Commit Graph

271668 Commits

Author SHA1 Message Date
Sam Ravnborg 0a93ebef69 memblock: add memblock_start_of_DRAM()
SPARC32 require access to the start address.  Add a new helper
memblock_start_of_DRAM() to give access to the address of the first
memblock - which contains the lowest address.

The awkward name was chosen to match the already present
memblock_end_of_DRAM().

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Mitsuo Hayasaka f5252e009d mm: avoid null pointer access in vm_struct via /proc/vmallocinfo
The /proc/vmallocinfo shows information about vmalloc allocations in
vmlist that is a linklist of vm_struct.  It, however, may access pages
field of vm_struct where a page was not allocated.  This results in a null
pointer access and leads to a kernel panic.

Why this happens: In __vmalloc_node_range() called from vmalloc(), newly
allocated vm_struct is added to vmlist at __get_vm_area_node() and then,
some fields of vm_struct such as nr_pages and pages are set at
__vmalloc_area_node().  In other words, it is added to vmlist before it is
fully initialized.  At the same time, when the /proc/vmallocinfo is read,
it accesses the pages field of vm_struct according to the nr_pages field
at show_numa_info().  Thus, a null pointer access happens.

The patch adds the newly allocated vm_struct to the vmlist *after* it is
fully initialized.  So, it can avoid accessing the pages field with
unallocated page when show_numa_info() is called.

Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Akinobu Mita 8c5fb8eadd mm/debug-pagealloc.c: use memchr_inv
Use newly introduced memchr_inv() for page verification.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Akinobu Mita 798248206b lib/string.c: introduce memchr_inv()
memchr_inv() is mainly used to check whether the whole buffer is filled
with just a specified byte.

The function name and prototype are stolen from logfs and the
implementation is from SLUB.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Matt Mackall <mpm@selenic.com>
Acked-by: Joern Engel <joern@logfs.org>
Cc: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Akinobu Mita 77311139f3 mm/debug-pagealloc.c: use plain __ratelimit() instead of printk_ratelimit()
printk_ratelimit() should not be used, because it shares ratelimiting
state with all other unrelated printk_ratelimit() callsites.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Shaohua Li 16fb951237 vmscan: count pages into balanced for zone with good watermark
It's possible a zone watermark is ok when entering the balance_pgdat()
loop, while the zone is within the requested classzone_idx.  Count pages
from this zone into `balanced'.  In this way, we can skip shrinking zones
too much for high order allocation.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Mel Gorman 49ea7eb65e mm: vmscan: immediately reclaim end-of-LRU dirty pages when writeback completes
When direct reclaim encounters a dirty page, it gets recycled around the
LRU for another cycle.  This patch marks the page PageReclaim similar to
deactivate_page() so that the page gets reclaimed almost immediately after
the page gets cleaned.  This is to avoid reclaiming clean pages that are
younger than a dirty page encountered at the end of the LRU that might
have been something like a use-once page.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
Mel Gorman 92df3a723f mm: vmscan: throttle reclaim if encountering too many dirty pages under writeback
Workloads that are allocating frequently and writing files place a large
number of dirty pages on the LRU.  With use-once logic, it is possible for
them to reach the end of the LRU quickly requiring the reclaimer to scan
more to find clean pages.  Ordinarily, processes that are dirtying memory
will get throttled by dirty balancing but this is a global heuristic and
does not take into account that LRUs are maintained on a per-zone basis.
This can lead to a situation whereby reclaim is scanning heavily, skipping
over a large number of pages under writeback and recycling them around the
LRU consuming CPU.

This patch checks how many of the number of pages isolated from the LRU
were dirty and under writeback.  If a percentage of them under writeback,
the process will be throttled if a backing device or the zone is
congested.  Note that this applies whether it is anonymous or file-backed
pages that are under writeback meaning that swapping is potentially
throttled.  This is intentional due to the fact if the swap device is
congested, scanning more pages and dispatching more IO is not going to
help matters.

The percentage that must be in writeback depends on the priority.  At
default priority, all of them must be dirty.  At DEF_PRIORITY-1, 50% of
them must be, DEF_PRIORITY-2, 25% etc.  i.e.  as pressure increases the
greater the likelihood the process will get throttled to allow the flusher
threads to make some progress.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Mel Gorman f84f6e2b08 mm: vmscan: do not writeback filesystem pages in kswapd except in high priority
It is preferable that no dirty pages are dispatched for cleaning from the
page reclaim path.  At normal priorities, this patch prevents kswapd
writing pages.

However, page reclaim does have a requirement that pages be freed in a
particular zone.  If it is failing to make sufficient progress (reclaiming
< SWAP_CLUSTER_MAX at any priority priority), the priority is raised to
scan more pages.  A priority of DEF_PRIORITY - 3 is considered to be the
point where kswapd is getting into trouble reclaiming pages.  If this
priority is reached, kswapd will dispatch pages for writing.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Mel Gorman 966dbde2c2 ext4: warn if direct reclaim tries to writeback pages
Direct reclaim should never writeback pages.  Warn if an attempt is made.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Mel Gorman 94054fa3fc xfs: warn if direct reclaim tries to writeback pages
Direct reclaim should never writeback pages.  For now, handle the
situation and warn about it.  Ultimately, this will be a BUG_ON.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Mel Gorman a18bba061c mm: vmscan: remove dead code related to lumpy reclaim waiting on pages under writeback
Lumpy reclaim worked with two passes - the first which queued pages for IO
and the second which waited on writeback.  As direct reclaim can no longer
write pages there is some dead code.  This patch removes it but direct
reclaim will continue to wait on pages under writeback while in
synchronous reclaim mode.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Mel Gorman ee72886d8e mm: vmscan: do not writeback filesystem pages in direct reclaim
Testing from the XFS folk revealed that there is still too much I/O from
the end of the LRU in kswapd.  Previously it was considered acceptable by
VM people for a small number of pages to be written back from reclaim with
testing generally showing about 0.3% of pages reclaimed were written back
(higher if memory was low).  That writing back a small number of pages is
ok has been heavily disputed for quite some time and Dave Chinner
explained it well;

	It doesn't have to be a very high number to be a problem. IO
	is orders of magnitude slower than the CPU time it takes to
	flush a page, so the cost of making a bad flush decision is
	very high. And single page writeback from the LRU is almost
	always a bad flush decision.

To complicate matters, filesystems respond very differently to requests
from reclaim according to Christoph Hellwig;

	xfs tries to write it back if the requester is kswapd
	ext4 ignores the request if it's a delayed allocation
	btrfs ignores the request

As a result, each filesystem has different performance characteristics
when under memory pressure and there are many pages being dirtied.  In
some cases, the request is ignored entirely so the VM cannot depend on the
IO being dispatched.

The objective of this series is to reduce writing of filesystem-backed
pages from reclaim, play nicely with writeback that is already in progress
and throttle reclaim appropriately when writeback pages are encountered.
The assumption is that the flushers will always write pages faster than if
reclaim issues the IO.

A secondary goal is to avoid the problem whereby direct reclaim splices
two potentially deep call stacks together.

There is a potential new problem as reclaim has less control over how long
before a page in a particularly zone or container is cleaned and direct
reclaimers depend on kswapd or flusher threads to do the necessary work.
However, as filesystems sometimes ignore direct reclaim requests already,
it is not expected to be a serious issue.

Patch 1 disables writeback of filesystem pages from direct reclaim
	entirely. Anonymous pages are still written.

Patch 2 removes dead code in lumpy reclaim as it is no longer able
	to synchronously write pages. This hurts lumpy reclaim but
	there is an expectation that compaction is used for hugepage
	allocations these days and lumpy reclaim's days are numbered.

Patches 3-4 add warnings to XFS and ext4 if called from
	direct reclaim. With patch 1, this "never happens" and is
	intended to catch regressions in this logic in the future.

Patch 5 disables writeback of filesystem pages from kswapd unless
	the priority is raised to the point where kswapd is considered
	to be in trouble.

Patch 6 throttles reclaimers if too many dirty pages are being
	encountered and the zones or backing devices are congested.

Patch 7 invalidates dirty pages found at the end of the LRU so they
	are reclaimed quickly after being written back rather than
	waiting for a reclaimer to find them

I consider this series to be orthogonal to the writeback work but it is
worth noting that the writeback work affects the viability of patch 8 in
particular.

I tested this on ext4 and xfs using fs_mark, a simple writeback test based
on dd and a micro benchmark that does a streaming write to a large mapping
(exercises use-once LRU logic) followed by streaming writes to a mix of
anonymous and file-backed mappings.  The command line for fs_mark when
botted with 512M looked something like

./fs_mark -d  /tmp/fsmark-2676  -D  100  -N  150  -n  150  -L  25  -t  1  -S0  -s  10485760

The number of files was adjusted depending on the amount of available
memory so that the files created was about 3xRAM.  For multiple threads,
the -d switch is specified multiple times.

The test machine is x86-64 with an older generation of AMD processor with
4 cores.  The underlying storage was 4 disks configured as RAID-0 as this
was the best configuration of storage I had available.  Swap is on a
separate disk.  Dirty ratio was tuned to 40% instead of the default of
20%.

Testing was run with and without monitors to both verify that the patches
were operating as expected and that any performance gain was real and not
due to interference from monitors.

Here is a summary of results based on testing XFS.

512M1P-xfs           Files/s  mean                 32.69 ( 0.00%)     34.44 ( 5.08%)
512M1P-xfs           Elapsed Time fsmark                    51.41     48.29
512M1P-xfs           Elapsed Time simple-wb                114.09    108.61
512M1P-xfs           Elapsed Time mmap-strm                113.46    109.34
512M1P-xfs           Kswapd efficiency fsmark                 62%       63%
512M1P-xfs           Kswapd efficiency simple-wb              56%       61%
512M1P-xfs           Kswapd efficiency mmap-strm              44%       42%
512M-xfs             Files/s  mean                 30.78 ( 0.00%)     35.94 (14.36%)
512M-xfs             Elapsed Time fsmark                    56.08     48.90
512M-xfs             Elapsed Time simple-wb                112.22     98.13
512M-xfs             Elapsed Time mmap-strm                219.15    196.67
512M-xfs             Kswapd efficiency fsmark                 54%       56%
512M-xfs             Kswapd efficiency simple-wb              54%       55%
512M-xfs             Kswapd efficiency mmap-strm              45%       44%
512M-4X-xfs          Files/s  mean                 30.31 ( 0.00%)     33.33 ( 9.06%)
512M-4X-xfs          Elapsed Time fsmark                    63.26     55.88
512M-4X-xfs          Elapsed Time simple-wb                100.90     90.25
512M-4X-xfs          Elapsed Time mmap-strm                261.73    255.38
512M-4X-xfs          Kswapd efficiency fsmark                 49%       50%
512M-4X-xfs          Kswapd efficiency simple-wb              54%       56%
512M-4X-xfs          Kswapd efficiency mmap-strm              37%       36%
512M-16X-xfs         Files/s  mean                 60.89 ( 0.00%)     65.22 ( 6.64%)
512M-16X-xfs         Elapsed Time fsmark                    67.47     58.25
512M-16X-xfs         Elapsed Time simple-wb                103.22     90.89
512M-16X-xfs         Elapsed Time mmap-strm                237.09    198.82
512M-16X-xfs         Kswapd efficiency fsmark                 45%       46%
512M-16X-xfs         Kswapd efficiency simple-wb              53%       55%
512M-16X-xfs         Kswapd efficiency mmap-strm              33%       33%

Up until 512-4X, the FSmark improvements were statistically significant.
For the 4X and 16X tests the results were within standard deviations but
just barely.  The time to completion for all tests is improved which is an
important result.  In general, kswapd efficiency is not affected by
skipping dirty pages.

1024M1P-xfs          Files/s  mean                 39.09 ( 0.00%)     41.15 ( 5.01%)
1024M1P-xfs          Elapsed Time fsmark                    84.14     80.41
1024M1P-xfs          Elapsed Time simple-wb                210.77    184.78
1024M1P-xfs          Elapsed Time mmap-strm                162.00    160.34
1024M1P-xfs          Kswapd efficiency fsmark                 69%       75%
1024M1P-xfs          Kswapd efficiency simple-wb              71%       77%
1024M1P-xfs          Kswapd efficiency mmap-strm              43%       44%
1024M-xfs            Files/s  mean                 35.45 ( 0.00%)     37.00 ( 4.19%)
1024M-xfs            Elapsed Time fsmark                    94.59     91.00
1024M-xfs            Elapsed Time simple-wb                229.84    195.08
1024M-xfs            Elapsed Time mmap-strm                405.38    440.29
1024M-xfs            Kswapd efficiency fsmark                 79%       71%
1024M-xfs            Kswapd efficiency simple-wb              74%       74%
1024M-xfs            Kswapd efficiency mmap-strm              39%       42%
1024M-4X-xfs         Files/s  mean                 32.63 ( 0.00%)     35.05 ( 6.90%)
1024M-4X-xfs         Elapsed Time fsmark                   103.33     97.74
1024M-4X-xfs         Elapsed Time simple-wb                204.48    178.57
1024M-4X-xfs         Elapsed Time mmap-strm                528.38    511.88
1024M-4X-xfs         Kswapd efficiency fsmark                 81%       70%
1024M-4X-xfs         Kswapd efficiency simple-wb              73%       72%
1024M-4X-xfs         Kswapd efficiency mmap-strm              39%       38%
1024M-16X-xfs        Files/s  mean                 42.65 ( 0.00%)     42.97 ( 0.74%)
1024M-16X-xfs        Elapsed Time fsmark                   103.11     99.11
1024M-16X-xfs        Elapsed Time simple-wb                200.83    178.24
1024M-16X-xfs        Elapsed Time mmap-strm                397.35    459.82
1024M-16X-xfs        Kswapd efficiency fsmark                 84%       69%
1024M-16X-xfs        Kswapd efficiency simple-wb              74%       73%
1024M-16X-xfs        Kswapd efficiency mmap-strm              39%       40%

All FSMark tests up to 16X had statistically significant improvements.
For the most part, tests are completing faster with the exception of the
streaming writes to a mixture of anonymous and file-backed mappings which
were slower in two cases

In the cases where the mmap-strm tests were slower, there was more
swapping due to dirty pages being skipped.  The number of additional pages
swapped is almost identical to the fewer number of pages written from
reclaim.  In other words, roughly the same number of pages were reclaimed
but swapping was slower.  As the test is a bit unrealistic and stresses
memory heavily, the small shift is acceptable.

4608M1P-xfs          Files/s  mean                 29.75 ( 0.00%)     30.96 ( 3.91%)
4608M1P-xfs          Elapsed Time fsmark                   512.01    492.15
4608M1P-xfs          Elapsed Time simple-wb                618.18    566.24
4608M1P-xfs          Elapsed Time mmap-strm                488.05    465.07
4608M1P-xfs          Kswapd efficiency fsmark                 93%       86%
4608M1P-xfs          Kswapd efficiency simple-wb              88%       84%
4608M1P-xfs          Kswapd efficiency mmap-strm              46%       45%
4608M-xfs            Files/s  mean                 27.60 ( 0.00%)     28.85 ( 4.33%)
4608M-xfs            Elapsed Time fsmark                   555.96    532.34
4608M-xfs            Elapsed Time simple-wb                659.72    571.85
4608M-xfs            Elapsed Time mmap-strm               1082.57   1146.38
4608M-xfs            Kswapd efficiency fsmark                 89%       91%
4608M-xfs            Kswapd efficiency simple-wb              88%       82%
4608M-xfs            Kswapd efficiency mmap-strm              48%       46%
4608M-4X-xfs         Files/s  mean                 26.00 ( 0.00%)     27.47 ( 5.35%)
4608M-4X-xfs         Elapsed Time fsmark                   592.91    564.00
4608M-4X-xfs         Elapsed Time simple-wb                616.65    575.07
4608M-4X-xfs         Elapsed Time mmap-strm               1773.02   1631.53
4608M-4X-xfs         Kswapd efficiency fsmark                 90%       94%
4608M-4X-xfs         Kswapd efficiency simple-wb              87%       82%
4608M-4X-xfs         Kswapd efficiency mmap-strm              43%       43%
4608M-16X-xfs        Files/s  mean                 26.07 ( 0.00%)     26.42 ( 1.32%)
4608M-16X-xfs        Elapsed Time fsmark                   602.69    585.78
4608M-16X-xfs        Elapsed Time simple-wb                606.60    573.81
4608M-16X-xfs        Elapsed Time mmap-strm               1549.75   1441.86
4608M-16X-xfs        Kswapd efficiency fsmark                 98%       98%
4608M-16X-xfs        Kswapd efficiency simple-wb              88%       82%
4608M-16X-xfs        Kswapd efficiency mmap-strm              44%       42%

Unlike the other tests, the fsmark results are not statistically
significant but the min and max times are both improved and for the most
part, tests completed faster.

There are other indications that this is an improvement as well.  For
example, in the vast majority of cases, there were fewer pages scanned by
direct reclaim implying in many cases that stalls due to direct reclaim
are reduced.  KSwapd is scanning more due to skipping dirty pages which is
unfortunate but the CPU usage is still acceptable

In an earlier set of tests, I used blktrace and in almost all cases
throughput throughout the entire test was higher.  However, I ended up
discarding those results as recording blktrace data was too heavy for my
liking.

On a laptop, I plugged in a USB stick and ran a similar tests of tests
using it as backing storage.  A desktop environment was running and for
the entire duration of the tests, firefox and gnome terminal were
launching and exiting to vaguely simulate a user.

1024M-xfs            Files/s  mean               0.41 ( 0.00%)        0.44 ( 6.82%)
1024M-xfs            Elapsed Time fsmark               2053.52   1641.03
1024M-xfs            Elapsed Time simple-wb            1229.53    768.05
1024M-xfs            Elapsed Time mmap-strm            4126.44   4597.03
1024M-xfs            Kswapd efficiency fsmark              84%       85%
1024M-xfs            Kswapd efficiency simple-wb           92%       81%
1024M-xfs            Kswapd efficiency mmap-strm           60%       51%
1024M-xfs            Avg wait ms fsmark                5404.53     4473.87
1024M-xfs            Avg wait ms simple-wb             2541.35     1453.54
1024M-xfs            Avg wait ms mmap-strm             3400.25     3852.53

The mmap-strm results were hurt because firefox launching had a tendency
to push the test out of memory.  On the postive side, firefox launched
marginally faster with the patches applied.  Time to completion for many
tests was faster but more importantly - the "Avg wait" time as measured by
iostat was far lower implying the system would be more responsive.  It was
also the case that "Avg wait ms" on the root filesystem was lower.  I
tested it manually and while the system felt slightly more responsive
while copying data to a USB stick, it was marginal enough that it could be
my imagination.

This patch: do not writeback filesystem pages in direct reclaim.

When kswapd is failing to keep zones above the min watermark, a process
will enter direct reclaim in the same manner kswapd does.  If a dirty page
is encountered during the scan, this page is written to backing storage
using mapping->writepage.

This causes two problems.  First, it can result in very deep call stacks,
particularly if the target storage or filesystem are complex.  Some
filesystems ignore write requests from direct reclaim as a result.  The
second is that a single-page flush is inefficient in terms of IO.  While
there is an expectation that the elevator will merge requests, this does
not always happen.  Quoting Christoph Hellwig;

	The elevator has a relatively small window it can operate on,
	and can never fix up a bad large scale writeback pattern.

This patch prevents direct reclaim writing back filesystem pages by
checking if current is kswapd.  Anonymous pages are still written to swap
as there is not the equivalent of a flusher thread for anonymous pages.
If the dirty pages cannot be written back, they are placed back on the LRU
lists.  There is now a direct dependency on dirty page balancing to
prevent too many pages in the system being dirtied which would prevent
reclaim making forward progress.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Christoph Lameter e10d59f2c3 mm: add comments to explain mm_struct fields
Add comments to explain the page statistics field in the mm_struct.

[akpm@linux-foundation.org: add missing ;]
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Christoph Lameter bc3e53f682 mm: distinguish between mlocked and pinned pages
Some kernel components pin user space memory (infiniband and perf) (by
increasing the page count) and account that memory as "mlocked".

The difference between mlocking and pinning is:

A. mlocked pages are marked with PG_mlocked and are exempt from
   swapping. Page migration may move them around though.
   They are kept on a special LRU list.

B. Pinned pages cannot be moved because something needs to
   directly access physical memory. They may not be on any
   LRU list.

I recently saw an mlockalled process where mm->locked_vm became
bigger than the virtual size of the process (!) because some
memory was accounted for twice:

Once when the page was mlocked and once when the Infiniband
layer increased the refcount because it needt to pin the RDMA
memory.

This patch introduces a separate counter for pinned pages and
accounts them seperately.

Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Mike Marciniszyn <infinipath@qlogic.com>
Cc: Roland Dreier <roland@kernel.org>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Johannes Weiner f11c0ca501 mm: vmscan: drop nr_force_scan[] from get_scan_count
The nr_force_scan[] tuple holds the effective scan numbers for anon and
file pages in case the situation called for a forced scan and the
regularly calculated scan numbers turned out zero.

However, the effective scan number can always be assumed to be
SWAP_CLUSTER_MAX right before the division into anon and file.  The
numerators and denominator are properly set up for all cases, be it force
scan for just file, just anon, or both, to do the right thing.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:46 -07:00
Dave Jones 4f31888c10 mm: output a list of loaded modules when we hit bad_page()
When we get a bad_page bug report, it's useful to see what modules the
user had loaded.

Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
Robert P. J. Day f5fc870da2 tmpfs: add "tmpfs" to the Kconfig prompt to make it obvious.
Add the leading word "tmpfs" to the Kconfig string to make it blindingly
obvious that this selection refers to tmpfs.

Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
David Rientjes 43362a4977 oom: fix race while temporarily setting current's oom_score_adj
test_set_oom_score_adj() was introduced in 72788c3856 ("oom: replace
PF_OOM_ORIGIN with toggling oom_score_adj") to temporarily elevate
current's oom_score_adj for ksm and swapoff without requiring an
additional per-process flag.

Using that function to both set oom_score_adj to OOM_SCORE_ADJ_MAX and
then reinstate the previous value is racy since it's possible that
userspace can set the value to something else itself before the old value
is reinstated.  That results in userspace setting current's oom_score_adj
to a different value and then the kernel immediately setting it back to
its previous value without notification.

To fix this, a new compare_swap_oom_score_adj() function is introduced
with the same semantics as the compare and swap CAS instruction, or
CMPXCHG on x86.  It is used to reinstate the previous value of
oom_score_adj if and only if the present value is the same as the old
value.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ying Han <yinghan@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
David Rientjes c9f01245b6 oom: remove oom_disable_count
This removes mm->oom_disable_count entirely since it's unnecessary and
currently buggy.  The counter was intended to be per-process but it's
currently decremented in the exit path for each thread that exits, causing
it to underflow.

The count was originally intended to prevent oom killing threads that
share memory with threads that cannot be killed since it doesn't lead to
future memory freeing.  The counter could be fixed to represent all
threads sharing the same mm, but it's better to remove the count since:

 - it is possible that the OOM_DISABLE thread sharing memory with the
   victim is waiting on that thread to exit and will actually cause
   future memory freeing, and

 - there is no guarantee that a thread is disabled from oom killing just
   because another thread sharing its mm is oom disabled.

Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ying Han <yinghan@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
David Rientjes 7b0d44fa49 oom: avoid killing kthreads if they assume the oom killed thread's mm
After selecting a task to kill, the oom killer iterates all processes and
kills all other threads that share the same mm_struct in different thread
groups.  It would not otherwise be helpful to kill a thread if its memory
would not be subsequently freed.

A kernel thread, however, may assume a user thread's mm by using
use_mm().  This is only temporary and should not result in sending a
SIGKILL to that kthread.

This patch ensures that only user threads and not kthreads are sent a
SIGKILL if they share the same mm_struct as the oom killed task.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
David Rientjes f660daac47 oom: thaw threads if oom killed thread is frozen before deferring
If a thread has been oom killed and is frozen, thaw it before returning to
the page allocator.  Otherwise, it can stay frozen indefinitely and no
memory will be freed.

Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
Johannes Weiner d08c429b06 mm/page-writeback.c: document bdi_min_ratio
Looks like someone got distracted after adding the comment characters.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
Shaohua Li 3da367c3e5 vmscan: add block plug for page reclaim
per-task block plug can reduce block queue lock contention and increase
request merge.  Currently page reclaim doesn't support it.  I originally
thought page reclaim doesn't need it, because kswapd thread count is
limited and file cache write is done at flusher mostly.

When I test a workload with heavy swap in a 4-node machine, each CPU is
doing direct page reclaim and swap.  This causes block queue lock
contention.  In my test, without below patch, the CPU utilization is about
2% ~ 7%.  With the patch, the CPU utilization is about 1% ~ 3%.  Disk
throughput isn't changed.  This should improve normal kswapd write and
file cache write too (increase request merge for example), but might not
be so obvious as I explain above.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
Hugh Dickins 3fa36acbce radix_tree: clean away saw_unset_tag leftovers
radix_tree_tag_get()'s BUG (when it sees a tag after saw_unset_tag) was
unsafe and removed in 2.6.34, but the pointless saw_unset_tag left behind.

Remove it now, and return 0 as soon as we see unset tag - we already rely
upon the root tag to be correct, returning 0 immediately if it's not set.

Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
Minchan Kim 0dabec93de mm: migration: clean up unmap_and_move()
unmap_and_move() is one a big messy function.  Clean it up.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:45 -07:00
Minchan Kim f80c067361 mm: zone_reclaim: make isolate_lru_page() filter-aware
In __zone_reclaim case, we don't want to shrink mapped page.  Nonetheless,
we have isolated mapped page and re-add it into LRU's head.  It's
unnecessary CPU overhead and makes LRU churning.

Of course, when we isolate the page, the page might be mapped but when we
try to migrate the page, the page would be not mapped.  So it could be
migrated.  But race is rare and although it happens, it's no big deal.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Minchan Kim 39deaf8585 mm: compaction: make isolate_lru_page() filter-aware
In async mode, compaction doesn't migrate dirty or writeback pages.  So,
it's meaningless to pick the page and re-add it to lru list.

Of course, when we isolate the page in compaction, the page might be dirty
or writeback but when we try to migrate the page, the page would be not
dirty, writeback.  So it could be migrated.  But it's very unlikely as
isolate and migration cycle is much faster than writeout.

So, this patch helps cpu overhead and prevent unnecessary LRU churning.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Minchan Kim 4356f21d09 mm: change isolate mode from #define to bitwise type
Change ISOLATE_XXX macro with bitwise isolate_mode_t type.  Normally,
macro isn't recommended as it's type-unsafe and making debugging harder as
symbol cannot be passed throught to the debugger.

Quote from Johannes
" Hmm, it would probably be cleaner to fully convert the isolation mode
into independent flags.  INACTIVE, ACTIVE, BOTH is currently a
tri-state among flags, which is a bit ugly."

This patch moves isolate mode from swap.h to mmzone.h by memcontrol.h

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Minchan Kim b9e84ac153 mm: compaction: trivial clean up in acct_isolated()
acct_isolated of compaction uses page_lru_base_type which returns only
base type of LRU list so it never returns LRU_ACTIVE_ANON or
LRU_ACTIVE_FILE.  In addtion, cc->nr_[anon|file] is used in only
acct_isolated so it doesn't have fields in conpact_control.

This patch removes fields from compact_control and makes clear function of
acct_issolated which counts the number of anon|file pages isolated.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Christopher Yeoh fcf634098c Cross Memory Attach
The basic idea behind cross memory attach is to allow MPI programs doing
intra-node communication to do a single copy of the message rather than a
double copy of the message via shared memory.

The following patch attempts to achieve this by allowing a destination
process, given an address and size from a source process, to copy memory
directly from the source process into its own address space via a system
call.  There is also a symmetrical ability to copy from the current
process's address space into a destination process's address space.

- Use of /proc/pid/mem has been considered, but there are issues with
  using it:
  - Does not allow for specifying iovecs for both src and dest, assuming
    preadv or pwritev was implemented either the area read from or
  written to would need to be contiguous.
  - Currently mem_read allows only processes who are currently
  ptrace'ing the target and are still able to ptrace the target to read
  from the target. This check could possibly be moved to the open call,
  but its not clear exactly what race this restriction is stopping
  (reason  appears to have been lost)
  - Having to send the fd of /proc/self/mem via SCM_RIGHTS on unix
  domain socket is a bit ugly from a userspace point of view,
  especially when you may have hundreds if not (eventually) thousands
  of processes  that all need to do this with each other
  - Doesn't allow for some future use of the interface we would like to
  consider adding in the future (see below)
  - Interestingly reading from /proc/pid/mem currently actually
  involves two copies! (But this could be fixed pretty easily)

As mentioned previously use of vmsplice instead was considered, but has
problems.  Since you need the reader and writer working co-operatively if
the pipe is not drained then you block.  Which requires some wrapping to
do non blocking on the send side or polling on the receive.  In all to all
communication it requires ordering otherwise you can deadlock.  And in the
example of many MPI tasks writing to one MPI task vmsplice serialises the
copying.

There are some cases of MPI collectives where even a single copy interface
does not get us the performance gain we could.  For example in an
MPI_Reduce rather than copy the data from the source we would like to
instead use it directly in a mathops (say the reduce is doing a sum) as
this would save us doing a copy.  We don't need to keep a copy of the data
from the source.  I haven't implemented this, but I think this interface
could in the future do all this through the use of the flags - eg could
specify the math operation and type and the kernel rather than just
copying the data would apply the specified operation between the source
and destination and store it in the destination.

Although we don't have a "second user" of the interface (though I've had
some nibbles from people who may be interested in using it for intra
process messaging which is not MPI).  This interface is something which
hardware vendors are already doing for their custom drivers to implement
fast local communication.  And so in addition to this being useful for
OpenMPI it would mean the driver maintainers don't have to fix things up
when the mm changes.

There was some discussion about how much faster a true zero copy would
go. Here's a link back to the email with some testing I did on that:

http://marc.info/?l=linux-mm&m=130105930902915&w=2

There is a basic man page for the proposed interface here:

http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt

This has been implemented for x86 and powerpc, other architecture should
mainly (I think) just need to add syscall numbers for the process_vm_readv
and process_vm_writev. There are 32 bit compatibility versions for
64-bit kernels.

For arch maintainers there are some simple tests to be able to quickly
verify that the syscalls are working correctly here:

http://ozlabs.org/~cyeoh/cma/cma-test-20110718.tgz

Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: <linux-man@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Wanlong Gao 32ea845d5b ipc/mqueue.c: fix wrong use of schedule_hrtimeout_range_clock()
Fix the wrong use of schedule_hrtimeout_range_clock() in wq_sleep(),
although it is harmless for the syscall mq_timed* now.  It was introduced
by 9ca7d8e ("mqueue: Convert message queue timeout to use hrtimers").

Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Cc: Carsten Emde <C.Emde@osadl.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Andrew Morton fc360bd9cd /proc/self/numa_maps: restore "huge" tag for hugetlb vmas
The display of the "huge" tag was accidentally removed in 29ea2f698 ("mm:
use walk_page_range() instead of custom page table walking code").

Reported-by: Stephen Hemminger <shemminger@vyatta.com>
Tested-by: Stephen Hemminger <shemminger@vyatta.com>
Reviewed-by: Stephen Wilson <wilsons@start.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Andrew Morton 6eea69dd8b include/linux/dmar.h: forward-declare struct acpi_dmar_header
x86_64 allnoconfig:

In file included from arch/x86/kernel/pci-dma.c:3:
include/linux/dmar.h:248: warning: 'struct acpi_dmar_header' declared inside parameter list
include/linux/dmar.h:248: warning: its scope is only this definition or declaration, which is probably not what you want

Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Clemens Ladisch 07a723097c dma-mapping: fix sync_single_range_* DMA debugging
Commit 5fd75a7850 (dma-mapping: remove unnecessary sync_single_range_*
in dma_map_ops) unified not only the dma_map_ops but also the
corresponding debug_dma_sync_* calls.  This led to spurious WARN()ings
like the following because the DMA debug code was no longer able to detect
the DMA buffer base address without the separate offset parameter:

WARNING: at lib/dma-debug.c:911 check_sync+0xce/0x446()
firewire_ohci 0000:04:00.0: DMA-API: device driver tries to sync DMA memory it has not allocated [device address=0x00000000cedaa400] [size=1024 bytes]
Call Trace: ...
 [<ffffffff811326a5>] check_sync+0xce/0x446
 [<ffffffff81132ad9>] debug_dma_sync_single_for_device+0x39/0x3b
 [<ffffffffa01d6e6a>] ohci_queue_iso+0x4f3/0x77d [firewire_ohci]
 ...

To fix this, unshare the sync_single_* and sync_single_range_*
implementations so that we are able to call the correct debug_dma_sync_*
functions.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:44 -07:00
Linus Torvalds 1a4ceab195 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (27 commits)
  vlan: allow nested vlan_do_receive()
  ipv6: fix route lookup in addrconf_prefix_rcv()
  bonding: eliminate bond_close race conditions
  qlcnic: fix beacon and LED test.
  qlcnic: Updated License file
  qlcnic: updated reset sequence
  qlcnic: reset loopback mode if promiscous mode setting fails.
  qlcnic: skip IDC ack check in fw reset path.
  i825xx: Fix incorrect dependency for BVME6000_NET
  ipv6: fix route error binding peer in func icmp6_dst_alloc
  ipv6: fix error propagation in ip6_ufo_append_data()
  stmmac: update normal descriptor structure (v2)
  stmmac: fix NULL pointer dereference in capabilities fixup (v2)
  stmmac: fix a bug while checking the HW cap reg (v2)
  be2net: Changing MAC Address of a VF was broken.
  be2net: Refactored be_cmds.c file.
  bnx2x: update driver version to 1.70.30-0
  bnx2x: use FW 7.0.29.0
  bnx2x: Enable changing speed when port type is PORT_DA
  bnx2x: Fix 54618se LED behavior
  ...
2011-10-31 15:22:44 -07:00
Linus Torvalds 83f89ca755 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc:
  sparc64: Fix masking and shifting in VIS fpcmp emulation.
  sparc32: Correct the return value of memcpy.
  sparc32: Remove uses of %g7 in memcpy implementation.
  sparc32: Remove non-kernel code from memcpy implementation.
2011-10-31 15:22:16 -07:00
Linus Torvalds 571109f536 Merge branch 'for-linus' of git://neil.brown.name/md
* 'for-linus' of git://neil.brown.name/md:
  md/raid10:  Fix bug when activating a hot-spare.
2011-10-31 15:21:29 -07:00
David S. Miller 2e8ecdc008 sparc64: Fix masking and shifting in VIS fpcmp emulation.
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-10-31 01:05:49 -07:00
NeilBrown 7fcc7c8acf md/raid10: Fix bug when activating a hot-spare.
This is a fairly serious bug in RAID10.

When a RAID10 array is degraded and a hot-spare is activated, the
spare does not take up the empty slot, but rather replaces the first
working device.
This is likely to make the array non-functional.   It would normally
be possible to recover the data, but that would need care and is not
guaranteed.

This bug was introduced in commit
   2bb77736ae
which first appeared in 3.1.

Cc: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
2011-10-31 12:59:44 +11:00
Linus Torvalds 839d881074 Merge branch 'i2c-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvare/staging
* 'i2c-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvare/staging:
  i2c: Functions for byte-swapped smbus_write/read_word_data
  i2c-algo-pca: Return standard fault codes
  i2c-algo-bit: Return standard fault codes
  i2c-algo-bit: Be verbose on bus testing failure
  i2c-algo-bit: Let user test buses without failing
  i2c/scx200_acb: Fix section mismatch warning in scx200_pci_drv
  i2c: I2C_ELEKTOR should depend on HAS_IOPORT
2011-10-30 15:54:59 -07:00
Linus Torvalds 0cfdc72439 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (33 commits)
  iommu/core: Remove global iommu_ops and register_iommu
  iommu/msm: Use bus_set_iommu instead of register_iommu
  iommu/omap: Use bus_set_iommu instead of register_iommu
  iommu/vt-d: Use bus_set_iommu instead of register_iommu
  iommu/amd: Use bus_set_iommu instead of register_iommu
  iommu/core: Use bus->iommu_ops in the iommu-api
  iommu/core: Convert iommu_found to iommu_present
  iommu/core: Add bus_type parameter to iommu_domain_alloc
  Driver core: Add iommu_ops to bus_type
  iommu/core: Define iommu_ops and register_iommu only with CONFIG_IOMMU_API
  iommu/amd: Fix wrong shift direction
  iommu/omap: always provide iommu debug code
  iommu/core: let drivers know if an iommu fault handler isn't installed
  iommu/core: export iommu_set_fault_handler()
  iommu/omap: Fix build error with !IOMMU_SUPPORT
  iommu/omap: Migrate to the generic fault report mechanism
  iommu/core: Add fault reporting mechanism
  iommu/core: Use PAGE_SIZE instead of hard-coded value
  iommu/core: use the existing IS_ALIGNED macro
  iommu/msm: ->unmap() should return order of unmapped page
  ...

Fixup trivial conflicts in drivers/iommu/Makefile: "move omap iommu to
dedicated iommu folder" vs "Rename the DMAR and INTR_REMAP config
options" just happened to touch lines next to each other.
2011-10-30 15:46:19 -07:00
Linus Torvalds b48aeab65e Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp:
  amd64_edac: Cleanup return type of amd64_determine_edac_cap()
  amd64_edac: Add a fix for Erratum 505
  EDAC, MCE, AMD: Simplify NB MCE decoder interface
  EDAC, MCE, AMD: Drop local coreid reporting
  EDAC, MCE, AMD: Print valid addr when reporting an error
  EDAC, MCE, AMD: Print CPU number when reporting the error
2011-10-30 15:43:32 -07:00
Linus Torvalds 1bc87b0055 Merge branch 'kvm-updates/3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm
* 'kvm-updates/3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm: (75 commits)
  KVM: SVM: Keep intercepting task switching with NPT enabled
  KVM: s390: implement sigp external call
  KVM: s390: fix register setting
  KVM: s390: fix return value of kvm_arch_init_vm
  KVM: s390: check cpu_id prior to using it
  KVM: emulate lapic tsc deadline timer for guest
  x86: TSC deadline definitions
  KVM: Fix simultaneous NMIs
  KVM: x86 emulator: convert push %sreg/pop %sreg to direct decode
  KVM: x86 emulator: switch lds/les/lss/lfs/lgs to direct decode
  KVM: x86 emulator: streamline decode of segment registers
  KVM: x86 emulator: simplify OpMem64 decode
  KVM: x86 emulator: switch src decode to decode_operand()
  KVM: x86 emulator: qualify OpReg inhibit_byte_regs hack
  KVM: x86 emulator: switch OpImmUByte decode to decode_imm()
  KVM: x86 emulator: free up some flag bits near src, dst
  KVM: x86 emulator: switch src2 to generic decode_operand()
  KVM: x86 emulator: expand decode flags to 64 bits
  KVM: x86 emulator: split dst decode to a generic decode_operand()
  KVM: x86 emulator: move memop, memopp into emulation context
  ...
2011-10-30 15:36:45 -07:00
Linus Torvalds acff987d94 Merge branch 'fbdev-next' of git://github.com/schandinat/linux-2.6
* 'fbdev-next' of git://github.com/schandinat/linux-2.6: (270 commits)
  video: platinumfb: Add __devexit_p at necessary place
  drivers/video: fsl-diu-fb: merge diu_pool into fsl_diu_data
  drivers/video: fsl-diu-fb: merge diu_hw into fsl_diu_data
  drivers/video: fsl-diu-fb: only DIU modes 0 and 1 are supported
  drivers/video: fsl-diu-fb: remove unused panel operating mode support
  drivers/video: fsl-diu-fb: use an enum for the AOI index
  drivers/video: fsl-diu-fb: add several new video modes
  drivers/video: fsl-diu-fb: remove broken screen blanking support
  drivers/video: fsl-diu-fb: move some definitions out of the header file
  drivers/video: fsl-diu-fb: fix some ioctls
  video: da8xx-fb: Increased resolution configuration of revised LCDC IP
  OMAPDSS: picodlp: add missing #include <linux/module.h>
  fb: fix au1100fb bitrot.
  mx3fb: fix NULL pointer dereference in screen blanking.
  video: irq: Remove IRQF_DISABLED
  smscufx: change edid data to u8 instead of char
  OMAPDSS: DISPC: zorder support for DSS overlays
  OMAPDSS: DISPC: VIDEO3 pipeline support
  OMAPDSS/OMAP_VOUT: Fix incorrect OMAP3-alpha compatibility setting
  video/omap: fix build dependencies
  ...

Fix up conflicts in:
 - drivers/staging/xgifb/XGI_main_26.c
	Changes to XGIfb_pan_var()
 - drivers/video/omap/{lcd_apollon.c,lcd_ldp.c,lcd_overo.c}
	Removed (or in the case of apollon.c, merged into the generic
	DSS panel in drivers/video/omap2/displays/panel-generic-dpi.c)
2011-10-30 15:30:01 -07:00
Jonathan Cameron 06a67848c6 i2c: Functions for byte-swapped smbus_write/read_word_data
Reimplemented at least 17 times discounting error mangling cases
where it could be used.

Signed-off-by: Jonathan Cameron <jic23@cam.ac.uk>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2011-10-30 13:47:25 +01:00
Jean Delvare 4403988afc i2c-algo-pca: Return standard fault codes
Adjust i2c-algo-pca to return fault codes compliant with
Documentation/i2c/fault-codes, rather than the undocumented and
vague -EREMOTEIO.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: Wolfram Sang <w.sang@pengutronix.de>
2011-10-30 13:47:25 +01:00
Jean Delvare abc01b2718 i2c-algo-bit: Return standard fault codes
Adjust i2c-algo-bit to return fault codes compliant with
Documentation/i2c/fault-codes, rather than the undocumented and
vague -EREMOTEIO.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
2011-10-30 13:47:25 +01:00
Jean Delvare f6beb67d8e i2c-algo-bit: Be verbose on bus testing failure
If bus testing fails due to the bus being seen as busy, it might be
helpful for developers to know which line is unexpectedly low.

Signed-off-by: Jean Delvare <jdelvare@suse.de>
Reviewed-by: Alex Deucher <alexdeucher@gmail.com>
2011-10-30 13:47:25 +01:00
Jean Delvare 1bddab7f7d i2c-algo-bit: Let user test buses without failing
Always failing to register I2C buses when the line testing fails is a
little harsh. While such a failure is definitely a bug in the driver
that exposes the affected I2C bus, things may still work fine if the
missing initialization steps are done later, before the I2C bus is
used. So it seems a better debugging tool to just report the test
failure by default. I introduce bit_test=2 if anyone really misses the
original behavior of bit_test=1.

Signed-off-by: Jean Delvare <jdelvare@suse.de>
Reviewed-by: Alex Deucher <alexdeucher@gmail.com>
2011-10-30 13:47:25 +01:00