_intercept(vcpu);
}
return rc;
}
bool kvm_enabled_cmma(void)
{
if (!MACHINE_IS_LPAR)
return false;
/* only enable for z10 and later */
if (!MACHINE_HAS_EDAT1)
return false;
return true;
}
static int __vcpu_run(struct kvm_vcpu *vcpu)
{
int rc, exit_reason;
/*
* We try to hold kvm->srcu during most of vcpu_run (except when run-
* ning the guest), so that memslots (and other stuff) are protected
*/
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
do {
rc = vcpu_pre_run(vcpu);
if (rc)
break;
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
/*
* As PF_VCPU will be used in fault handler, between
* guest_enter and guest_exit should be no uaccess.
*/
preempt_disable();
kvm_guest_enter();
preempt_enable();
exit_reason = sie64a(vcpu->arch.sie_block,
vcpu->run->s.regs.gprs);
kvm_guest_exit();
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
rc = vcpu_post_run(vcpu, exit_reason);
} while (!signal_pending(current) && !rc);
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
return rc;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int rc;
sigset_t sigsaved;
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
atomic_clear_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
switch (kvm_run->exit_reason) {
case KVM_EXIT_S390_SIEIC:
case KVM_EXIT_UNKNOWN:
case KVM_EXIT_INTR:
case KVM_EXIT_S390_RESET:
case KVM_EXIT_S390_UCONTROL:
case KVM_EXIT_S390_TSCH:
break;
default:
BUG();
}
vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) {
kvm_run->kvm_dirty_regs &= ~KVM_SYNC_PREFIX;
kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
}
if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
kvm_run->kvm_dirty_regs &= ~KVM_SYNC_CRS;
memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
}
might_fault();
rc = __vcpu_run(vcpu);
if (signal_pending(current) && !rc) {
kvm_run->exit_reason = KVM_EXIT_INTR;
rc = -EINTR;
}
if (rc == -EOPNOTSUPP) {
/* intercept cannot be handled in-kernel, prepare kvm-run */
kvm_run->exit_reason = KVM_EXIT_S390_SIEIC;
kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
kvm_run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
kvm_run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
rc = 0;
}
if (rc == -EREMOTE) {
/* intercept was handled, but userspace support is needed
* kvm_run has been prepared by the handler */
rc = 0;
}
kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
kvm_run->s.regs.prefix = vcpu->arch.sie_block->prefix;
memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
vcpu->stat.exit_userspace++;
return rc;
}
static int __guestcopy(struct kvm_vcpu *vcpu, u64 guestdest, void *from,
unsigned long n, int prefix)
{
if (prefix)
return copy_to_guest(vcpu, guestdest, from, n);
else
return copy_to_guest_absolute(vcpu, guestdest, from, n);
}
/*
* store status at address
* we use have two special cases:
* KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
* KVM_S390_STORE_STATUS_PREFIXED: -> prefix
*/
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long addr)
{
unsigned char archmode = 1;
int prefix;
u64 clkcomp;
if (addr == KVM_S390_STORE_STATUS_NOADDR) {
if (copy_to_guest_absolute(vcpu, 163ul, &archmode, 1))
return -EFAULT;
addr = SAVE_AREA_BASE;
prefix = 0;
} else if (addr == KVM_S390_STORE_STATUS_PREFIXED) {
if (copy_to_guest(vcpu, 163ul, &archmode, 1))
return -EFAULT;
addr = SAVE_AREA_BASE;
prefix = 1;
} else
prefix = 0;
if (__guestcopy(vcpu, addr + offsetof(struct save_area, fp_regs),
vcpu->arch.guest_fpregs.fprs, 128, prefix))
return -EFAULT;
if (__guestcopy(vcpu, addr + offsetof(struct save_area, gp_regs),
vcpu->run->s.regs.gprs, 128, prefix))
return -EFAULT;
if (__guestcopy(vcpu, addr + offsetof(struct save_area, psw),
&vcpu->arch.sie_block->gpsw, 16, prefix))
return -EFAULT;
if (__guestcopy(vcpu, addr + offsetof(struct save_area, pref_reg),
&vcpu->arch.sie_block->prefix, 4, prefix))
return -EFAULT;
if (__guestcopy(vcpu,
addr + offsetof(struct save_area, fp_ctrl_reg),
&vcpu->arch.guest_fpregs.fpc, 4, prefix))
return -EFAULT;
if (__guestcopy(vcpu, addr + offsetof(struct save_area, tod_reg),
&vcpu->arch.sie_block->todpr, 4, prefix))
return -EFAULT;
if (__guestcopy(vcpu, addr + offsetof(struct save_area, timer),
&vcpu->arch.sie_block->cputm, 8, prefix))
return -EFAULT;
clkcomp = vcpu->arch.sie_block->ckc >> 8;
if (__guestcopy(vcpu, addr + offsetof(struct save_area, clk_cmp),
&clkcomp, 8, prefix))
return -EFAULT;
if (__guestcopy(vcpu, addr + offsetof(struct save_area, acc_regs),
&vcpu->run->s.regs.acrs, 64, prefix))
return -EFAULT;
if (__guestcopy(vcpu,
addr + offsetof(struct save_area, ctrl_regs),
&vcpu->arch.sie_block->gcr, 128, prefix))
return -EFAULT;
return 0;
}
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
/*
* The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
* copying in vcpu load/put. Lets update our copies before we save
* it into the save area
*/
save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
save_fp_regs(vcpu->arch.guest_fpregs.fprs);
save_access_regs(vcpu->run->s.regs.acrs);
return kvm_s390_store_status_unloaded(vcpu, addr);
}
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_S390_CSS_SUPPORT:
if (!vcpu->kvm->arch.css_support) {
vcpu->kvm->arch.css_support = 1;
trace_kvm_s390_enable_css(vcpu->kvm);
}
r = 0;
break;
default:
r = -EINVAL;
break;
}
return r;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int idx;
long r;
switch (ioctl) {
case KVM_S390_INTERRUPT: {
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
struct kvm_s390_interrupt s390int;
r = -EFAULT;
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
if (copy_from_user(&s390int, argp, sizeof(s390int)))
break;
r = kvm_s390_inject_vcpu(vcpu, &s390int);
break;
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
}
case KVM_S390_STORE_STATUS:
idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvm_s390_vcpu_store_status(vcpu, arg);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
case KVM_S390_SET_INITIAL_PSW: {
psw_t psw;
r = -EFAULT;
if (copy_from_user(&psw, argp, sizeof(psw)))
break;
r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
break;
}
case KVM_S390_INITIAL_RESET:
r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
break;
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG: {
struct kvm_one_reg reg;
r = -EFAULT;
if (copy_from_user(&reg, argp, sizeof(reg)))
break;
if (ioctl == KVM_SET_ONE_REG)
r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
else
r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
break;
}
#ifdef CONFIG_KVM_S390_UCONTROL
case KVM_S390_UCAS_MAP: {
struct kvm_s390_ucas_mapping ucasmap;
if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
r = -EFAULT;
break;
}
if (!kvm_is_ucontrol(vcpu->kvm)) {
r = -EINVAL;
break;
}
r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
ucasmap.vcpu_addr, ucasmap.length);
break;
}
case KVM_S390_UCAS_UNMAP: {
struct kvm_s390_ucas_mapping ucasmap;
if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
r = -EFAULT;
break;
}
if (!kvm_is_ucontrol(vcpu->kvm)) {
r = -EINVAL;
break;
}
r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
ucasmap.length);
break;
}
#endif
case KVM_S390_VCPU_FAULT: {
r = gmap_fault(arg, vcpu->arch.gmap);
if (!IS_ERR_VALUE(r))
r = 0;
break;
}
case KVM_ENABLE_CAP:
{
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
break;
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
break;
}
default:
r = -ENOTTY;
}
return r;
}
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
&& (kvm_is_ucontrol(vcpu->kvm))) {
vmf->page = virt_to_page(vcpu->arch.sie_block);
get_page(vmf->page);
return 0;
}
#endif
return VM_FAULT_SIGBUS;
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
}
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
return 0;
}
void kvm_arch_memslots_updated(struct kvm *kvm)
{
}
/* Section: memory related */
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_userspace_memory_region *mem,
enum kvm_mr_change change)
{
/* A few sanity checks. We can have memory slots which have to be
located/ended at a segment boundary (1MB). The memory in userland is
ok to be fragmented into various different vmas. It is okay to mmap()
and munmap() stuff in this slot after doing this call at any time */
if (mem->userspace_addr & 0xffffful)
return -EINVAL;
if (mem->memory_size & 0xffffful)
return -EINVAL;
return 0;
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
enum kvm_mr_change change)
{
int rc;
/* If the basics of the memslot do not change, we do not want
* to update the gmap. Every update causes several unnecessary
* segment translation exceptions. This is usually handled just
* fine by the normal fault handler + gmap, but it will also
* cause faults on the prefix page of running guest CPUs.
*/
if (old->userspace_addr == mem->userspace_addr &&
old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
old->npages * PAGE_SIZE == mem->memory_size)
return;
rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
mem->guest_phys_addr, mem->memory_size);
if (rc)
printk(KERN_WARNING "kvm-s390: failed to commit memory region\n");
return;
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
}
static int __init kvm_s390_init(void)
{
int ret;
ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
if (ret)
return ret;
/*
* guests can ask for up to 255+1 double words, we need a full page
* to hold the maximum amount of facilities. On the other hand, we
* only set facilities that are known to work in KVM.
*/
vfacilities = (unsigned long *) get_zeroed_page(GFP_KERNEL|GFP_DMA);
if (!vfacilities) {
kvm_exit();
return -ENOMEM;
}
memcpy(vfacilities, S390_lowcore.stfle_fac_list, 16);
vfacilities[0] &= 0xff82fff3f4fc2000UL;
vfacilities[1] &= 0x005c000000000000UL;
return 0;
}
static void __exit kvm_s390_exit(void)
{
free_page((unsigned long) vfacilities);
kvm_exit();
}
module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
/*
* Enable autoloading of the kvm module.
* Note that we add the module alias here instead of virt/kvm/kvm_main.c
* since x86 takes a different approach.
*/
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");