Commit Graph

617 Commits

Author SHA1 Message Date
Dave Martin ceda9fff70 KVM: arm64: Convert lazy FPSIMD context switch trap to C
To make the lazy FPSIMD context switch trap code easier to hack on,
this patch converts it to C.

This is not amazingly efficient, but the trap should typically only
be taken once per host context switch.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25 12:27:54 +01:00
James Morse b220244d41 arm64: vgic-v2: Fix proxying of cpuif access
Proxying the cpuif accesses at EL2 makes use of vcpu_data_guest_to_host
and co, which check the endianness, which call into vcpu_read_sys_reg...
which isn't mapped at EL2 (it was inlined before, and got moved OoL
with the VHE optimizations).

The result is of course a nice panic. Let's add some specialized
cruft to keep the broken platforms that require this hack alive.

But, this code used vcpu_data_guest_to_host(), which expected us to
write the value to host memory, instead we have trapped the guest's
read or write to an mmio-device, and are about to replay it using the
host's readl()/writel() which also perform swabbing based on the host
endianness. This goes wrong when both host and guest are big-endian,
as readl()/writel() will undo the guest's swabbing, causing the
big-endian value to be written to device-memory.

What needs doing?
A big-endian guest will have pre-swabbed data before storing, undo this.
If its necessary for the host, writel() will re-swab it.

For a read a big-endian guest expects to swab the data after the load.
The hosts's readl() will correct for host endianness, giving us the
device-memory's value in the register. For a big-endian guest, swab it
as if we'd only done the load.

For a little-endian guest, nothing needs doing as readl()/writel() leave
the correct device-memory value in registers.

Tested on Juno with that rarest of things: a big-endian 64K host.
Based on a patch from Marc Zyngier.

Reported-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Fixes: bf8feb3964 ("arm64: KVM: vgic-v2: Add GICV access from HYP")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-04 16:45:55 +01:00
Marc Zyngier 85bd0ba1ff arm/arm64: KVM: Add PSCI version selection API
Although we've implemented PSCI 0.1, 0.2 and 1.0, we expose either 0.1
or 1.0 to a guest, defaulting to the latest version of the PSCI
implementation that is compatible with the requested version. This is
no different from doing a firmware upgrade on KVM.

But in order to give a chance to hypothetical badly implemented guests
that would have a fit by discovering something other than PSCI 0.2,
let's provide a new API that allows userspace to pick one particular
version of the API.

This is implemented as a new class of "firmware" registers, where
we expose the PSCI version. This allows the PSCI version to be
save/restored as part of a guest migration, and also set to
any supported version if the guest requires it.

Cc: stable@vger.kernel.org #4.16
Reviewed-by: Christoffer Dall <cdall@kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-20 16:32:23 +01:00
Marc Zyngier 165d102905 arm64: KVM: Demote SVE and LORegion warnings to debug only
While generating a message about guests probing for SVE/LORegions
is a useful debugging tool, considering it an error is slightly
over the top, as this is the only way the guest can find out
about the presence of the feature.

Let's turn these message into kvm_debug so that they can only
be seen if CONFIG_DYNAMIC_DEBUG, and kept quiet otherwise.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-17 12:56:36 +01:00
Marc Zyngier e8b22d0f45 arm64: Move the content of bpi.S to hyp-entry.S
bpi.S was introduced as we were starting to build the Spectre v2
mitigation framework, and it was rather unclear that it would
become strictly KVM specific.

Now that the picture is a lot clearer, let's move the content
of that file to hyp-entry.S, where it actually belong.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-04-11 18:49:30 +01:00
Shanker Donthineni 4bc352ffb3 arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardening
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC
V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses
the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead
of Silicon provider service ID 0xC2001700.

Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[maz: reworked errata framework integration]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-04-11 18:49:30 +01:00
Marc Zyngier adc91ab785 Revert "arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardening"
Creates far too many conflicts with arm64/for-next/core, to be
resent post -rc1.

This reverts commit f9f5dc1950.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-28 12:00:45 +01:00
Shanker Donthineni f9f5dc1950 arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardening
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC
V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses
the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead
of Silicon provider service ID 0xC2001700.

Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 18:35:38 +00:00
Marc Zyngier dee39247dc arm64: KVM: Allow mapping of vectors outside of the RAM region
We're now ready to map our vectors in weird and wonderful locations.
On enabling ARM64_HARDEN_EL2_VECTORS, a vector slot gets allocated
if this hasn't been already done via ARM64_HARDEN_BRANCH_PREDICTOR
and gets mapped outside of the normal RAM region, next to the
idmap.

That way, being able to obtain VBAR_EL2 doesn't reveal the mapping
of the rest of the hypervisor code.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:06:46 +00:00
Marc Zyngier 71dcb8be6d arm64: KVM: Allow far branches from vector slots to the main vectors
So far, the branch from the vector slots to the main vectors can at
most be 4GB from the main vectors (the reach of ADRP), and this
distance is known at compile time. If we were to remap the slots
to an unrelated VA, things would break badly.

A way to achieve VA independence would be to load the absolute
address of the vectors (__kvm_hyp_vector), either using a constant
pool or a series of movs, followed by an indirect branch.

This patches implements the latter solution, using another instance
of a patching callback. Note that since we have to save a register
pair on the stack, we branch to the *second* instruction in the
vectors in order to compensate for it. This also results in having
to adjust this balance in the invalid vector entry point.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:06:01 +00:00
Marc Zyngier 4340ba80bd arm64: KVM: Move BP hardening vectors into .hyp.text section
There is no reason why the BP hardening vectors shouldn't be part
of the HYP text at compile time, rather than being mapped at runtime.

Also introduce a new config symbol that controls the compilation
of bpi.S.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:05:49 +00:00
Marc Zyngier 7e80f637fd arm64: KVM: Move stashing of x0/x1 into the vector code itself
All our useful entry points into the hypervisor are starting by
saving x0 and x1 on the stack. Let's move those into the vectors
by introducing macros that annotate whether a vector is valid or
not, thus indicating whether we want to stash registers or not.

The only drawback is that we now also stash registers for el2_error,
but this should never happen, and we pop them back right at the
start of the handling sequence.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:05:44 +00:00
Marc Zyngier 3c5e81232e arm64: KVM: Move vector offsetting from hyp-init.S to kvm_get_hyp_vector
We currently provide the hyp-init code with a kernel VA, and expect
it to turn it into a HYP va by itself. As we're about to provide
the hypervisor with mappings that are not necessarily in the memory
range, let's move the kern_hyp_va macro to kvm_get_hyp_vector.

No functionnal change.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:05:37 +00:00
Marc Zyngier ed57cac83e arm64: KVM: Introduce EL2 VA randomisation
The main idea behind randomising the EL2 VA is that we usually have
a few spare bits between the most significant bit of the VA mask
and the most significant bit of the linear mapping.

Those bits could be a bunch of zeroes, and could be useful
to move things around a bit. Of course, the more memory you have,
the less randomisation you get...

Alternatively, these bits could be the result of KASLR, in which
case they are already random. But it would be nice to have a
*different* randomization, just to make the job of a potential
attacker a bit more difficult.

Inserting these random bits is a bit involved. We don't have a spare
register (short of rewriting all the kern_hyp_va call sites), and
the immediate we want to insert is too random to be used with the
ORR instruction. The best option I could come up with is the following
sequence:

	and x0, x0, #va_mask
	ror x0, x0, #first_random_bit
	add x0, x0, #(random & 0xfff)
	add x0, x0, #(random >> 12), lsl #12
	ror x0, x0, #(63 - first_random_bit)

making it a fairly long sequence, but one that a decent CPU should
be able to execute without breaking a sweat. It is of course NOPed
out on VHE. The last 4 instructions can also be turned into NOPs
if it appears that there is no free bits to use.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:05:22 +00:00
Marc Zyngier 005e975a3b arm64: KVM: Dynamically compute the HYP VA mask
As we're moving towards a much more dynamic way to compute our
HYP VA, let's express the mask in a slightly different way.

Instead of comparing the idmap position to the "low" VA mask,
we directly compute the mask by taking into account the idmap's
(VA_BIT-1) bit.

No functionnal change.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:05:15 +00:00
Marc Zyngier 1bb32a44ae KVM: arm/arm64: Keep GICv2 HYP VAs in kvm_vgic_global_state
As we're about to change the way we map devices at HYP, we need
to move away from kern_hyp_va on an IO address.

One way of achieving this is to store the VAs in kvm_vgic_global_state,
and use that directly from the HYP code. This requires a small change
to create_hyp_io_mappings so that it can also return a HYP VA.

We take this opportunity to nuke the vctrl_base field in the emulated
distributor, as it is not used anymore.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:04:06 +00:00
Marc Zyngier 44a497abd6 KVM: arm/arm64: Do not use kern_hyp_va() with kvm_vgic_global_state
kvm_vgic_global_state is part of the read-only section, and is
usually accessed using a PC-relative address generation (adrp + add).

It is thus useless to use kern_hyp_va() on it, and actively problematic
if kern_hyp_va() becomes non-idempotent. On the other hand, there is
no way that the compiler is going to guarantee that such access is
always PC relative.

So let's bite the bullet and provide our own accessor.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:33 +00:00
Marc Zyngier 2b4d1606aa arm64: KVM: Dynamically patch the kernel/hyp VA mask
So far, we're using a complicated sequence of alternatives to
patch the kernel/hyp VA mask on non-VHE, and NOP out the
masking altogether when on VHE.

The newly introduced dynamic patching gives us the opportunity
to simplify that code by patching a single instruction with
the correct mask (instead of the mind bending cumulative masking
we have at the moment) or even a single NOP on VHE. This also
adds some initial code that will allow the patching callback
to switch to a more complex patching.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:03:29 +00:00
Christoffer Dall 2d0e63e030 KVM: arm/arm64: Avoid VGICv3 save/restore on VHE with no IRQs
We can finally get completely rid of any calls to the VGICv3
save/restore functions when the AP lists are empty on VHE systems.  This
requires carefully factoring out trap configuration from saving and
restoring state, and carefully choosing what to do on the VHE and
non-VHE path.

One of the challenges is that we cannot save/restore the VMCR lazily
because we can only write the VMCR when ICC_SRE_EL1.SRE is cleared when
emulating a GICv2-on-GICv3, since otherwise all Group-0 interrupts end
up being delivered as FIQ.

To solve this problem, and still provide fast performance in the fast
path of exiting a VM when no interrupts are pending (which also
optimized the latency for actually delivering virtual interrupts coming
from physical interrupts), we orchestrate a dance of only doing the
activate/deactivate traps in vgic load/put for VHE systems (which can
have ICC_SRE_EL1.SRE cleared when running in the host), and doing the
configuration on every round-trip on non-VHE systems.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:21 +00:00
Christoffer Dall 771621b0e2 KVM: arm/arm64: Handle VGICv3 save/restore from the main VGIC code on VHE
Just like we can program the GICv2 hypervisor control interface directly
from the core vgic code, we can do the same for the GICv3 hypervisor
control interface on VHE systems.

We do this by simply calling the save/restore functions when we have VHE
and we can then get rid of the save/restore function calls from the VHE
world switch function.

One caveat is that we now write GICv3 system register state before the
potential early exit path in the run loop, and because we sync back
state in the early exit path, we have to ensure that we read a
consistent GIC state from the sync path, even though we have never
actually run the guest with the newly written GIC state.  We solve this
by inserting an ISB in the early exit path.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:21 +00:00
Christoffer Dall 8a43a2b34b KVM: arm/arm64: Move arm64-only vgic-v2-sr.c file to arm64
The vgic-v2-sr.c file now only contains the logic to replay unaligned
accesses to the virtual CPU interface on 16K and 64K page systems, which
is only relevant on 64-bit platforms.  Therefore move this file to the
arm64 KVM tree, remove the compile directive from the 32-bit side
makefile, and remove the ifdef in the C file.

Since this file also no longer saves/restores anything, rename the file
to vgic-v2-cpuif-proxy.c to more accurately describe the logic in this
file.

Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:20 +00:00
Christoffer Dall 75174ba6ca KVM: arm/arm64: Handle VGICv2 save/restore from the main VGIC code
We can program the GICv2 hypervisor control interface logic directly
from the core vgic code and can instead do the save/restore directly
from the flush/sync functions, which can lead to a number of future
optimizations.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:20 +00:00
Christoffer Dall b7787e6666 KVM: arm64: Cleanup __activate_traps and __deactive_traps for VHE and non-VHE
To make the code more readable and to avoid the overhead of a function
call, let's get rid of a pair of the alternative function selectors and
explicitly call the VHE and non-VHE functions using the has_vhe() static
key based selector instead, telling the compiler to try to inline the
static function if it can.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:19 +00:00
Christoffer Dall a2465629b6 KVM: arm64: Configure c15, PMU, and debug register traps on cpu load/put for VHE
We do not have to change the c15 trap setting on each switch to/from the
guest on VHE systems, because this setting only affects guest EL1/EL0
(and therefore not the VHE host).

The PMU and debug trap configuration can also be done on vcpu load/put
instead, because they don't affect how the VHE host kernel can access the
debug registers while executing KVM kernel code.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:19 +00:00
Christoffer Dall c16c1131fb KVM: arm64: Directly call VHE and non-VHE FPSIMD enabled functions
There is no longer a need for an alternative to choose the right
function to tell us whether or not FPSIMD was enabled for the VM,
because we can simply can the appropriate functions directly from within
the _vhe and _nvhe run functions.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:19 +00:00
Christoffer Dall d5a21bcc29 KVM: arm64: Move common VHE/non-VHE trap config in separate functions
As we are about to be more lazy with some of the trap configuration
register read/writes for VHE systems, move the logic that is currently
shared between VHE and non-VHE into a separate function which can be
called from either the world-switch path or from vcpu_load/vcpu_put.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:19 +00:00
Christoffer Dall b9f8ca4db4 KVM: arm64: Defer saving/restoring 32-bit sysregs to vcpu load/put
When running a 32-bit VM (EL1 in AArch32), the AArch32 system registers
can be deferred to vcpu load/put on VHE systems because neither
the host kernel nor host userspace uses these registers.

Note that we can't save DBGVCR32_EL2 conditionally based on the state of
the debug dirty flag on VHE after this change, because during
vcpu_load() we haven't calculated a valid debug flag yet, and when we've
restored the register during vcpu_load() we also have to save it during
vcpu_put().  This means that we'll always restore/save the register for
VHE on load/put, but luckily vcpu load/put are called rarely, so saving
an extra register unconditionally shouldn't significantly hurt
performance.

We can also not defer saving FPEXC32_32 because this register only holds
a guest-valid value for 32-bit guests during the exit path when the
guest has used FPSIMD registers and restored the register in the early
assembly handler from taking the EL2 fault, and therefore we have to
check if fpsimd is enabled for the guest in the exit path and save the
register then, for both VHE and non-VHE guests.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:18 +00:00
Christoffer Dall a892819560 KVM: arm64: Prepare to handle deferred save/restore of 32-bit registers
32-bit registers are not used by a 64-bit host kernel and can be
deferred, but we need to rework the accesses to these register to access
the latest values depending on whether or not guest system registers are
loaded on the CPU or only reside in memory.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:18 +00:00
Christoffer Dall fc7563b340 KVM: arm64: Defer saving/restoring 64-bit sysregs to vcpu load/put on VHE
Some system registers do not affect the host kernel's execution and can
therefore be loaded when we are about to run a VCPU and we don't have to
restore the host state to the hardware before the time when we are
actually about to return to userspace or schedule out the VCPU thread.

The EL1 system registers and the userspace state registers only
affecting EL0 execution do not need to be saved and restored on every
switch between the VM and the host, because they don't affect the host
kernel's execution.

We mark all registers which are now deffered as such in the
vcpu_{read,write}_sys_reg accessors in sys-regs.c to ensure the most
up-to-date copy is always accessed.

Note MPIDR_EL1 (controlled via VMPIDR_EL2) is accessed from other vcpu
threads, for example via the GIC emulation, and therefore must be
declared as immediate, which is fine as the guest cannot modify this
value.

The 32-bit sysregs can also be deferred but we do this in a separate
patch as it requires a bit more infrastructure.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:18 +00:00
Christoffer Dall 6d4bd90964 KVM: arm64: Prepare to handle deferred save/restore of ELR_EL1
ELR_EL1 is not used by a VHE host kernel and can be deferred, but we
need to rework the accesses to this register to access the latest value
depending on whether or not guest system registers are loaded on the CPU
or only reside in memory.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:17 +00:00
Christoffer Dall 00536ec476 KVM: arm/arm64: Prepare to handle deferred save/restore of SPSR_EL1
SPSR_EL1 is not used by a VHE host kernel and can be deferred, but we
need to rework the accesses to this register to access the latest value
depending on whether or not guest system registers are loaded on the CPU
or only reside in memory.

The handling of accessing the various banked SPSRs for 32-bit VMs is a
bit clunky, but this will be improved in following patches which will
first prepare and subsequently implement deferred save/restore of the
32-bit registers, including the 32-bit SPSRs.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:17 +00:00
Christoffer Dall d47533dab9 KVM: arm64: Introduce framework for accessing deferred sysregs
We are about to defer saving and restoring some groups of system
registers to vcpu_put and vcpu_load on supported systems.  This means
that we need some infrastructure to access system registes which
supports either accessing the memory backing of the register or directly
accessing the system registers, depending on the state of the system
when we access the register.

We do this by defining read/write accessor functions, which can handle
both "immediate" and "deferrable" system registers.  Immediate registers
are always saved/restored in the world-switch path, but deferrable
registers are only saved/restored in vcpu_put/vcpu_load when supported
and sysregs_loaded_on_cpu will be set in that case.

Note that we don't use the deferred mechanism yet in this patch, but only
introduce infrastructure.  This is to improve convenience of review in
the subsequent patches where it is clear which registers become
deferred.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:17 +00:00
Christoffer Dall 8d404c4c24 KVM: arm64: Rewrite system register accessors to read/write functions
Currently we access the system registers array via the vcpu_sys_reg()
macro.  However, we are about to change the behavior to some times
modify the register file directly, so let's change this to two
primitives:

 * Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg()
 * Direct array access macro __vcpu_sys_reg()

The accessor macros should be used in places where the code needs to
access the currently loaded VCPU's state as observed by the guest.  For
example, when trapping on cache related registers, a write to a system
register should go directly to the VCPU version of the register.

The direct array access macro can be used in places where the VCPU is
known to never be running (for example userspace access) or for
registers which are never context switched (for example all the PMU
system registers).

This rewrites all users of vcpu_sys_regs to one of the macros described
above.

No functional change.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:16 +00:00
Christoffer Dall 52f6c4f021 KVM: arm64: Change 32-bit handling of VM system registers
We currently handle 32-bit accesses to trapped VM system registers using
the 32-bit index into the coproc array on the vcpu structure, which is a
union of the coproc array and the sysreg array.

Since all the 32-bit coproc indices are created to correspond to the
architectural mapping between 64-bit system registers and 32-bit
coprocessor registers, and because the AArch64 system registers are the
double in size of the AArch32 coprocessor registers, we can always find
the system register entry that we must update by dividing the 32-bit
coproc index by 2.

This is going to make our lives much easier when we have to start
accessing system registers that use deferred save/restore and might
have to be read directly from the physical CPU.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:16 +00:00
Christoffer Dall 0c389d90eb KVM: arm64: Don't save the host ELR_EL2 and SPSR_EL2 on VHE systems
On non-VHE systems we need to save the ELR_EL2 and SPSR_EL2 so that we can
return to the host in EL1 in the same state and location where we issued a
hypercall to EL2, but on VHE ELR_EL2 and SPSR_EL2 are not useful because we
never enter a guest as a result of an exception entry that would be directly
handled by KVM. The kernel entry code already saves ELR_EL1/SPSR_EL1 on
exception entry, which is enough.  Therefore, factor out these registers into
separate save/restore functions, making it easy to exclude them from the VHE
world-switch path later on.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:16 +00:00
Christoffer Dall 4cdecaba01 KVM: arm64: Unify non-VHE host/guest sysreg save and restore functions
There is no need to have multiple identical functions with different
names for saving host and guest state.  When saving and restoring state
for the host and guest, the state is the same for both contexts, and
that's why we have the kvm_cpu_context structure.  Delete one
version and rename the other into simply save/restore.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:15 +00:00
Christoffer Dall 0a62d43314 KVM: arm/arm64: Remove leftover comment from kvm_vcpu_run_vhe
The comment only applied to SPE on non-VHE systems, so we simply remove
it.

Suggested-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:15 +00:00
Christoffer Dall f837453d0e KVM: arm64: Introduce separate VHE/non-VHE sysreg save/restore functions
As we are about to handle system registers quite differently between VHE
and non-VHE systems.  In preparation for that, we need to split some of
the handling functions between VHE and non-VHE functionality.

For now, we simply copy the non-VHE functions, but we do change the use
of static keys for VHE and non-VHE functionality now that we have
separate functions.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:15 +00:00
Christoffer Dall 2b88104467 KVM: arm64: Rewrite sysreg alternatives to static keys
As we are about to move calls around in the sysreg save/restore logic,
let's first rewrite the alternative function callers, because it is
going to make the next patches much easier to read.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:14 +00:00
Christoffer Dall 060701f04a KVM: arm64: Move userspace system registers into separate function
There's a semantic difference between the EL1 registers that control
operation of a kernel running in EL1 and EL1 registers that only control
userspace execution in EL0.  Since we can defer saving/restoring the
latter, move them into their own function.

The ARMv8 ARM (ARM DDI 0487C.a) Section D10.2.1 recommends that
ACTLR_EL1 has no effect on the processor when running the VHE host, and
we can therefore move this register into the EL1 state which is only
saved/restored on vcpu_put/load for a VHE host.

We also take this chance to rename the function saving/restoring the
remaining system register to make it clear this function deals with
the EL1 system registers.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:14 +00:00
Christoffer Dall 04fef05700 KVM: arm64: Remove noop calls to timer save/restore from VHE switch
The VHE switch function calls __timer_enable_traps and
__timer_disable_traps which don't do anything on VHE systems.
Therefore, simply remove these calls from the VHE switch function and
make the functions non-conditional as they are now only called from the
non-VHE switch path.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:14 +00:00
Christoffer Dall 34f8cdf1df KVM: arm64: Don't deactivate VM on VHE systems
There is no need to reset the VTTBR to zero when exiting the guest on
VHE systems.  VHE systems don't use stage 2 translations for the EL2&0
translation regime used by the host.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:13 +00:00
Christoffer Dall 86d05682b4 KVM: arm64: Remove kern_hyp_va() use in VHE switch function
VHE kernels run completely in EL2 and therefore don't have a notion of
kernel and hyp addresses, they are all just kernel addresses.  Therefore
don't call kern_hyp_va() in the VHE switch function.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:13 +00:00
Christoffer Dall 3f5c90b890 KVM: arm64: Introduce VHE-specific kvm_vcpu_run
So far this is mostly (see below) a copy of the legacy non-VHE switch
function, but we will start reworking these functions in separate
directions to work on VHE and non-VHE in the most optimal way in later
patches.

The only difference after this patch between the VHE and non-VHE run
functions is that we omit the branch-predictor variant-2 hardening for
QC Falkor CPUs, because this workaround is specific to a series of
non-VHE ARMv8.0 CPUs.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:13 +00:00
Christoffer Dall dc251406bf KVM: arm64: Factor out fault info population and gic workarounds
The current world-switch function has functionality to detect a number
of cases where we need to fixup some part of the exit condition and
possibly run the guest again, before having restored the host state.

This includes populating missing fault info, emulating GICv2 CPU
interface accesses when mapped at unaligned addresses, and emulating
the GICv3 CPU interface on systems that need it.

As we are about to have an alternative switch function for VHE systems,
but VHE systems still need the same early fixup logic, factor out this
logic into a separate function that can be shared by both switch
functions.

No functional change.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:12 +00:00
Christoffer Dall 014c4c77aa KVM: arm64: Improve debug register save/restore flow
Instead of having multiple calls from the world switch path to the debug
logic, each figuring out if the dirty bit is set and if we should
save/restore the debug registers, let's just provide two hooks to the
debug save/restore functionality, one for switching to the guest
context, and one for switching to the host context, and we get the
benefit of only having to evaluate the dirty flag once on each path,
plus we give the compiler some more room to inline some of this
functionality.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:12 +00:00
Christoffer Dall 5742d04912 KVM: arm64: Slightly improve debug save/restore functions
The debug save/restore functions can be improved by using the has_vhe()
static key instead of the instruction alternative.  Using the static key
uses the same paradigm as we're going to use elsewhere, it makes the
code more readable, and it generates slightly better code (no
stack setups and function calls unless necessary).

We also use a static key on the restore path, because it will be
marginally faster than loading a value from memory.

Finally, we don't have to conditionally clear the debug dirty flag if
it's set, we can just clear it.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:12 +00:00
Christoffer Dall 54ceb1bcf8 KVM: arm64: Move debug dirty flag calculation out of world switch
There is no need to figure out inside the world-switch if we should
save/restore the debug registers or not, we might as well do that in the
higher level debug setup code, making it easier to optimize down the
line.

Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:11 +00:00
Christoffer Dall e72341c512 KVM: arm/arm64: Introduce vcpu_el1_is_32bit
We have numerous checks around that checks if the HCR_EL2 has the RW bit
set to figure out if we're running an AArch64 or AArch32 VM.  In some
cases, directly checking the RW bit (given its unintuitive name), is a
bit confusing, and that's not going to improve as we move logic around
for the following patches that optimize KVM on AArch64 hosts with VHE.

Therefore, introduce a helper, vcpu_el1_is_32bit, and replace existing
direct checks of HCR_EL2.RW with the helper.

Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:11 +00:00
Christoffer Dall bc192ceec3 KVM: arm/arm64: Add kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs
As we are about to move a bunch of save/restore logic for VHE kernels to
the load and put functions, we need some infrastructure to do this.

Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:11 +00:00
Christoffer Dall 3df59d8dd3 KVM: arm/arm64: Get rid of vcpu->arch.irq_lines
We currently have a separate read-modify-write of the HCR_EL2 on entry
to the guest for the sole purpose of setting the VF and VI bits, if set.
Since this is most rarely the case (only when using userspace IRQ chip
and interrupts are in flight), let's get rid of this operation and
instead modify the bits in the vcpu->arch.hcr[_el2] directly when
needed.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:10 +00:00
Shih-Wei Li 35a84dec00 KVM: arm64: Move HCR_INT_OVERRIDE to default HCR_EL2 guest flag
We always set the IMO and FMO bits in the HCR_EL2 when running the
guest, regardless if we use the vgic or not.  By moving these flags to
HCR_GUEST_FLAGS we can avoid one of the extra save/restore operations of
HCR_EL2 in the world switch code, and we can also soon get rid of the
other one.

This is safe, because even though the IMO and FMO bits control both
taking the interrupts to EL2 and remapping ICC_*_EL1 to ICV_*_EL1 when
executed at EL1, as long as we ensure that these bits are clear when
running the EL1 host, we're OK, because we reset the HCR_EL2 to only
have the HCR_RW bit set when returning to EL1 on non-VHE systems.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shih-Wei Li <shihwei@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:10 +00:00
Christoffer Dall 8f17f5e469 KVM: arm64: Rework hyp_panic for VHE and non-VHE
VHE actually doesn't rely on clearing the VTTBR when returning to the
host kernel, and that is the current key mechanism of hyp_panic to
figure out how to attempt to return to a state good enough to print a
panic statement.

Therefore, we split the hyp_panic function into two functions, a VHE and
a non-VHE, keeping the non-VHE version intact, but changing the VHE
behavior.

The vttbr_el2 check on VHE doesn't really make that much sense, because
the only situation where we can get here on VHE is when the hypervisor
assembly code actually called into hyp_panic, which only happens when
VBAR_EL2 has been set to the KVM exception vectors.  On VHE, we can
always safely disable the traps and restore the host registers at this
point, so we simply do that unconditionally and call into the panic
function directly.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:10 +00:00
Christoffer Dall 4464e210de KVM: arm64: Avoid storing the vcpu pointer on the stack
We already have the percpu area for the host cpu state, which points to
the VCPU, so there's no need to store the VCPU pointer on the stack on
every context switch.  We can be a little more clever and just use
tpidr_el2 for the percpu offset and load the VCPU pointer from the host
context.

This has the benefit of being able to retrieve the host context even
when our stack is corrupted, and it has a potential performance benefit
because we trade a store plus a load for an mrs and a load on a round
trip to the guest.

This does require us to calculate the percpu offset without including
the offset from the kernel mapping of the percpu array to the linear
mapping of the array (which is what we store in tpidr_el1), because a
PC-relative generated address in EL2 is already giving us the hyp alias
of the linear mapping of a kernel address.  We do this in
__cpu_init_hyp_mode() by using kvm_ksym_ref().

The code that accesses ESR_EL2 was previously using an alternative to
use the _EL1 accessor on VHE systems, but this was actually unnecessary
as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2
accessor does the same thing on both systems.

Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:09 +00:00
Christoffer Dall 7a364bd5db KVM: arm/arm64: Avoid vcpu_load for other vcpu ioctls than KVM_RUN
Calling vcpu_load() registers preempt notifiers for this vcpu and calls
kvm_arch_vcpu_load().  The latter will soon be doing a lot of heavy
lifting on arm/arm64 and will try to do things such as enabling the
virtual timer and setting us up to handle interrupts from the timer
hardware.

Loading state onto hardware registers and enabling hardware to signal
interrupts can be problematic when we're not actually about to run the
VCPU, because it makes it difficult to establish the right context when
handling interrupts from the timer, and it makes the register access
code difficult to reason about.

Luckily, now when we call vcpu_load in each ioctl implementation, we can
simply remove the call from the non-KVM_RUN vcpu ioctls, and our
kvm_arch_vcpu_load() is only used for loading vcpu content to the
physical CPU when we're actually going to run the vcpu.

Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:09 +00:00
Jérémy Fanguède eac137b4a9 KVM: arm64: Enable the EL1 physical timer for AArch32 guests
Some 32bits guest OS can use the CNTP timer, however KVM does not
handle the accesses, injecting a fault instead.

Use the proper handlers to emulate the EL1 Physical Timer (CNTP)
register accesses of AArch32 guests.

Signed-off-by: Jérémy Fanguède <j.fanguede@virtualopensystems.com>
Signed-off-by: Alvise Rigo <a.rigo@virtualopensystems.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-02-26 10:48:02 +01:00
Dave Martin 005781be12 arm64: KVM: Move CPU ID reg trap setup off the world switch path
The HCR_EL2.TID3 flag needs to be set when trapping guest access to
the CPU ID registers is required.  However, the decision about
whether to set this bit does not need to be repeated at every
switch to the guest.

Instead, it's sufficient to make this decision once and record the
outcome.

This patch moves the decision to vcpu_reset_hcr() and records the
choice made in vcpu->arch.hcr_el2.  The world switch code can then
load this directly when switching to the guest without the need for
conditional logic on the critical path.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Suggested-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-02-26 10:48:01 +01:00
Mark Rutland cc33c4e201 arm64/kvm: Prohibit guest LOR accesses
We don't currently limit guest accesses to the LOR registers, which we
neither virtualize nor context-switch. As such, guests are provided with
unusable information/controls, and are not isolated from each other (or
the host).

To prevent these issues, we can trap register accesses and present the
illusion LORegions are unssupported by the CPU. To do this, we mask
ID_AA64MMFR1.LO, and set HCR_EL2.TLOR to trap accesses to the following
registers:

* LORC_EL1
* LOREA_EL1
* LORID_EL1
* LORN_EL1
* LORSA_EL1

... when trapped, we inject an UNDEFINED exception to EL1, simulating
their non-existence.

As noted in D7.2.67, when no LORegions are implemented, LoadLOAcquire
and StoreLORelease must behave as LoadAcquire and StoreRelease
respectively. We can ensure this by clearing LORC_EL1.EN when a CPU's
EL2 is first initialized, as the host kernel will not modify this.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-02-26 10:48:01 +01:00
Shanker Donthineni 16e574d762 arm64: Add missing Falkor part number for branch predictor hardening
References to CPU part number MIDR_QCOM_FALKOR were dropped from the
mailing list patch due to mainline/arm64 branch dependency. So this
patch adds the missing part number.

Fixes: ec82b567a7 ("arm64: Implement branch predictor hardening for Falkor")
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-12 11:28:45 +00:00
Linus Torvalds 15303ba5d1 KVM changes for 4.16
ARM:
 - Include icache invalidation optimizations, improving VM startup time
 
 - Support for forwarded level-triggered interrupts, improving
   performance for timers and passthrough platform devices
 
 - A small fix for power-management notifiers, and some cosmetic changes
 
 PPC:
 - Add MMIO emulation for vector loads and stores
 
 - Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
   requiring the complex thread synchronization of older CPU versions
 
 - Improve the handling of escalation interrupts with the XIVE interrupt
   controller
 
 - Support decrement register migration
 
 - Various cleanups and bugfixes.
 
 s390:
 - Cornelia Huck passed maintainership to Janosch Frank
 
 - Exitless interrupts for emulated devices
 
 - Cleanup of cpuflag handling
 
 - kvm_stat counter improvements
 
 - VSIE improvements
 
 - mm cleanup
 
 x86:
 - Hypervisor part of SEV
 
 - UMIP, RDPID, and MSR_SMI_COUNT emulation
 
 - Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
 
 - Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
   features
 
 - Show vcpu id in its anonymous inode name
 
 - Many fixes and cleanups
 
 - Per-VCPU MSR bitmaps (already merged through x86/pti branch)
 
 - Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
 Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
 Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
 xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
 /9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
 FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
 =C/uD
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "ARM:

   - icache invalidation optimizations, improving VM startup time

   - support for forwarded level-triggered interrupts, improving
     performance for timers and passthrough platform devices

   - a small fix for power-management notifiers, and some cosmetic
     changes

  PPC:

   - add MMIO emulation for vector loads and stores

   - allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
     requiring the complex thread synchronization of older CPU versions

   - improve the handling of escalation interrupts with the XIVE
     interrupt controller

   - support decrement register migration

   - various cleanups and bugfixes.

  s390:

   - Cornelia Huck passed maintainership to Janosch Frank

   - exitless interrupts for emulated devices

   - cleanup of cpuflag handling

   - kvm_stat counter improvements

   - VSIE improvements

   - mm cleanup

  x86:

   - hypervisor part of SEV

   - UMIP, RDPID, and MSR_SMI_COUNT emulation

   - paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit

   - allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
     AVX512 features

   - show vcpu id in its anonymous inode name

   - many fixes and cleanups

   - per-VCPU MSR bitmaps (already merged through x86/pti branch)

   - stable KVM clock when nesting on Hyper-V (merged through
     x86/hyperv)"

* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
  KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
  KVM: PPC: Book3S HV: Branch inside feature section
  KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
  KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
  KVM: PPC: Book3S PR: Fix broken select due to misspelling
  KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
  KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
  KVM: PPC: Book3S HV: Drop locks before reading guest memory
  kvm: x86: remove efer_reload entry in kvm_vcpu_stat
  KVM: x86: AMD Processor Topology Information
  x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
  kvm: embed vcpu id to dentry of vcpu anon inode
  kvm: Map PFN-type memory regions as writable (if possible)
  x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
  KVM: arm/arm64: Fixup userspace irqchip static key optimization
  KVM: arm/arm64: Fix userspace_irqchip_in_use counting
  KVM: arm/arm64: Fix incorrect timer_is_pending logic
  MAINTAINERS: update KVM/s390 maintainers
  MAINTAINERS: add Halil as additional vfio-ccw maintainer
  MAINTAINERS: add David as a reviewer for KVM/s390
  ...
2018-02-10 13:16:35 -08:00
Linus Torvalds c013632192 2nd set of arm64 updates for 4.16:
Spectre v1 mitigation:
 - back-end version of array_index_mask_nospec()
 - masking of the syscall number to restrict speculation through the
   syscall table
 - masking of __user pointers prior to deference in uaccess routines
 
 Spectre v2 mitigation update:
 - using the new firmware SMC calling convention specification update
 - removing the current PSCI GET_VERSION firmware call mitigation as
   vendors are deploying new SMCCC-capable firmware
 - additional branch predictor hardening for synchronous exceptions and
   interrupts while in user mode
 
 Meltdown v3 mitigation update for Cavium Thunder X: unaffected but
 hardware erratum gets in the way. The kernel now starts with the page
 tables mapped as global and switches to non-global if kpti needs to be
 enabled.
 
 Other:
 - Theoretical trylock bug fixed
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlp8lqcACgkQa9axLQDI
 XvH2lxAAnsYqthpGQ11MtDJB+/UiBAFkg9QWPDkwrBDvNhgpll+J0VQuCN1QJ2GX
 qQ8rkv8uV+y4Fqr8hORGJy5At+0aI63ZCJ72RGkZTzJAtbFbFGIDHP7RhAEIGJBS
 Lk9kDZ7k39wLEx30UXIFYTTVzyHar397TdI7vkTcngiTzZ8MdFATfN/hiKO906q3
 14pYnU9Um4aHUdcJ+FocL3dxvdgniuuMBWoNiYXyOCZXjmbQOnDNU2UrICroV8lS
 mB+IHNEhX1Gl35QzNBtC0ET+aySfHBMJmM5oln+uVUljIGx6En1WLj6mrHYcx8U2
 rIBm5qO/X/4iuzYPGkxwQtpjq3wPYxsSUnMdKJrsUZqAfy2QeIhFx6XUtJsZPB2J
 /lgls5xSXMOS7oiOQtmVjcDLBURDmYXGwljXR4n4jLm4CT1V9qSLcKHu1gdFU9Mq
 VuMUdPOnQub1vqKndi154IoYDTo21jAib2ktbcxpJfSJnDYoit4Gtnv7eWY+M3Pd
 Toaxi8htM2HSRwbvslHYGW8ZcVpI79Jit+ti7CsFg7m9Lvgs0zxcnNui4uPYDymT
 jh2JYxuirIJbX9aGGhnmkNhq9REaeZJg9LA2JM8S77FCHN3bnlSdaG6wy899J6EI
 lK4anCuPQKKKhUia/dc1MeKwrmmC18EfPyGUkOzywg/jGwGCmZM=
 =Y0TT
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull more arm64 updates from Catalin Marinas:
 "As I mentioned in the last pull request, there's a second batch of
  security updates for arm64 with mitigations for Spectre/v1 and an
  improved one for Spectre/v2 (via a newly defined firmware interface
  API).

  Spectre v1 mitigation:

   - back-end version of array_index_mask_nospec()

   - masking of the syscall number to restrict speculation through the
     syscall table

   - masking of __user pointers prior to deference in uaccess routines

  Spectre v2 mitigation update:

   - using the new firmware SMC calling convention specification update

   - removing the current PSCI GET_VERSION firmware call mitigation as
     vendors are deploying new SMCCC-capable firmware

   - additional branch predictor hardening for synchronous exceptions
     and interrupts while in user mode

  Meltdown v3 mitigation update:

    - Cavium Thunder X is unaffected but a hardware erratum gets in the
      way. The kernel now starts with the page tables mapped as global
      and switches to non-global if kpti needs to be enabled.

  Other:

   - Theoretical trylock bug fixed"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (38 commits)
  arm64: Kill PSCI_GET_VERSION as a variant-2 workaround
  arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support
  arm/arm64: smccc: Implement SMCCC v1.1 inline primitive
  arm/arm64: smccc: Make function identifiers an unsigned quantity
  firmware/psci: Expose SMCCC version through psci_ops
  firmware/psci: Expose PSCI conduit
  arm64: KVM: Add SMCCC_ARCH_WORKAROUND_1 fast handling
  arm64: KVM: Report SMCCC_ARCH_WORKAROUND_1 BP hardening support
  arm/arm64: KVM: Turn kvm_psci_version into a static inline
  arm/arm64: KVM: Advertise SMCCC v1.1
  arm/arm64: KVM: Implement PSCI 1.0 support
  arm/arm64: KVM: Add smccc accessors to PSCI code
  arm/arm64: KVM: Add PSCI_VERSION helper
  arm/arm64: KVM: Consolidate the PSCI include files
  arm64: KVM: Increment PC after handling an SMC trap
  arm: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
  arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
  arm64: entry: Apply BP hardening for suspicious interrupts from EL0
  arm64: entry: Apply BP hardening for high-priority synchronous exceptions
  arm64: futex: Mask __user pointers prior to dereference
  ...
2018-02-08 10:44:25 -08:00
Marc Zyngier 3a0a397ff5 arm64: Kill PSCI_GET_VERSION as a variant-2 workaround
Now that we've standardised on SMCCC v1.1 to perform the branch
prediction invalidation, let's drop the previous band-aid.
If vendors haven't updated their firmware to do SMCCC 1.1, they
haven't updated PSCI either, so we don't loose anything.

Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:54:18 +00:00
Marc Zyngier f72af90c37 arm64: KVM: Add SMCCC_ARCH_WORKAROUND_1 fast handling
We want SMCCC_ARCH_WORKAROUND_1 to be fast. As fast as possible.
So let's intercept it as early as we can by testing for the
function call number as soon as we've identified a HVC call
coming from the guest.

Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:54:07 +00:00
Marc Zyngier a4097b3511 arm/arm64: KVM: Turn kvm_psci_version into a static inline
We're about to need kvm_psci_version in HYP too. So let's turn it
into a static inline, and pass the kvm structure as a second
parameter (so that HYP can do a kern_hyp_va on it).

Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:54:03 +00:00
Marc Zyngier 09e6be12ef arm/arm64: KVM: Advertise SMCCC v1.1
The new SMC Calling Convention (v1.1) allows for a reduced overhead
when calling into the firmware, and provides a new feature discovery
mechanism.

Make it visible to KVM guests.

Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:54:01 +00:00
Marc Zyngier 1a2fb94e6a arm/arm64: KVM: Consolidate the PSCI include files
As we're about to update the PSCI support, and because I'm lazy,
let's move the PSCI include file to include/kvm so that both
ARM architectures can find it.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:53:54 +00:00
Marc Zyngier f5115e8869 arm64: KVM: Increment PC after handling an SMC trap
When handling an SMC trap, the "preferred return address" is set
to that of the SMC, and not the next PC (which is a departure from
the behaviour of an SMC that isn't trapped).

Increment PC in the handler, as the guest is otherwise forever
stuck...

Cc: stable@vger.kernel.org
Fixes: acfb3b883f ("arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls")
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:53:52 +00:00
Marc Zyngier c0938c72f8 arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
KVM doesn't follow the SMCCC when it comes to unimplemented calls,
and inject an UNDEF instead of returning an error. Since firmware
calls are now used for security mitigation, they are becoming more
common, and the undef is counter productive.

Instead, let's follow the SMCCC which states that -1 must be returned
to the caller when getting an unknown function number.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:53:48 +00:00
Will Deacon fa0465fc07 arm64: assembler: Change order of macro arguments in phys_to_ttbr
Since AArch64 assembly instructions take the destination register as
their first operand, do the same thing for the phys_to_ttbr macro.

Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:53:21 +00:00
Shanker Donthineni 3060e9f0d1 arm64: Add software workaround for Falkor erratum 1041
The ARM architecture defines the memory locations that are permitted
to be accessed as the result of a speculative instruction fetch from
an exception level for which all stages of translation are disabled.
Specifically, the core is permitted to speculatively fetch from the
4KB region containing the current program counter 4K and next 4K.

When translation is changed from enabled to disabled for the running
exception level (SCTLR_ELn[M] changed from a value of 1 to 0), the
Falkor core may errantly speculatively access memory locations outside
of the 4KB region permitted by the architecture. The errant memory
access may lead to one of the following unexpected behaviors.

1) A System Error Interrupt (SEI) being raised by the Falkor core due
   to the errant memory access attempting to access a region of memory
   that is protected by a slave-side memory protection unit.
2) Unpredictable device behavior due to a speculative read from device
   memory. This behavior may only occur if the instruction cache is
   disabled prior to or coincident with translation being changed from
   enabled to disabled.

The conditions leading to this erratum will not occur when either of the
following occur:
 1) A higher exception level disables translation of a lower exception level
   (e.g. EL2 changing SCTLR_EL1[M] from a value of 1 to 0).
 2) An exception level disabling its stage-1 translation if its stage-2
    translation is enabled (e.g. EL1 changing SCTLR_EL1[M] from a value of 1
    to 0 when HCR_EL2[VM] has a value of 1).

To avoid the errant behavior, software must execute an ISB immediately
prior to executing the MSR that will change SCTLR_ELn[M] from 1 to 0.

Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-06 22:53:13 +00:00
Radim Krčmář 7bf14c28ee Merge branch 'x86/hyperv' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Topic branch for stable KVM clockource under Hyper-V.

Thanks to Christoffer Dall for resolving the ARM conflict.
2018-02-01 15:04:17 +01:00
Radim Krčmář e53175395d KVM/ARM Changes for v4.16
The changes for this version include icache invalidation optimizations
 (improving VM startup time), support for forwarded level-triggered
 interrupts (improved performance for timers and passthrough platform
 devices), a small fix for power-management notifiers, and some cosmetic
 changes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJacYnLAAoJEEtpOizt6ddyhHUH/1f/AHC4t6sNJJ4LAbWAjuve
 77scB7vsVVpZqHUeA1i8d0vrWJQeqg8CEQ+iP/OVLC+bWVX0yeBtrt/pMJA8sXrV
 Jbo5kQu3NyrRUAew83rcvoqsVVf67BB/NohL7C7sQDvNp2bg2cgzxhpgNJUuUXQC
 WcEOhqstWo6NYJ7xYz5f+utzYQRO0YfnIzoTsoaNgDHSw/V37Ny9O0tYqTQGNYUm
 zZ+cRo3nFRFywbmHhIHvXkxmS0lGdACQWTzyd+qDsgiPJ463vRT6Fc035SSuqX9x
 MmS87cBdt1IK9yi0Firqhuy6CGgHZmnagHizE0arMv72Pcv/ucrkCDRqLQDhSMY=
 =bZLm
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-for-v4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm

KVM/ARM Changes for v4.16

The changes for this version include icache invalidation optimizations
(improving VM startup time), support for forwarded level-triggered
interrupts (improved performance for timers and passthrough platform
devices), a small fix for power-management notifiers, and some cosmetic
changes.
2018-01-31 13:34:41 +01:00
Linus Torvalds 0aebc6a440 arm64 updates for 4.16:
- Security mitigations:
   - variant 2: invalidating the branch predictor with a call to secure firmware
   - variant 3: implementing KPTI for arm64
 
 - 52-bit physical address support for arm64 (ARMv8.2)
 
 - arm64 support for RAS (firmware first only) and SDEI (software
   delegated exception interface; allows firmware to inject a RAS error
   into the OS)
 
 - Perf support for the ARM DynamIQ Shared Unit PMU
 
 - CPUID and HWCAP bits updated for new floating point multiplication
   instructions in ARMv8.4
 
 - Removing some virtual memory layout printks during boot
 
 - Fix initial page table creation to cope with larger than 32M kernel
   images when 16K pages are enabled
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlpwxDMACgkQa9axLQDI
 XvF55BAAniMpxPXnYNfv6l7/4O8eKo1lJIaG1wbej4JRZ/rT3K4Z3OBXW1dKHO8d
 /PTbVmZ90IqIGROkoDrE+6xyjjn9yK3uuW4ytN2zQkBa8VFaHAnHlX+zKQcuwy9f
 yxwiHk+C7vK5JR7mpXTazjRknsUv1MPtlTt7DQrSdq0KRDJVDNFC+grmbew2rz0X
 cjQDqZqgzuFyrKxdiQVjDmc3zH9NsNBhDo0hlGHf2jK6bGJsAPtI8M2JcLrK8ITG
 Ye/dD7BJp1mWD8ff0BPaMxu24qfAMNLH8f2dpTa986/H78irVz7i/t5HG0/1+5Jh
 EE4OFRTKZ59Qgyo1zWcaJvdp8YjiaX/L4PWJg8CxM5OhP9dIac9ydcFQfWzpKpUs
 xyZfmK6XliGFReAkVOOf5tEqFUDhMtsqhzPYmbmU1lp61wmSYIZ8CTenpWWCJSRO
 NOGyG1X2uFBvP69+iPNlfTGz1r7tg1URY5iO8fUEIhY8LrgyORkiqw4OvPEgnMXP
 Ngy+dXhyvnps2AAWbSX0O4puRlTgEYLT5KaMLzH/+gWsXATT0rzUCD/aOwUQq/Y7
 SWXZHkb3jpmOZZnzZsLL2MNzEIPCFBwSUE9fSv4dA9d/N6tUmlmZALJjHkfzCDpj
 +mPsSmAMTj72kUYzm0b5GCtOu/iQ2kDWOZjOM1m4+v/B+f7JoEE=
 =iEjP
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:
 "The main theme of this pull request is security covering variants 2
  and 3 for arm64. I expect to send additional patches next week
  covering an improved firmware interface (requires firmware changes)
  for variant 2 and way for KPTI to be disabled on unaffected CPUs
  (Cavium's ThunderX doesn't work properly with KPTI enabled because of
  a hardware erratum).

  Summary:

   - Security mitigations:
      - variant 2: invalidate the branch predictor with a call to
        secure firmware
      - variant 3: implement KPTI for arm64

   - 52-bit physical address support for arm64 (ARMv8.2)

   - arm64 support for RAS (firmware first only) and SDEI (software
     delegated exception interface; allows firmware to inject a RAS
     error into the OS)

   - perf support for the ARM DynamIQ Shared Unit PMU

   - CPUID and HWCAP bits updated for new floating point multiplication
     instructions in ARMv8.4

   - remove some virtual memory layout printks during boot

   - fix initial page table creation to cope with larger than 32M kernel
     images when 16K pages are enabled"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (104 commits)
  arm64: Fix TTBR + PAN + 52-bit PA logic in cpu_do_switch_mm
  arm64: Turn on KPTI only on CPUs that need it
  arm64: Branch predictor hardening for Cavium ThunderX2
  arm64: Run enable method for errata work arounds on late CPUs
  arm64: Move BP hardening to check_and_switch_context
  arm64: mm: ignore memory above supported physical address size
  arm64: kpti: Fix the interaction between ASID switching and software PAN
  KVM: arm64: Emulate RAS error registers and set HCR_EL2's TERR & TEA
  KVM: arm64: Handle RAS SErrors from EL2 on guest exit
  KVM: arm64: Handle RAS SErrors from EL1 on guest exit
  KVM: arm64: Save ESR_EL2 on guest SError
  KVM: arm64: Save/Restore guest DISR_EL1
  KVM: arm64: Set an impdef ESR for Virtual-SError using VSESR_EL2.
  KVM: arm/arm64: mask/unmask daif around VHE guests
  arm64: kernel: Prepare for a DISR user
  arm64: Unconditionally enable IESB on exception entry/return for firmware-first
  arm64: kernel: Survive corrected RAS errors notified by SError
  arm64: cpufeature: Detect CPU RAS Extentions
  arm64: sysreg: Move to use definitions for all the SCTLR bits
  arm64: cpufeature: __this_cpu_has_cap() shouldn't stop early
  ...
2018-01-30 13:57:43 -08:00
Radim Krčmář f44efa5aea KVM/ARM Fixes for v4.15, Round 3 (v2)
Three more fixes for v4.15 fixing incorrect huge page mappings on systems using
 the contigious hint for hugetlbfs; supporting an alternative GICv4 init
 sequence; and correctly implementing the ARM SMCC for HVC and SMC handling.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJaXi9yAAoJEEtpOizt6ddymb4H/R6Q7uPSNY31d/wcMHg8qYS7
 foDW76r7mKliRVmCJoq9oqLqC7BLpQszfZ8dFjPSfdLA4xVMsuZ3GG3S7jlghiuN
 9+rZK+ZZX8g5uQNsqVITC3WrXmozBj+VEs/uH2Z1pu0g+siPTp7J2iv5+A5tvM3A
 NCySqgEjefQyy7Zs2r7TuvM+E3p9MY7jZih9E2o8mn2TQipVKrcnHRN3IjNNtI4u
 C17x70OQ1ZY7bwnmPnuPPqnX3H1fQ6+UgwtfDCu3KP7DAFVjqAz03X6wbf1nCLAB
 zzKok/SnIFWpr56JUSOzMpHWG8sOFscdVXxW97a2Ova0ur0rHW2iPiucTb8jOjQ=
 =gJL6
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-fixes-for-v4.15-3-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm

KVM/ARM Fixes for v4.15, Round 3 (v2)

Three more fixes for v4.15 fixing incorrect huge page mappings on systems using
the contigious hint for hugetlbfs; supporting an alternative GICv4 init
sequence; and correctly implementing the ARM SMCC for HVC and SMC handling.
2018-01-17 14:59:27 +01:00
Marc Zyngier acfb3b883f arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
KVM doesn't follow the SMCCC when it comes to unimplemented calls,
and inject an UNDEF instead of returning an error. Since firmware
calls are now used for security mitigation, they are becoming more
common, and the undef is counter productive.

Instead, let's follow the SMCCC which states that -1 must be returned
to the caller when getting an unknown function number.

Cc: <stable@vger.kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-01-16 17:58:51 +01:00
Dongjiu Geng 558daf693e KVM: arm64: Emulate RAS error registers and set HCR_EL2's TERR & TEA
ARMv8.2 adds a new bit HCR_EL2.TEA which routes synchronous external
aborts to EL2, and adds a trap control bit HCR_EL2.TERR which traps
all Non-secure EL1&0 error record accesses to EL2.

This patch enables the two bits for the guest OS, guaranteeing that
KVM takes external aborts and traps attempts to access the physical
error registers.

ERRIDR_EL1 advertises the number of error records, we return
zero meaning we can treat all the other registers as RAZ/WI too.

Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
[removed specific emulation, use trap_raz_wi() directly for everything,
 rephrased parts of the commit message]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:09:47 +00:00
James Morse 0067df413b KVM: arm64: Handle RAS SErrors from EL2 on guest exit
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.

There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.

The current SError from EL2 code unmasks SError and tries to fence any
pending SError into a single instruction window. It then leaves SError
unmasked.

With the v8.2 RAS Extensions we may take an SError for a 'corrected'
error, but KVM is only able to handle SError from EL2 if they occur
during this single instruction window...

The RAS Extensions give us a new instruction to synchronise and
consume SErrors. The RAS Extensions document (ARM DDI0587),
'2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising
SError interrupts generated by 'instructions, translation table walks,
hardware updates to the translation tables, and instruction fetches on
the same PE'. This makes ESB equivalent to KVMs existing
'dsb, mrs-daifclr, isb' sequence.

Use the alternatives to synchronise and consume any SError using ESB
instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT
in the exit_code so that we can restart the vcpu if it turns out this
SError has no impact on the vcpu.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:09:36 +00:00
James Morse 3368bd8097 KVM: arm64: Handle RAS SErrors from EL1 on guest exit
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.

There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.

For SError that interrupt a guest and are routed to EL2 the existing
behaviour is to inject an impdef SError into the guest.

Add code to handle RAS SError based on the ESR. For uncontained and
uncategorized errors arm64_is_fatal_ras_serror() will panic(), these
errors compromise the host too. All other error types are contained:
For the fatal errors the vCPU can't make progress, so we inject a virtual
SError. We ignore contained errors where we can make progress as if
we're lucky, we may not hit them again.

If only some of the CPUs support RAS the guest will see the cpufeature
sanitised version of the id registers, but we may still take RAS SError
on this CPU. Move the SError handling out of handle_exit() into a new
handler that runs before we can be preempted. This allows us to use
this_cpu_has_cap(), via arm64_is_ras_serror().

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:09:13 +00:00
James Morse c60590b552 KVM: arm64: Save ESR_EL2 on guest SError
When we exit a guest due to an SError the vcpu fault info isn't updated
with the ESR. Today this is only done for traps.

The v8.2 RAS Extensions define ISS values for SError. Update the vcpu's
fault_info with the ESR on SError so that handle_exit() can determine
if this was a RAS SError and decode its severity.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:09:00 +00:00
James Morse c773ae2b34 KVM: arm64: Save/Restore guest DISR_EL1
If we deliver a virtual SError to the guest, the guest may defer it
with an ESB instruction. The guest reads the deferred value via DISR_EL1,
but the guests view of DISR_EL1 is re-mapped to VDISR_EL2 when HCR_EL2.AMO
is set.

Add the KVM code to save/restore VDISR_EL2, and make it accessible to
userspace as DISR_EL1.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:08:52 +00:00
James Morse 4715c14bc1 KVM: arm64: Set an impdef ESR for Virtual-SError using VSESR_EL2.
Prior to v8.2's RAS Extensions, the HCR_EL2.VSE 'virtual SError' feature
generated an SError with an implementation defined ESR_EL1.ISS, because we
had no mechanism to specify the ESR value.

On Juno this generates an all-zero ESR, the most significant bit 'ISV'
is clear indicating the remainder of the ISS field is invalid.

With the RAS Extensions we have a mechanism to specify this value, and the
most significant bit has a new meaning: 'IDS - Implementation Defined
Syndrome'. An all-zero SError ESR now means: 'RAS error: Uncategorized'
instead of 'no valid ISS'.

Add KVM support for the VSESR_EL2 register to specify an ESR value when
HCR_EL2.VSE generates a virtual SError. Change kvm_inject_vabt() to
specify an implementation-defined value.

We only need to restore the VSESR_EL2 value when HCR_EL2.VSE is set, KVM
save/restores this bit during __{,de}activate_traps() and hardware clears the
bit once the guest has consumed the virtual-SError.

Future patches may add an API (or KVM CAP) to pend a virtual SError with
a specified ESR.

Cc: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:08:41 +00:00
James Morse 1f742679c3 KVM: arm64: Stop save/restoring host tpidr_el1 on VHE
Now that a VHE host uses tpidr_el2 for the cpu offset we no longer
need KVM to save/restore tpidr_el1. Move this from the 'common' code
into the non-vhe code. While we're at it, on VHE we don't need to
save the ELR or SPSR as kernel_entry in entry.S will have pushed these
onto the kernel stack, and will restore them from there. Move these
to the non-vhe code as we need them to get back to the host.

Finally remove the always-copy-tpidr we hid in the stage2 setup
code, cpufeature's enable callback will do this for VHE, we only
need KVM to do it for non-vhe. Add the copy into kvm-init instead.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-13 10:44:40 +00:00
James Morse c97e166e54 KVM: arm64: Change hyp_panic()s dependency on tpidr_el2
Make tpidr_el2 a cpu-offset for per-cpu variables in the same way the
host uses tpidr_el1. This lets tpidr_el{1,2} have the same value, and
on VHE they can be the same register.

KVM calls hyp_panic() when anything unexpected happens. This may occur
while a guest owns the EL1 registers. KVM stashes the vcpu pointer in
tpidr_el2, which it uses to find the host context in order to restore
the host EL1 registers before parachuting into the host's panic().

The host context is a struct kvm_cpu_context allocated in the per-cpu
area, and mapped to hyp. Given the per-cpu offset for this CPU, this is
easy to find. Change hyp_panic() to take a pointer to the
struct kvm_cpu_context. Wrap these calls with an asm function that
retrieves the struct kvm_cpu_context from the host's per-cpu area.

Copy the per-cpu offset from the hosts tpidr_el1 into tpidr_el2 during
kvm init. (Later patches will make this unnecessary for VHE hosts)

We print out the vcpu pointer as part of the panic message. Add a back
reference to the 'running vcpu' in the host cpu context to preserve this.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-13 10:44:22 +00:00
James Morse 32b03d1059 KVM: arm64: Store vcpu on the stack during __guest_enter()
KVM uses tpidr_el2 as its private vcpu register, which makes sense for
non-vhe world switch as only KVM can access this register. This means
vhe Linux has to use tpidr_el1, which KVM has to save/restore as part
of the host context.

If the SDEI handler code runs behind KVMs back, it mustn't access any
per-cpu variables. To allow this on systems with vhe we need to make
the host use tpidr_el2, saving KVM from save/restoring it.

__guest_enter() stores the host_ctxt on the stack, do the same with
the vcpu.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-13 10:44:04 +00:00
Shanker Donthineni ec82b567a7 arm64: Implement branch predictor hardening for Falkor
Falkor is susceptible to branch predictor aliasing and can
theoretically be attacked by malicious code. This patch
implements a mitigation for these attacks, preventing any
malicious entries from affecting other victim contexts.

Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[will: fix label name when !CONFIG_KVM and remove references to MIDR_FALKOR]
Signed-off-by: Will Deacon <will.deacon@arm.com>

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-08 18:47:07 +00:00
Marc Zyngier 90348689d5 arm64: KVM: Make PSCI_VERSION a fast path
For those CPUs that require PSCI to perform a BP invalidation,
going all the way to the PSCI code for not much is a waste of
precious cycles. Let's terminate that call as early as possible.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-08 18:47:02 +00:00
Marc Zyngier 6840bdd73d arm64: KVM: Use per-CPU vector when BP hardening is enabled
Now that we have per-CPU vectors, let's plug then in the KVM/arm64 code.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-08 18:46:56 +00:00
Marc Zyngier d68119864e KVM: arm/arm64: Detangle kvm_mmu.h from kvm_hyp.h
kvm_hyp.h has an odd dependency on kvm_mmu.h, which makes the
opposite inclusion impossible. Let's start with breaking that
useless dependency.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-01-08 15:20:43 +01:00
Christoffer Dall f3721c70fc Revert "arm64: KVM: Hide PMU from guests when disabled"
Commit 0c0543a128 breaks migration and
introduces a regression with existing userspace because it introduces an
ordering requirement of setting up all VCPU features before writing ID
registers which we didn't have before.

Revert this commit for now until we have a proper fix.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-01-08 15:19:31 +01:00
Andrew Jones 0c0543a128 arm64: KVM: Hide PMU from guests when disabled
Since commit 93390c0a1b ("arm64: KVM: Hide unsupported AArch64 CPU
features from guests") we can hide cpu features from guests. Apply
this to a long standing issue where guests see a PMU available, but
it's not, because it was not enabled by KVM's userspace.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-01-02 10:05:45 +01:00
Kristina Martsenko fa2a8445b1 arm64: allow ID map to be extended to 52 bits
Currently, when using VA_BITS < 48, if the ID map text happens to be
placed in physical memory above VA_BITS, we increase the VA size (up to
48) and create a new table level, in order to map in the ID map text.
This is okay because the system always supports 48 bits of VA.

This patch extends the code such that if the system supports 52 bits of
VA, and the ID map text is placed that high up, then we increase the VA
size accordingly, up to 52.

One difference from the current implementation is that so far the
condition of VA_BITS < 48 has meant that the top level table is always
"full", with the maximum number of entries, and an extra table level is
always needed. Now, when VA_BITS = 48 (and using 64k pages), the top
level table is not full, and we simply need to increase the number of
entries in it, instead of creating a new table level.

Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: reduce arguments to __create_hyp_mappings()]
[catalin.marinas@arm.com: reworked/renamed __cpu_uses_extended_idmap_level()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-12-22 17:37:33 +00:00
Kristina Martsenko 529c4b05a3 arm64: handle 52-bit addresses in TTBR
The top 4 bits of a 52-bit physical address are positioned at bits 2..5
in the TTBR registers. Introduce a couple of macros to move the bits
there, and change all TTBR writers to use them.

Leave TTBR0 PAN code unchanged, to avoid complicating it. A system with
52-bit PA will have PAN anyway (because it's ARMv8.1 or later), and a
system without 52-bit PA can only use up to 48-bit PAs. A later patch in
this series will add a kconfig dependency to ensure PAN is configured.

In addition, when using 52-bit PA there is a special alignment
requirement on the top-level table. We don't currently have any VA_BITS
configuration that would violate the requirement, but one could be added
in the future, so add a compile-time BUG_ON to check for it.

Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: added TTBR_BADD_MASK_52 comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-12-22 17:35:21 +00:00
Kristina Martsenko 787fd1d019 arm64: limit PA size to supported range
We currently copy the physical address size from
ID_AA64MMFR0_EL1.PARange directly into TCR.(I)PS. This will not work for
4k and 16k granule kernels on systems that support 52-bit physical
addresses, since 52-bit addresses are only permitted with the 64k
granule.

To fix this, fall back to 48 bits when configuring the PA size when the
kernel does not support 52-bit PAs. When it does, fall back to 52, to
avoid similar problems in the future if the PA size is ever increased
above 52.

Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: tcr_set_pa_size macro renamed to tcr_compute_pa_size]
[catalin.marinas@arm.com: comments added to tcr_compute_pa_size]
[catalin.marinas@arm.com: definitions added for TCR_*PS_SHIFT]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-12-22 17:34:52 +00:00
Linus Torvalds 409232a450 ARM fixes:
- A bug in handling of SPE state for non-vhe systems
 - A fix for a crash on system shutdown
 - Three timer fixes, introduced by the timer optimizations for v4.15
 
 x86 fixes:
 - fix for a WARN that was introduced in 4.15
 - fix for SMM when guest uses PCID
 - fixes for several bugs found by syzkaller
 
 ... and a dozen papercut fixes for the kvm_stat tool.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJaO6N9AAoJEL/70l94x66DC1wH/Rf+u0Cj6ZQil6LK6Nf8bfPd
 3TqrwrxUDeXwi8GzsvK14izBr1mDzidSHIO0Q4XINFRSRdaf43h3R2im/SJqvNhP
 xktCmJI2CxN96oaC7kIExgwf3YKhFdLIADfbT8oR9p3xZG/+c97dkr3b4XtmVCDb
 ZXdUEOcKnoW4zwpfJN30FLlq4OwYvuYVz02AEfPivZRDfhhus/TYSnuSdxH8CLNf
 75ymuKyXoo/RELbimwbMk8Cm9+ey7PjlUGOgbnbXIFtmgznXhLzAOeES2B+46J5b
 sMBPlmiJrn6N//lM18CC5yOBzBLGsYOoXggtw4aU/5nM4GVcFebWedpcoD4D8Jw=
 =Bt8w
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:
 "ARM fixes:
   - A bug in handling of SPE state for non-vhe systems
   - A fix for a crash on system shutdown
   - Three timer fixes, introduced by the timer optimizations for v4.15

  x86 fixes:
   - fix for a WARN that was introduced in 4.15
   - fix for SMM when guest uses PCID
   - fixes for several bugs found by syzkaller

  ... and a dozen papercut fixes for the kvm_stat tool"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
  tools/kvm_stat: sort '-f help' output
  kvm: x86: fix RSM when PCID is non-zero
  KVM: Fix stack-out-of-bounds read in write_mmio
  KVM: arm/arm64: Fix timer enable flow
  KVM: arm/arm64: Properly handle arch-timer IRQs after vtimer_save_state
  KVM: arm/arm64: timer: Don't set irq as forwarded if no usable GIC
  KVM: arm/arm64: Fix HYP unmapping going off limits
  arm64: kvm: Prevent restoring stale PMSCR_EL1 for vcpu
  KVM/x86: Check input paging mode when cs.l is set
  tools/kvm_stat: add line for totals
  tools/kvm_stat: stop ignoring unhandled arguments
  tools/kvm_stat: suppress usage information on command line errors
  tools/kvm_stat: handle invalid regular expressions
  tools/kvm_stat: add hint on '-f help' to man page
  tools/kvm_stat: fix child trace events accounting
  tools/kvm_stat: fix extra handling of 'help' with fields filter
  tools/kvm_stat: fix missing field update after filter change
  tools/kvm_stat: fix drilldown in events-by-guests mode
  tools/kvm_stat: fix command line option '-g'
  kvm: x86: fix WARN due to uninitialized guest FPU state
  ...
2017-12-21 10:44:13 -08:00
Julien Thierry bfe766cf65 arm64: kvm: Prevent restoring stale PMSCR_EL1 for vcpu
When VHE is not present, KVM needs to save and restores PMSCR_EL1 when
possible. If SPE is used by the host, value of PMSCR_EL1 cannot be saved
for the guest.
If the host starts using SPE between two save+restore on the same vcpu,
restore will write the value of PMSCR_EL1 read during the first save.

Make sure __debug_save_spe_nvhe clears the value of the saved PMSCR_EL1
when the guest cannot use SPE.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-12-18 10:53:22 +01:00
Christoffer Dall 66b5656222 KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_set_guest_debug
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_guest_debug().

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:56 +01:00
Shanker Donthineni 932b50c7c1 arm64: Add software workaround for Falkor erratum 1041
The ARM architecture defines the memory locations that are permitted
to be accessed as the result of a speculative instruction fetch from
an exception level for which all stages of translation are disabled.
Specifically, the core is permitted to speculatively fetch from the
4KB region containing the current program counter 4K and next 4K.

When translation is changed from enabled to disabled for the running
exception level (SCTLR_ELn[M] changed from a value of 1 to 0), the
Falkor core may errantly speculatively access memory locations outside
of the 4KB region permitted by the architecture. The errant memory
access may lead to one of the following unexpected behaviors.

1) A System Error Interrupt (SEI) being raised by the Falkor core due
   to the errant memory access attempting to access a region of memory
   that is protected by a slave-side memory protection unit.
2) Unpredictable device behavior due to a speculative read from device
   memory. This behavior may only occur if the instruction cache is
   disabled prior to or coincident with translation being changed from
   enabled to disabled.

The conditions leading to this erratum will not occur when either of the
following occur:
 1) A higher exception level disables translation of a lower exception level
   (e.g. EL2 changing SCTLR_EL1[M] from a value of 1 to 0).
 2) An exception level disabling its stage-1 translation if its stage-2
    translation is enabled (e.g. EL1 changing SCTLR_EL1[M] from a value of 1
    to 0 when HCR_EL2[VM] has a value of 1).

To avoid the errant behavior, software must execute an ISB immediately
prior to executing the MSR that will change SCTLR_ELn[M] from 1 to 0.

Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-12 11:45:19 +00:00
Alex Bennée e3feebf817 kvm: arm64: handle single-step of hyp emulated mmio instructions
There is a fast-path of MMIO emulation inside hyp mode. The handling
of single-step is broadly the same as kvm_arm_handle_step_debug()
except we just setup ESR/HSR so handle_exit() does the correct thing
as we exit.

For the case of an emulated illegal access causing an SError we will
exit via the ARM_EXCEPTION_EL1_SERROR path in handle_exit(). We behave
as we would during a real SError and clear the DBG_SPSR_SS bit for the
emulated instruction.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-11-29 18:17:47 +01:00
Alex Bennée e70dce73be kvm: arm64: handle single-step during SError exceptions
When an SError arrives during single-step both the SError and debug
exceptions may be pending when the step is completed, and the
architecture doesn't define the ordering of the two.  This means that we
can observe en SError even though we've just completed a step, without
receiving a debug exception.  In that case the DBG_SPSR_SS bit will have
flipped as the instruction executed. After handling the abort in
handle_exit() we test to see if the bit is clear and we were
single-stepping before deciding if we need to exit to user space.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-11-29 18:17:46 +01:00
Alex Bennée 7226bc2e12 kvm: arm64: handle single-stepping trapped instructions
If we are using guest debug to single-step the guest, we need to ensure
that we exit after emulating the instruction. This only affects
instructions completely emulated by the kernel. For instructions
emulated in userspace, we need to exit and return to complete the
emulation.

The kvm_arm_handle_step_debug() helper sets up the necessary exit
state if needed.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-11-29 16:46:20 +01:00
Alex Bennée 696673d192 KVM: arm/arm64: debug: Introduce helper for single-step
After emulating instructions we may want return to user-space to handle
single-step debugging. Introduce a helper function, which, if
single-step is enabled, sets the run structure for return and returns
true.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-11-29 16:46:19 +01:00
Paolo Bonzini fc3790fa07 GICv4 Support for KVM/ARM for v4.15
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJaBYxhAAoJEEtpOizt6ddyOc4H/1qADSdnZFVVE5v15Y+E8HLv
 EOXAo/yYJg26fY/TBIXo7gxSZFCd0Ah703aucPGTRFyOb8t0VqIvI07rS1u4sKPp
 mxfidYIZwLMibgno8NBdWB2mFeXrNlWTmwNt/IoO0iMn7IGqQZ/FZdf3GmWEVEsG
 CU/DrQRXArJqS77NuZtkhhZOKBxB0lQNv52DkVgy/QlcBagAI14hbezkLQAco4oT
 NUC4GyXn9yHzpTfhuQXv5hLd4xCqg9e51OgYNSL9oC/JXSByd7edQuqpd4fmnG4Y
 qoDPJ11wmkuUKEDaGbC7nZWIaiVc/TfJy2Hwj3bUVwQFbopCeYhQqCDUSKftncA=
 =o4u7
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-gicv4-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

GICv4 Support for KVM/ARM for v4.15
2017-11-17 13:20:01 +01:00
Linus Torvalds 974aa5630b First batch of KVM changes for 4.15
Common:
  - Python 3 support in kvm_stat
 
  - Accounting of slabs to kmemcg
 
 ARM:
  - Optimized arch timer handling for KVM/ARM
 
  - Improvements to the VGIC ITS code and introduction of an ITS reset
    ioctl
 
  - Unification of the 32-bit fault injection logic
 
  - More exact external abort matching logic
 
 PPC:
  - Support for running hashed page table (HPT) MMU mode on a host that
    is using the radix MMU mode;  single threaded mode on POWER 9 is
    added as a pre-requisite
 
  - Resolution of merge conflicts with the last second 4.14 HPT fixes
 
  - Fixes and cleanups
 
 s390:
  - Some initial preparation patches for exitless interrupts and crypto
 
  - New capability for AIS migration
 
  - Fixes
 
 x86:
  - Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
    after-reset state
 
  - Refined dependencies for VMX features
 
  - Fixes for nested SMI injection
 
  - A lot of cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
 0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
 sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
 0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
 D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
 bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
 =593n
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "First batch of KVM changes for 4.15

  Common:
   - Python 3 support in kvm_stat
   - Accounting of slabs to kmemcg

  ARM:
   - Optimized arch timer handling for KVM/ARM
   - Improvements to the VGIC ITS code and introduction of an ITS reset
     ioctl
   - Unification of the 32-bit fault injection logic
   - More exact external abort matching logic

  PPC:
   - Support for running hashed page table (HPT) MMU mode on a host that
     is using the radix MMU mode; single threaded mode on POWER 9 is
     added as a pre-requisite
   - Resolution of merge conflicts with the last second 4.14 HPT fixes
   - Fixes and cleanups

  s390:
   - Some initial preparation patches for exitless interrupts and crypto
   - New capability for AIS migration
   - Fixes

  x86:
   - Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
     and after-reset state
   - Refined dependencies for VMX features
   - Fixes for nested SMI injection
   - A lot of cleanups"

* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
  KVM: s390: provide a capability for AIS state migration
  KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
  KVM: s390: abstract conversion between isc and enum irq_types
  KVM: s390: vsie: use common code functions for pinning
  KVM: s390: SIE considerations for AP Queue virtualization
  KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
  KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
  KVM: arm/arm64: fix the incompatible matching for external abort
  KVM: arm/arm64: Unify 32bit fault injection
  KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
  KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
  KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
  KVM: arm/arm64: vgic-its: New helper functions to free the caches
  KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
  arm/arm64: KVM: Load the timer state when enabling the timer
  KVM: arm/arm64: Rework kvm_timer_should_fire
  KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
  KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
  KVM: arm/arm64: Move phys_timer_emulate function
  KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
  ...
2017-11-16 13:00:24 -08:00
Linus Torvalds c9b012e5f4 arm64 updates for 4.15
Plenty of acronym soup here:
 
 - Initial support for the Scalable Vector Extension (SVE)
 - Improved handling for SError interrupts (required to handle RAS events)
 - Enable GCC support for 128-bit integer types
 - Remove kernel text addresses from backtraces and register dumps
 - Use of WFE to implement long delay()s
 - ACPI IORT updates from Lorenzo Pieralisi
 - Perf PMU driver for the Statistical Profiling Extension (SPE)
 - Perf PMU driver for Hisilicon's system PMUs
 - Misc cleanups and non-critical fixes
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
 TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
 W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
 VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
 ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
 v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
 =0qrg
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "The big highlight is support for the Scalable Vector Extension (SVE)
  which required extensive ABI work to ensure we don't break existing
  applications by blowing away their signal stack with the rather large
  new vector context (<= 2 kbit per vector register). There's further
  work to be done optimising things like exception return, but the ABI
  is solid now.

  Much of the line count comes from some new PMU drivers we have, but
  they're pretty self-contained and I suspect we'll have more of them in
  future.

  Plenty of acronym soup here:

   - initial support for the Scalable Vector Extension (SVE)

   - improved handling for SError interrupts (required to handle RAS
     events)

   - enable GCC support for 128-bit integer types

   - remove kernel text addresses from backtraces and register dumps

   - use of WFE to implement long delay()s

   - ACPI IORT updates from Lorenzo Pieralisi

   - perf PMU driver for the Statistical Profiling Extension (SPE)

   - perf PMU driver for Hisilicon's system PMUs

   - misc cleanups and non-critical fixes"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
  arm64: Make ARMV8_DEPRECATED depend on SYSCTL
  arm64: Implement __lshrti3 library function
  arm64: support __int128 on gcc 5+
  arm64/sve: Add documentation
  arm64/sve: Detect SVE and activate runtime support
  arm64/sve: KVM: Hide SVE from CPU features exposed to guests
  arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
  arm64/sve: KVM: Prevent guests from using SVE
  arm64/sve: Add sysctl to set the default vector length for new processes
  arm64/sve: Add prctl controls for userspace vector length management
  arm64/sve: ptrace and ELF coredump support
  arm64/sve: Preserve SVE registers around EFI runtime service calls
  arm64/sve: Preserve SVE registers around kernel-mode NEON use
  arm64/sve: Probe SVE capabilities and usable vector lengths
  arm64: cpufeature: Move sys_caps_initialised declarations
  arm64/sve: Backend logic for setting the vector length
  arm64/sve: Signal handling support
  arm64/sve: Support vector length resetting for new processes
  arm64/sve: Core task context handling
  arm64/sve: Low-level CPU setup
  ...
2017-11-15 10:56:56 -08:00
Marc Zyngier 74fe55dc9a KVM: arm/arm64: GICv4: Add init/teardown of the per-VM vPE irq domain
In order to control the GICv4 view of virtual CPUs, we rely
on an irqdomain allocated for that purpose. Let's add a couple
of helpers to that effect.

At the same time, the vgic data structures gain new fields to
track all this... erm... wonderful stuff.

The way we hook into the vgic init is slightly convoluted. We
need the vgic to be initialized (in order to guarantee that
the number of vcpus is now fixed), and we must have a vITS
(otherwise this is all very pointless). So we end-up calling
the init from both vgic_init and vgic_its_create.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-11-10 09:06:56 +01:00
Eric Auger 2412405b31 KVM: arm/arm64: register irq bypass consumer on ARM/ARM64
This patch selects IRQ_BYPASS_MANAGER and HAVE_KVM_IRQ_BYPASS
configs for ARM/ARM64.

kvm_arch_has_irq_bypass() now is implemented and returns true.
As a consequence the irq bypass consumer will be registered for
ARM/ARM64 with the forwarding callbacks:

- stop/start: halt/resume guest execution
- add/del_producer: set/unset forwarding at vgic/irqchip level

We don't have any actual support yet, so nothing gets actually
forwarded.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
[maz: dropped the DEOI stuff for the time being in order to
      reduce the dependency chain, amended commit message]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-11-06 17:19:57 +01:00
Marc Zyngier 74a64a9816 KVM: arm/arm64: Unify 32bit fault injection
Both arm and arm64 implementations are capable of injecting
faults, and yet have completely divergent implementations,
leading to different bugs and reduced maintainability.

Let's elect the arm64 version as the canonical one
and move it into aarch32.c, which is common to both
architectures.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-11-06 16:23:20 +01:00
Christoffer Dall c1b135af83 KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
When trapping on a guest access to one of the timer registers, we were
messing with the internals of the timer state from the sysregs handling
code, and that logic was about to receive more added complexity when
optimizing the timer handling code.

Therefore, since we already have timer register access functions (to
access registers from userspace), reuse those for the timer register
traps from a VM and let the timer code maintain its own consistency.

Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
2017-11-06 16:23:15 +01:00
Christoffer Dall 688c50aa72 KVM: arm/arm64: Move timer save/restore out of the hyp code
As we are about to be lazy with saving and restoring the timer
registers, we prepare by moving all possible timer configuration logic
out of the hyp code.  All virtual timer registers can be programmed from
EL1 and since the arch timer is always a level triggered interrupt we
can safely do this with interrupts disabled in the host kernel on the
way to the guest without taking vtimer interrupts in the host kernel
(yet).

The downside is that the cntvoff register can only be programmed from
hyp mode, so we jump into hyp mode and back to program it.  This is also
safe, because the host kernel doesn't use the virtual timer in the KVM
code.  It may add a little performance performance penalty, but only
until following commits where we move this operation to vcpu load/put.

Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2017-11-06 16:23:13 +01:00
Linus Torvalds f0a32ee42f Fixes for interrupt controller emulation in ARM/ARM64 and x86, plus a one-liner
x86 KVM guest fix.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJZ/fZuAAoJEL/70l94x66DHVkH/i99gyP/BoFaNfooesXpy89o
 VcjuHzp4XYvUmhP1rCGYqYQEVZYrgsqKAsxL5cyN1nF5SWxebpM8cD96yM7lQx2Y
 Ap5rxYWldn41ZmRRLQzCRKgwPG+V+yMlVTDM8FG/PKJyRTG7fMUEN6IBlRZF2yZr
 DNmy2s//JafEUL3TDq2IXCvfZ1d5VEsCfI2xiYsIzQxwKZ1bHFNqbTqWJZr3Xns1
 xL9e0VjMtNaGtyyCs0ZDjco3kAVQp58Q5+BhnL4/P+uqThjFDrpjQ3RmF0mtC95n
 TKQuUP7QpLUoq74RwHa8tP4IpWj2EZLjefOw/s1Uv2XtieJrRmNIHT0OOGBj9O8=
 =uYvL
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:
 "Fixes for interrupt controller emulation in ARM/ARM64 and x86, plus a
  one-liner x86 KVM guest fix"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: Update APICv on APIC reset
  KVM: VMX: Do not fully reset PI descriptor on vCPU reset
  kvm: Return -ENODEV from update_persistent_clock
  KVM: arm/arm64: vgic-its: Check GITS_BASER Valid bit before saving tables
  KVM: arm/arm64: vgic-its: Check CBASER/BASER validity before enabling the ITS
  KVM: arm/arm64: vgic-its: Fix vgic_its_restore_collection_table returned value
  KVM: arm/arm64: vgic-its: Fix return value for device table restore
  arm/arm64: kvm: Disable branch profiling in HYP code
  arm/arm64: kvm: Move initialization completion message
  arm/arm64: KVM: set right LR register value for 32 bit guest when inject abort
  KVM: arm64: its: Fix missing dynamic allocation check in scan_its_table
2017-11-04 11:44:55 -07:00
Dave Martin 07d79fe7c2 arm64/sve: KVM: Hide SVE from CPU features exposed to guests
KVM guests cannot currently use SVE, because SVE is always
configured to trap to EL2.

However, a guest that sees SVE reported as present in
ID_AA64PFR0_EL1 may legitimately expect that SVE works and try to
use it.  Instead of working, the guest will receive an injected
undef exception, which may cause the guest to oops or go into a
spin.

To avoid misleading the guest into believing that SVE will work,
this patch masks out the SVE field from ID_AA64PFR0_EL1 when a
guest attempts to read this register.  No support is explicitly
added for ID_AA64ZFR0_EL1 either, so that is still emulated as
reading as zero, which is consistent with SVE not being
implemented.

This is a temporary measure, and will be removed in a later series
when full KVM support for SVE is implemented.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03 15:24:20 +00:00
Dave Martin aac45ffd1f arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
When trapping forbidden attempts by a guest to use SVE, we want the
guest to see a trap consistent with SVE not being implemented.

This patch injects an undefined instruction exception into the
guest in response to such an exception.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03 15:24:20 +00:00
Dave Martin 17eed27b02 arm64/sve: KVM: Prevent guests from using SVE
Until KVM has full SVE support, guests must not be allowed to
execute SVE instructions.

This patch enables the necessary traps, and also ensures that the
traps are disabled again on exit from the guest so that the host
can still use SVE if it wants to.

On guest exit, high bits of the SVE Zn registers may have been
clobbered as a side-effect the execution of FPSIMD instructions in
the guest.  The existing KVM host FPSIMD restore code is not
sufficient to restore these bits, so this patch explicitly marks
the CPU as not containing cached vector state for any task, thus
forcing a reload on the next return to userspace.  This is an
interim measure, in advance of adding full SVE awareness to KVM.

This marking of cached vector state in the CPU as invalid is done
using __this_cpu_write(fpsimd_last_state, NULL) in fpsimd.c.  Due
to the repeated use of this rather obscure operation, it makes
sense to factor it out as a separate helper with a clearer name.
This patch factors it out as fpsimd_flush_cpu_state(), and ports
all callers to use it.

As a side effect of this refactoring, a this_cpu_write() in
fpsimd_cpu_pm_notifier() is changed to __this_cpu_write().  This
should be fine, since cpu_pm_enter() is supposed to be called only
with interrupts disabled.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03 15:24:19 +00:00
Dave Martin 93390c0a1b arm64: KVM: Hide unsupported AArch64 CPU features from guests
Currently, a guest kernel sees the true CPU feature registers
(ID_*_EL1) when it reads them using MRS instructions.  This means
that the guest may observe features that are present in the
hardware but the host doesn't understand or doesn't provide support
for.  A guest may legimitately try to use such a feature as per the
architecture, but use of the feature may trap instead of working
normally, triggering undef injection into the guest.

This is not a problem for the host, but the guest may go wrong when
running on newer hardware than the host knows about.

This patch hides from guest VMs any AArch64-specific CPU features
that the host doesn't support, by exposing to the guest the
sanitised versions of the registers computed by the cpufeatures
framework, instead of the true hardware registers.  To achieve
this, HCR_EL2.TID3 is now set for AArch64 guests, and emulation
code is added to KVM to report the sanitised versions of the
affected registers in response to MRS and register reads from
userspace.

The affected registers are removed from invariant_sys_regs[] (since
the invariant_sys_regs handling is no longer quite correct for
them) and added to sys_reg_desgs[], with appropriate access(),
get_user() and set_user() methods.  No runtime vcpu storage is
allocated for the registers: instead, they are read on demand from
the cpufeatures framework.  This may need modification in the
future if there is a need for userspace to customise the features
visible to the guest.

Attempts by userspace to write the registers are handled similarly
to the current invariant_sys_regs handling: writes are permitted,
but only if they don't attempt to change the value.  This is
sufficient to support VM snapshot/restore from userspace.

Because of the additional registers, restoring a VM on an older
kernel may not work unless userspace knows how to handle the extra
VM registers exposed to the KVM user ABI by this patch.

Under the principle of least damage, this patch makes no attempt to
handle any of the other registers currently in
invariant_sys_regs[], or to emulate registers for AArch32: however,
these could be handled in a similar way in future, as necessary.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03 15:24:12 +00:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Julien Thierry f9b269f309 arm/arm64: kvm: Disable branch profiling in HYP code
When HYP code runs into branch profiling code, it attempts to jump to
unmapped memory, causing a HYP Panic.

Disable the branch profiling for code designed to run at HYP mode.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-10-21 17:03:20 +02:00
Dongjiu Geng fd6c8c206f arm/arm64: KVM: set right LR register value for 32 bit guest when inject abort
When a exception is trapped to EL2, hardware uses  ELR_ELx to hold
the current fault instruction address. If KVM wants to inject a
abort to 32 bit guest, it needs to set the LR register for the
guest to emulate this abort happened in the guest. Because ARM32
architecture is pipelined execution, so the LR value has an offset to
the fault instruction address.

The offsets applied to Link value for exceptions as shown below,
which should be added for the ARM32 link register(LR).

Table taken from ARMv8 ARM DDI0487B-B, table G1-10:
Exception			Offset, for PE state of:
				A32 	  T32
Undefined Instruction 		+4 	  +2
Prefetch Abort 			+4 	  +4
Data Abort 			+8 	  +8
IRQ or FIQ 			+4 	  +4

  [ Removed unused variables in inject_abt to avoid compile warnings.
    -- Christoffer ]

Cc: <stable@vger.kernel.org>
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Tested-by: Haibin Zhang <zhanghaibin7@huawei.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-10-21 17:03:15 +02:00
Will Deacon a173c390d9 arm64: sysreg: Move SPE registers and PSB into common header files
SPE is part of the v8.2 architecture, so move its system register and
field definitions into sysreg.h and the new PSB barrier into barrier.h

Finally, move KVM over to using the generic definitions so that it
doesn't have to open-code its own versions.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-18 12:53:32 +01:00
Linus Torvalds 0756b7fbb6 First batch of KVM changes for 4.14
Common:
  - improve heuristic for boosting preempted spinlocks by ignoring VCPUs
    in user mode
 
 ARM:
  - fix for decoding external abort types from guests
 
  - added support for migrating the active priority of interrupts when
    running a GICv2 guest on a GICv3 host
 
  - minor cleanup
 
 PPC:
  - expose storage keys to userspace
 
  - merge powerpc/topic/ppc-kvm branch that contains
    find_linux_pte_or_hugepte and POWER9 thread management cleanup
 
  - merge kvm-ppc-fixes with a fix that missed 4.13 because of vacations
 
  - fixes
 
 s390:
  - merge of topic branch tlb-flushing from the s390 tree to get the
    no-dat base features
 
  - merge of kvm/master to avoid conflicts with additional sthyi fixes
 
  - wire up the no-dat enhancements in KVM
 
  - multiple epoch facility (z14 feature)
 
  - Configuration z/Architecture Mode
 
  - more sthyi fixes
 
  - gdb server range checking fix
 
  - small code cleanups
 
 x86:
  - emulate Hyper-V TSC frequency MSRs
 
  - add nested INVPCID
 
  - emulate EPTP switching VMFUNC
 
  - support Virtual GIF
 
  - support 5 level page tables
 
  - speedup nested VM exits by packing byte operations
 
  - speedup MMIO by using hardware provided physical address
 
  - a lot of fixes and cleanups, especially nested
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJZspE1AAoJEED/6hsPKofoDcMIALT11n+LKV50QGwQdg2W1GOt
 aChbgnj/Kegit3hQlDhVNb8kmdZEOZzSL81Lh0VPEr7zXU8QiWn2snbizDPv8sde
 MpHhcZYZZ0YrpoiZKjl8yiwcu88OWGn2qtJ7OpuTS5hvEGAfxMncp0AMZho6fnz/
 ySTwJ9GK2MTgBw39OAzCeDOeoYn4NKYMwjJGqBXRhNX8PG/1wmfqv0vPrd6wfg31
 KJ58BumavwJjr8YbQ1xELm9rpQrAmaayIsG0R1dEUqCbt5a1+t2gt4h2uY7tWcIv
 ACt2bIze7eF3xA+OpRs+eT+yemiH3t9btIVmhCfzUpnQ+V5Z55VMSwASLtTuJRQ=
 =R8Ry
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "First batch of KVM changes for 4.14

  Common:
   - improve heuristic for boosting preempted spinlocks by ignoring
     VCPUs in user mode

  ARM:
   - fix for decoding external abort types from guests

   - added support for migrating the active priority of interrupts when
     running a GICv2 guest on a GICv3 host

   - minor cleanup

  PPC:
   - expose storage keys to userspace

   - merge kvm-ppc-fixes with a fix that missed 4.13 because of
     vacations

   - fixes

  s390:
   - merge of kvm/master to avoid conflicts with additional sthyi fixes

   - wire up the no-dat enhancements in KVM

   - multiple epoch facility (z14 feature)

   - Configuration z/Architecture Mode

   - more sthyi fixes

   - gdb server range checking fix

   - small code cleanups

  x86:
   - emulate Hyper-V TSC frequency MSRs

   - add nested INVPCID

   - emulate EPTP switching VMFUNC

   - support Virtual GIF

   - support 5 level page tables

   - speedup nested VM exits by packing byte operations

   - speedup MMIO by using hardware provided physical address

   - a lot of fixes and cleanups, especially nested"

* tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits)
  KVM: arm/arm64: Support uaccess of GICC_APRn
  KVM: arm/arm64: Extract GICv3 max APRn index calculation
  KVM: arm/arm64: vITS: Drop its_ite->lpi field
  KVM: arm/arm64: vgic: constify seq_operations and file_operations
  KVM: arm/arm64: Fix guest external abort matching
  KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd
  KVM: s390: vsie: cleanup mcck reinjection
  KVM: s390: use WARN_ON_ONCE only for checking
  KVM: s390: guestdbg: fix range check
  KVM: PPC: Book3S HV: Report storage key support to userspace
  KVM: PPC: Book3S HV: Fix case where HDEC is treated as 32-bit on POWER9
  KVM: PPC: Book3S HV: Fix invalid use of register expression
  KVM: PPC: Book3S HV: Fix H_REGISTER_VPA VPA size validation
  KVM: PPC: Book3S HV: Fix setting of storage key in H_ENTER
  KVM: PPC: e500mc: Fix a NULL dereference
  KVM: PPC: e500: Fix some NULL dereferences on error
  KVM: PPC: Book3S HV: Protect updates to spapr_tce_tables list
  KVM: s390: we are always in czam mode
  KVM: s390: expose no-DAT to guest and migration support
  KVM: s390: sthyi: remove invalid guest write access
  ...
2017-09-08 15:18:36 -07:00
Christoffer Dall 50f5bd5718 KVM: arm/arm64: Extract GICv3 max APRn index calculation
As we are about to access the APRs from the GICv2 uaccess interface,
make this logic generally available.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-09-05 17:33:39 +02:00
Catalin Marinas af29678fe7 arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths
Since the pte handling for hardware AF/DBM works even when the hardware
feature is not present, make the pte accessors implementation permanent
and remove the corresponding #ifdefs. The Kconfig option is kept as it
can still be used to disable the feature at the hardware level.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-21 11:13:11 +01:00
Longpeng(Mike) f01fbd2fad KVM: arm: implements the kvm_arch_vcpu_in_kernel()
This implements the kvm_arch_vcpu_in_kernel() for ARM, and adjusts
the calls to kvm_vcpu_on_spin().

Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-08 10:57:43 +02:00
Longpeng(Mike) 199b5763d3 KVM: add spinlock optimization framework
If a vcpu exits due to request a user mode spinlock, then
the spinlock-holder may be preempted in user mode or kernel mode.
(Note that not all architectures trap spin loops in user mode,
only AMD x86 and ARM/ARM64 currently do).

But if a vcpu exits in kernel mode, then the holder must be
preempted in kernel mode, so we should choose a vcpu in kernel mode
as a more likely candidate for the lock holder.

This introduces kvm_arch_vcpu_in_kernel() to decide whether the
vcpu is in kernel-mode when it's preempted.  kvm_vcpu_on_spin's
new argument says the same of the spinning VCPU.

Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-08 10:57:43 +02:00
Andrew Jones d9f89b4e92 KVM: arm/arm64: PMU: Fix overflow interrupt injection
kvm_pmu_overflow_set() is called from perf's interrupt handler,
making the call of kvm_vgic_inject_irq() from it introduced with
"KVM: arm/arm64: PMU: remove request-less vcpu kick" a really bad
idea, as it's quite easy to try and retake a lock that the
interrupted context is already holding. The fix is to use a vcpu
kick, leaving the interrupt injection to kvm_pmu_sync_hwstate(),
like it was doing before the refactoring. We don't just revert,
though, because before the kick was request-less, leaving the vcpu
exposed to the request-less vcpu kick race, and also because the
kick was used unnecessarily from register access handlers.

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-07-25 14:18:01 +01:00
Linus Torvalds 2074006dac The new features of this release:
- Added TRACE_DEFINE_SIZEOF() which allows trace events that use
     sizeof() it the TP_printk() to be converted to the actual size such
     that trace-cmd and perf can parse them correctly.
 
   - Some rework of the TRACE_DEFINE_ENUM() such that the above
     TRACE_DEFINE_SIZEOF() could reuse the same code.
 
   - Recording of tgid (Thread Group ID). This is similar to how
     task COMMs are recorded (cached at sched_switch), where it is
     in a table and used on output of the trace and trace_pipe files.
 
   - Have ":mod:<module>" be cached when written into set_ftrace_filter.
     Then the functions of the module will be traced at module load.
 
   - Some random clean ups and small fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQExBAABCAAbBQJZXjYuFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
 fsgIAKUvhpn2igoYCR9tWqu+DovEmwxCIumbCzmCFQcRKlLttRte94yY5+W9hnV0
 JPzd9T9zBDVqq1fI7iIop1SuTwEfKW6lJom0usZ8AFpK+YKm6FHnQ28POlvHzre2
 lzO41tpRWiehLQsITZ47eByhsvEfhx86mYT/oM1JSR6Pii1OpjyNYmDMw6BaMNBT
 kSCQFgIhzAhVuHjwAnB/S++E/ou7M5bCwCb5CNh7MubKubV5upHpoJcgYGO+WWa6
 56H/iEhff4EECTGJVefd8e78MtJPL8EsuM0nAcMPlnl8AaiOpP7XCdlgTwdefLvP
 b3o+nP15voSHkARGXC6eM6gH0po=
 =rvGB
 -----END PGP SIGNATURE-----

Merge tag 'trace-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing updates from Steven Rostedt:
 "The new features of this release:

   - Added TRACE_DEFINE_SIZEOF() which allows trace events that use
     sizeof() it the TP_printk() to be converted to the actual size such
     that trace-cmd and perf can parse them correctly.

   - Some rework of the TRACE_DEFINE_ENUM() such that the above
     TRACE_DEFINE_SIZEOF() could reuse the same code.

   - Recording of tgid (Thread Group ID). This is similar to how task
     COMMs are recorded (cached at sched_switch), where it is in a table
     and used on output of the trace and trace_pipe files.

   - Have ":mod:<module>" be cached when written into set_ftrace_filter.
     Then the functions of the module will be traced at module load.

   - Some random clean ups and small fixes"

* tag 'trace-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (26 commits)
  ftrace: Test for NULL iter->tr in regex for stack_trace_filter changes
  ftrace: Decrement count for dyn_ftrace_total_info for init functions
  ftrace: Unlock hash mutex on failed allocation in process_mod_list()
  tracing: Add support for display of tgid in trace output
  tracing: Add support for recording tgid of tasks
  ftrace: Decrement count for dyn_ftrace_total_info file
  ftrace: Remove unused function ftrace_arch_read_dyn_info()
  sh/ftrace: Remove only user of ftrace_arch_read_dyn_info()
  ftrace: Have cached module filters be an active filter
  ftrace: Implement cached modules tracing on module load
  ftrace: Have the cached module list show in set_ftrace_filter
  ftrace: Add :mod: caching infrastructure to trace_array
  tracing: Show address when function names are not found
  ftrace: Add missing comment for FTRACE_OPS_FL_RCU
  tracing: Rename update the enum_map file
  tracing: Add TRACE_DEFINE_SIZEOF() macros
  tracing: define TRACE_DEFINE_SIZEOF() macro to map sizeof's to their values
  tracing: Rename enum_replace to eval_replace
  trace: rename enum_map functions
  trace: rename trace.c enum functions
  ...
2017-07-06 19:45:45 -07:00
Mark Rutland 0959db6c0b arm64/kvm: vgic: use SYS_DESC()
Almost all of the arm64 KVM code uses the sysreg mnemonics for AArch64
register descriptions. Move the last straggler over.

To match what we do for SYS_ICH_AP*R*_EL2, the SYS_ICC_AP*R*_EL1
mnemonics are expanded in <asm/sysreg.h>.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-15 09:45:08 +01:00
Mark Rutland 21bc528177 arm64/kvm: sysreg: fix typo'd SYS_ICC_IGRPEN*_EL1
Per ARM DDI 0487B.a, the registers are named ICC_IGRPEN*_EL1 rather than
ICC_GRPEN*_EL1. Correct our mnemonics and comments to match, before we
add more GICv3 register definitions.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-15 09:45:07 +01:00
Marc Zyngier 7b1dba1f73 KVM: arm64: Log an error if trapping a write-to-read-only GICv3 access
A write-to-read-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-15 09:45:07 +01:00
Marc Zyngier e7f1d1eef4 KVM: arm64: Log an error if trapping a read-from-write-only GICv3 access
A read-from-write-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-15 09:45:06 +01:00
Marc Zyngier 59da1cbfd8 KVM: arm64: vgic-v3: Add hook to handle guest GICv3 sysreg accesses at EL2
In order to start handling guest access to GICv3 system registers,
let's add a hook that will get called when we trap a system register
access. This is gated by a new static key (vgic_v3_cpuif_trap).

Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-15 09:44:59 +01:00
Marc Zyngier 6f2f10cabe Merge branch 'kvmarm-master/master' into HEAD 2017-06-15 09:35:15 +01:00
Jeremy Linton ff910cfdc6 tracing: Add TRACE_DEFINE_SIZEOF() macros
There are a few places in the kernel where sizeof() is already
being used. Update those locations with TRACE_DEFINE_SIZEOF.

Link: http://lkml.kernel.org/r/20170531215653.3240-12-jeremy.linton@arm.com

Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2017-06-13 17:11:08 -04:00
Christoffer Dall 99a1db7a2c KVM: arm/arm64: Allow setting the timer IRQ numbers from userspace
First we define an ABI using the vcpu devices that lets userspace set
the interrupt numbers for the various timers on both the 32-bit and
64-bit KVM/ARM implementations.

Second, we add the definitions for the groups and attributes introduced
by the above ABI.  (We add the PMU define on the 32-bit side as well for
symmetry and it may get used some day.)

Third, we set up the arch-specific vcpu device operation handlers to
call into the timer code for anything related to the
KVM_ARM_VCPU_TIMER_CTRL group.

Fourth, we implement support for getting and setting the timer interrupt
numbers using the above defined ABI in the arch timer code.

Fifth, we introduce error checking upon enabling the arch timer (which
is called when first running a VCPU) to check that all VCPUs are
configured to use the same PPI for the timer (as mandated by the
architecture) and that the virtual and physical timers are not
configured to use the same IRQ number.

Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2017-06-08 16:59:57 +02:00
Christoffer Dall 85e69ad7f2 KVM: arm/arm64: Move timer IRQ default init to arch_timer.c
We currently initialize the arch timer IRQ numbers from the reset code,
presumably because we once intended to model multiple CPU or SoC types
from within the kernel and have hard-coded reset values in the reset
code.

As we are moving towards userspace being in charge of more fine-grained
CPU emulation and stitching together the pieces needed to emulate a
particular type of CPU, we should no longer have a tight coupling
between resetting a VCPU and setting IRQ numbers.

Therefore, move the logic to define and use the default IRQ numbers to
the timer code and set the IRQ number immediately when creating the
VCPU.

Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2017-06-08 16:59:56 +02:00
Marc Zyngier 78fd6dcf11 arm64: KVM: Allow unaligned accesses at EL2
We currently have the SCTLR_EL2.A bit set, trapping unaligned accesses
at EL2, but we're not really prepared to deal with it. So far, this
has been unnoticed, until GCC 7 started emitting those (in particular
64bit writes on a 32bit boundary).

Since the rest of the kernel is pretty happy about that, let's follow
its example and set SCTLR_EL2.A to zero. Modern CPUs don't really
care.

Cc: stable@vger.kernel.org
Reported-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-06 22:20:02 +02:00
Marc Zyngier d68c1f7fd1 arm64: KVM: Preserve RES1 bits in SCTLR_EL2
__do_hyp_init has the rather bad habit of ignoring RES1 bits and
writing them back as zero. On a v8.0-8.2 CPU, this doesn't do anything
bad, but may end-up being pretty nasty on future revisions of the
architecture.

Let's preserve those bits so that we don't have to fix this later on.

Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-06 22:20:02 +02:00
Andrew Jones 6a6d73be12 KVM: arm/arm64: properly use vcpu requests
arm/arm64 already has one VCPU request used when setting pause,
but it doesn't properly check requests in VCPU RUN. Check it
and also make sure we set vcpu->mode at the appropriate time
(before the check) and with the appropriate barriers. See
Documentation/virtual/kvm/vcpu-requests.rst. Also make sure we
don't leave any vcpu requests we don't intend to handle later
set in the request bitmap. If we don't clear them, then
kvm_request_pending() may return true when it shouldn't.

Using VCPU requests properly fixes a small race where pause
could get set just as a VCPU was entering guest mode.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-04 16:53:47 +02:00
Christoffer Dall 28232a4317 KVM: arm/arm64: Fix isues with GICv2 on GICv3 migration
We have been a little loose with our intermediate VMCR representation
where we had a 'ctlr' field, but we failed to differentiate between the
GICv2 GICC_CTLR and ICC_CTLR_EL1 layouts, and therefore ended up mapping
the wrong bits into the individual fields of the ICH_VMCR_EL2 when
emulating a GICv2 on a GICv3 system.

Fix this by using explicit fields for the VMCR bits instead.

Cc: Eric Auger <eric.auger@redhat.com>
Reported-by: wanghaibin <wanghaibin.wang@huawei.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
2017-05-24 09:44:07 +02:00
James Morse e8ec032b18 KVM: arm64: Restore host physical timer access on hyp_panic()
When KVM panics, it hurridly restores the host context and parachutes
into the host's panic() code. At some point panic() touches the physical
timer/counter. Unless we are an arm64 system with VHE, this traps back
to EL2. If we're lucky, we panic again.

Add a __timer_save_state() call to KVMs hyp_panic() path, this saves the
guest registers and disables the traps for the host.

Fixes: 53fd5b6487 ("arm64: KVM: Add panic handling")
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-05-16 09:54:25 +02:00
Marc Zyngier cde13b5dad arm64: KVM: Do not use stack-protector to compile EL2 code
We like living dangerously. Nothing explicitely forbids stack-protector
to be used in the EL2 code, while distributions routinely compile their
kernel with it. We're just lucky that no code actually triggers the
instrumentation.

Let's not try our luck for much longer, and disable stack-protector
for code living at EL2.

Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-05-15 11:31:16 +02:00
Paolo Bonzini 36c344f3f1 Second round of KVM/ARM Changes for v4.12.
Changes include:
  - A fix related to the 32-bit idmap stub
  - A fix to the bitmask used to deode the operands of an AArch32 CP
    instruction
  - We have moved the files shared between arch/arm/kvm and
    arch/arm64/kvm to virt/kvm/arm
  - We add support for saving/restoring the virtual ITS state to
    userspace
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJZEZihAAoJEEtpOizt6ddyGDYH/jmGjDMnryORn2P2o10dUQKJ
 RnHTQYnpOYqnprlkFtZFpmK+mjl/a8R1Btb7GK2EwmovTR95pMYPRqtrCTOL0aQA
 4OToh7+vFGatwxsGCS6utazdhmx0UT/LhO/GEF4G1zOb7eVa4ZtS1NKLP2WjPD1E
 RU3Qn8wa0pESv3tJScv8qo2+PWVX4krbFllhY2Hk0AkVQcI66ExkdVq4ikm1eUXn
 rxzIayLG2bv3KEPNCzozdwoY9tDL+b40q6vN/RHGJmM05SZbbSx2/Bkw2RbslSpD
 2hvhHWX7xeuEBcd5mZO7sP4WS3hM/BI8eX7q+uMeNJ9B+nM82yjGfOTtglVi2cc=
 =JfvQ
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

Second round of KVM/ARM Changes for v4.12.

Changes include:
 - A fix related to the 32-bit idmap stub
 - A fix to the bitmask used to deode the operands of an AArch32 CP
   instruction
 - We have moved the files shared between arch/arm/kvm and
   arch/arm64/kvm to virt/kvm/arm
 - We add support for saving/restoring the virtual ITS state to
   userspace
2017-05-09 12:51:49 +02:00
Linus Torvalds 2d3e4866de * ARM: HYP mode stub supports kexec/kdump on 32-bit; improved PMU
support; virtual interrupt controller performance improvements; support
 for userspace virtual interrupt controller (slower, but necessary for
 KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
 
 * MIPS: basic support for hardware virtualization (ImgTec
 P5600/P6600/I6400 and Cavium Octeon III)
 
 * PPC: in-kernel acceleration for VFIO
 
 * s390: support for guests without storage keys; adapter interruption
 suppression
 
 * x86: usual range of nVMX improvements, notably nested EPT support for
 accessed and dirty bits; emulation of CPL3 CPUID faulting
 
 * generic: first part of VCPU thread request API; kvm_stat improvements
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
 9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
 0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
 2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
 Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
 32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
 =IsiZ
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - HYP mode stub supports kexec/kdump on 32-bit
   - improved PMU support
   - virtual interrupt controller performance improvements
   - support for userspace virtual interrupt controller (slower, but
     necessary for KVM on the weird Broadcom SoCs used by the Raspberry
     Pi 3)

  MIPS:
   - basic support for hardware virtualization (ImgTec P5600/P6600/I6400
     and Cavium Octeon III)

  PPC:
   - in-kernel acceleration for VFIO

  s390:
   - support for guests without storage keys
   - adapter interruption suppression

  x86:
   - usual range of nVMX improvements, notably nested EPT support for
     accessed and dirty bits
   - emulation of CPL3 CPUID faulting

  generic:
   - first part of VCPU thread request API
   - kvm_stat improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  kvm: nVMX: Don't validate disabled secondary controls
  KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
  Revert "KVM: Support vCPU-based gfn->hva cache"
  tools/kvm: fix top level makefile
  KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
  KVM: Documentation: remove VM mmap documentation
  kvm: nVMX: Remove superfluous VMX instruction fault checks
  KVM: x86: fix emulation of RSM and IRET instructions
  KVM: mark requests that need synchronization
  KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
  KVM: add explicit barrier to kvm_vcpu_kick
  KVM: perform a wake_up in kvm_make_all_cpus_request
  KVM: mark requests that do not need a wakeup
  KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
  KVM: x86: always use kvm_make_request instead of set_bit
  KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
  s390: kvm: Cpu model support for msa6, msa7 and msa8
  KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
  kvm: better MWAIT emulation for guests
  KVM: x86: virtualize cpuid faulting
  ...
2017-05-08 12:37:56 -07:00
Christoffer Dall 35d2d5d490 KVM: arm/arm64: Move shared files to virt/kvm/arm
For some time now we have been having a lot of shared functionality
between the arm and arm64 KVM support in arch/arm, which not only
required a horrible inter-arch reference from the Makefile in
arch/arm64/kvm, but also created confusion for newcomers to the code
base, as was recently seen on the mailing list.

Further, it causes confusion for things like cscope, which needs special
attention to index specific shared files for arm64 from the arm tree.

Move the shared files into virt/kvm/arm and move the trace points along
with it.  When moving the tracepoints we have to modify the way the vgic
creates definitions of the trace points, so we take the chance to
include the VGIC tracepoints in its very own special vgic trace.h file.

Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-05-04 13:57:26 +02:00
Marc Zyngier c667186f1c arm64: KVM: Fix decoding of Rt/Rt2 when trapping AArch32 CP accesses
Our 32bit CP14/15 handling inherited some of the ARMv7 code for handling
the trapped system registers, completely missing the fact that the
fields for Rt and Rt2 are now 5 bit wide, and not 4...

Let's fix it, and provide an accessor for the most common Rt case.

Cc: stable@vger.kernel.org
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-05-02 09:53:46 +02:00
Christoffer Dall 5f6e00709c Merge remote-tracking branch 'rutland/kvm/common-sysreg' into next-fix 2017-04-09 07:50:34 -07:00
Marc Zyngier af42f20480 arm64: hyp-stub: Zero x0 on successful stub handling
We now return HVC_STUB_ERR when a stub hypercall fails, but we
leave whatever was in x0 on success. Zeroing it on return seems
like a good idea.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:35 -07:00
Marc Zyngier 0b51c547fd arm64: hyp-stub/KVM: Kill __hyp_get_vectors
Nobody is using __hyp_get_vectors anymore, so let's remove both
implementations (hyp-stub and KVM).

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:34 -07:00
Marc Zyngier 506c372ac4 arm64: KVM: Implement HVC_SOFT_RESTART in the init code
Another missing stub hypercall is HVC_SOFT_RESTART. It turns out
that it is pretty easy to implement in terms of HVC_RESET_VECTORS
(since it needs to turn the MMU off).

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:23 -07:00
Marc Zyngier 4adb1341c7 arm64: KVM: Convert __cpu_reset_hyp_mode to using __hyp_reset_vectors
We are now able to use the hyp stub to reset HYP mode. Time to
kiss __kvm_hyp_reset goodbye, and use __hyp_reset_vectors.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:22 -07:00
Marc Zyngier 5fbe9a599a arm64: KVM: Allow the main HYP code to use the init hyp stub implementation
We now have a full hyp-stub implementation in the KVM init code,
but the main KVM code only supports HVC_GET_VECTORS, which is not
enough.

Instead of reinventing the wheel, let's reuse the init implementation
by branching to the idmap page when called with a hyp-stub hypercall.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:22 -07:00
Marc Zyngier 82529d9bfd arm64: KVM: Implement HVC_GET_VECTORS in the init code
Now that we have an infrastructure to handle hypercalls in the KVM
init code, let's implement HVC_GET_VECTORS there.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:21 -07:00
Marc Zyngier fb1b4e01d2 arm64: KVM: Implement HVC_RESET_VECTORS stub hypercall in the init code
In order to restore HYP mode to its original condition, KVM currently
implements __kvm_hyp_reset(). As we're moving towards a hyp-stub
defined API, it becomes necessary to implement HVC_RESET_VECTORS.

This patch adds the HVC_RESET_VECTORS hypercall to the KVM init
code, which so far lacked any form of hypercall support.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:20 -07:00
Marc Zyngier 6c9ae25dfc arm64: KVM: Move lr save/restore to do_el2_call
At the moment, we only save/restore lr if on VHE, as we rely only
the EL1 code to have preserved it in the non-VHE case.

As we're about to get rid of the latter, let's move the save/restore
code to the do_el2_call macro, unifying both code paths.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:18 -07:00
Marc Zyngier b6b7a8069d arm64: KVM: Do not corrupt registers on failed 64bit CP read
If we fail to emulate a mrrc instruction, we:
1) deliver an exception,
2) spit a nastygram on the console,
3) write back some garbage to Rt/Rt2

While 1) and 2) are perfectly acceptable, 3) is out of the scope of
the architecture... Let's mimick the code in kvm_handle_cp_32 and
be more cautious.

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:15 -07:00
Marc Zyngier e70b952263 arm64: KVM: Treat sysreg accessors returning false as successful
Instead of considering that a sysreg accessor has failed when
returning false, let's consider that it is *always* successful
(after all, we won't stand for an incomplete emulation).

The return value now simply indicates whether we should skip
the instruction (because it has now been emulated), or if we
should leave the PC alone if the emulation has injected an
exception.

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-04-09 07:49:15 -07:00
Marc Zyngier e044323016 arm64: KVM: PMU: Inject UNDEF on read access to PMSWINC_EL0
PMSWINC_EL0 is a WO register, so let's UNDEF when reading from it
(in the highly hypothetical case where this doesn't UNDEF at EL1).

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-04-09 07:49:14 -07:00
Marc Zyngier 7b5b4df1a7 arm64: KVM: Make unexpected reads from WO registers inject an undef
Reads from write-only system registers are generally confined to
EL1 and not propagated to EL2 (that's what the architecture
mantates). In order to be sure that we have a sane behaviour
even in the unlikely event that we have a broken system, we still
handle it in KVM.

In that case, let's inject an undef into the guest.

Let's also remove write_to_read_only which isn't used anywhere.

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-04-09 07:49:14 -07:00
Marc Zyngier 9008c235cb arm64: KVM: PMU: Inject UNDEF on non-privileged accesses
access_pminten() and access_pmuserenr() can only be accessed when
the CPU is in a priviledged mode. If it is not, let's inject an
UNDEF exception.

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-04-09 07:49:13 -07:00
Marc Zyngier 24d5950f6b arm64: KVM: PMU: Inject UNDEF exception on illegal register access
Both pmu_*_el0_disabled() and pmu_counter_idx_valid() perform checks
on the validity of an access, but only return a boolean indicating
if the access is valid or not.

Let's allow these functions to also inject an UNDEF exception if
the access was illegal.

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-04-09 07:49:13 -07:00
Marc Zyngier 6c0070366d arm64: KVM: PMU: Refactor pmu_*_el0_disabled
There is a lot of duplication in the pmu_*_el0_disabled helpers,
and as we're going to modify them shortly, let's move all the
common stuff in a single function.

No functional change.

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:12 -07:00
Dave Martin 46823dd17c arm64: cpufeature: Make ID reg accessor naming less counterintuitive
read_system_reg() can readily be confused with read_sysreg(),
whereas these are really quite different in their meaning.

This patches attempts to reduce the ambiguity be reserving "sysreg"
for the actual system register accessors.

read_system_reg() is instead renamed to read_sanitised_ftr_reg(),
to make it more obvious that the Linux-defined sanitised feature
register cache is being accessed here, not the underlying
architectural system registers.

cpufeature.c's internal __raw_read_system_reg() function is renamed
in line with its actual purpose: a form of read_sysreg() that
indexes on (non-compiletime-constant) encoding rather than symbolic
register name.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-04 16:55:41 +01:00
Mark Rutland 7606e07856 KVM: arm64: Use common Set/Way sys definitions
Now that we have common definitions for the encoding of Set/Way cache
maintenance operations, make the KVM code use these, simplifying the
sys_reg_descs table.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
2017-03-22 18:38:38 +00:00
Mark Rutland 851050a573 KVM: arm64: Use common sysreg definitions
Now that we have common definitions for the remaining register encodings
required by KVM, make the KVM code use these, simplifying the
sys_reg_descs table and the genericv8_sys_regs table.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
2017-03-22 18:38:26 +00:00
Mark Rutland 0d449541c1 KVM: arm64: use common invariant sysreg definitions
Now that we have common definitions for the register encodings used by
KVM, make the KVM code uses thse for invariant sysreg definitions. This
makes said definitions a reasonable amount shorter, especially as many
comments are rendered redundant and can be removed.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
2017-03-22 18:38:18 +00:00
Mark Rutland b2d693ced2 KVM: arm64: Use common physical timer sysreg definitions
Now that we have common definitions for the physical timer control
registers, make the KVM code use these, simplifying the sys_reg_descs
table.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
2017-03-22 18:38:09 +00:00
Mark Rutland e804d20897 KVM: arm64: Use common GICv3 sysreg definitions
Now that we have common definitions for the GICv3 register encodings,
make the KVM code use these, simplifying the sys_reg_descs table.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
2017-03-22 18:38:01 +00:00
Mark Rutland 174ed3e475 KVM: arm64: Use common performance monitor sysreg definitions
Now that we have common definitions for the performance monitor register
encodings, make the KVM code use these, simplifying the sys_reg_descs
table.

The comments for PMUSERENR_EL0 and PMCCFILTR_EL0 are kept, as these
describe non-obvious details regarding the registers. However, a slight
fixup is applied to bring these into line with the usual comment style.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
2017-03-22 18:37:53 +00:00
Mark Rutland ee1b64e6cc KVM: arm64: Use common debug sysreg definitions
Now that we have common definitions for the debug register encodings,
make the KVM code use these, simplifying the sys_reg_descs table.

The table previously erroneously referred to MDCCSR_EL0 as MDCCSR_EL1.
This is corrected (as is necessary in order to use the common sysreg
definition).

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
2017-03-22 18:37:45 +00:00
Mark Rutland 8db5d8f141 KVM: arm64: add SYS_DESC()
This patch adds a macro enabling us to initialise sys_reg_desc
structures based on common sysreg encoding definitions in
<asm/sysreg.h>. Subsequent patches will use this to simplify the KVM
code.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
2017-03-22 18:37:36 +00:00
Will Deacon 87da236ebc arm64: KVM: Add support for VPIPT I-caches
A VPIPT I-cache has two main properties:

1. Lines allocated into the cache are tagged by VMID and a lookup can
   only hit lines that were allocated with the current VMID.

2. I-cache invalidation from EL1/0 only invalidates lines that match the
   current VMID of the CPU doing the invalidation.

This can cause issues with non-VHE configurations, where the host runs
at EL1 and wants to invalidate I-cache entries for a guest running with
a different VMID. VHE is not affected, because the host runs at EL2 and
I-cache invalidation applies as expected.

This patch solves the problem by invalidating the I-cache when unmapping
a page at stage 2 on a system with a VPIPT I-cache but not running with
VHE enabled. Hopefully this is an obscure enough configuration that the
overhead isn't anything to worry about, although it does mean that the
by-range I-cache invalidation currently performed when mapping at stage
2 can be elided on such systems, because the I-cache will be clean for
the guest VMID following a rollover event.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-20 16:25:45 +00:00
Mark Rutland ba4dd156ea arm64: KVM: Survive unknown traps from guests
Currently we BUG() if we see an ESR_EL2.EC value we don't recognise. As
configurable disables/enables are added to the architecture (controlled
by RES1/RES0 bits respectively), with associated synchronous exceptions,
it may be possible for a guest to trigger exceptions with classes that
we don't recognise.

While we can't service these exceptions in a manner useful to the guest,
we can avoid bringing down the host. Per ARM DDI 0487A.k_iss10775, page
D7-1937, EC values within the range 0x00 - 0x2c are reserved for future
use with synchronous exceptions, and EC values within the range 0x2d -
0x3f may be used for either synchronous or asynchronous exceptions.

The patch makes KVM handle any unknown EC by injecting an UNDEFINED
exception into the guest, with a corresponding (ratelimited) warning in
the host dmesg. We could later improve on this with with a new (opt-in)
exit to the host userspace.

Cc: Dave Martin <dave.martin@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-03-07 14:50:46 +00:00
Marc Zyngier 6892517629 arm64: KVM: VHE: Clear HCR_TGE when invalidating guest TLBs
When invalidating guest TLBs, special care must be taken to
actually shoot the guest TLBs and not the host ones if we're
running on a VHE system.  This is controlled by the HCR_EL2.TGE
bit, which we forget to clear before invalidating TLBs.

Address the issue by introducing two wrappers (__tlb_switch_to_guest
and __tlb_switch_to_host) that take care of both the VTTBR_EL2
and HCR_EL2.TGE switching.

Reported-by: Tomasz Nowicki <tnowicki@caviumnetworks.com>
Tested-by: Tomasz Nowicki <tnowicki@caviumnetworks.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-03-06 10:28:24 +00:00
Linus Torvalds fd7e9a8834 4.11 is going to be a relatively large release for KVM, with a little over
200 commits and noteworthy changes for most architectures.
 
 * ARM:
 - GICv3 save/restore
 - cache flushing fixes
 - working MSI injection for GICv3 ITS
 - physical timer emulation
 
 * MIPS:
 - various improvements under the hood
 - support for SMP guests
 - a large rewrite of MMU emulation.  KVM MIPS can now use MMU notifiers
 to support copy-on-write, KSM, idle page tracking, swapping, ballooning
 and everything else.  KVM_CAP_READONLY_MEM is also supported, so that
 writes to some memory regions can be treated as MMIO.  The new MMU also
 paves the way for hardware virtualization support.
 
 * PPC:
 - support for POWER9 using the radix-tree MMU for host and guest
 - resizable hashed page table
 - bugfixes.
 
 * s390: expose more features to the guest
 - more SIMD extensions
 - instruction execution protection
 - ESOP2
 
 * x86:
 - improved hashing in the MMU
 - faster PageLRU tracking for Intel CPUs without EPT A/D bits
 - some refactoring of nested VMX entry/exit code, preparing for live
 migration support of nested hypervisors
 - expose yet another AVX512 CPUID bit
 - host-to-guest PTP support
 - refactoring of interrupt injection, with some optimizations thrown in
 and some duct tape removed.
 - remove lazy FPU handling
 - optimizations of user-mode exits
 - optimizations of vcpu_is_preempted() for KVM guests
 
 * generic:
 - alternative signaling mechanism that doesn't pound on tsk->sighand->siglock
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJYral1AAoJEL/70l94x66DbNgH/Rx8YXuidFq2fe3RWOvld3RK
 85OM/D5g38cTLpBE0/sJpcvX34iYN8U/l5foCZwpxB+83GHEk2Cr57JyfTogdaAJ
 x8dBhHKQCA/HxSQUQLN6nFqRV+yT8WUR92Fhqx82+80BSen5Yzcfee/TDoW6T1IW
 g8CYgX9FrRaGOX066ImAuUfdAdUVjyssfs9VttDTX+HiusPeuBPx/wsRe1ZEEPlH
 vnltIJQb1ETV2GOZLUojKjzH6aZkjIl29XxjkYii9JTUornClG0DfW+5QT3uLrB5
 gJ+G+Zmpsq8ZBx9jNDtAi7sFsoPY1Mzf+JPNCGXBra2sP2GrBAuXcxmgznRYltQ=
 =8IIp
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "4.11 is going to be a relatively large release for KVM, with a little
  over 200 commits and noteworthy changes for most architectures.

  ARM:
   - GICv3 save/restore
   - cache flushing fixes
   - working MSI injection for GICv3 ITS
   - physical timer emulation

  MIPS:
   - various improvements under the hood
   - support for SMP guests
   - a large rewrite of MMU emulation. KVM MIPS can now use MMU
     notifiers to support copy-on-write, KSM, idle page tracking,
     swapping, ballooning and everything else. KVM_CAP_READONLY_MEM is
     also supported, so that writes to some memory regions can be
     treated as MMIO. The new MMU also paves the way for hardware
     virtualization support.

  PPC:
   - support for POWER9 using the radix-tree MMU for host and guest
   - resizable hashed page table
   - bugfixes.

  s390:
   - expose more features to the guest
   - more SIMD extensions
   - instruction execution protection
   - ESOP2

  x86:
   - improved hashing in the MMU
   - faster PageLRU tracking for Intel CPUs without EPT A/D bits
   - some refactoring of nested VMX entry/exit code, preparing for live
     migration support of nested hypervisors
   - expose yet another AVX512 CPUID bit
   - host-to-guest PTP support
   - refactoring of interrupt injection, with some optimizations thrown
     in and some duct tape removed.
   - remove lazy FPU handling
   - optimizations of user-mode exits
   - optimizations of vcpu_is_preempted() for KVM guests

  generic:
   - alternative signaling mechanism that doesn't pound on
     tsk->sighand->siglock"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (195 commits)
  x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64
  x86/paravirt: Change vcp_is_preempted() arg type to long
  KVM: VMX: use correct vmcs_read/write for guest segment selector/base
  x86/kvm/vmx: Defer TR reload after VM exit
  x86/asm/64: Drop __cacheline_aligned from struct x86_hw_tss
  x86/kvm/vmx: Simplify segment_base()
  x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels
  x86/kvm/vmx: Don't fetch the TSS base from the GDT
  x86/asm: Define the kernel TSS limit in a macro
  kvm: fix page struct leak in handle_vmon
  KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now
  KVM: Return an error code only as a constant in kvm_get_dirty_log()
  KVM: Return an error code only as a constant in kvm_get_dirty_log_protect()
  KVM: Return directly after a failed copy_from_user() in kvm_vm_compat_ioctl()
  KVM: x86: remove code for lazy FPU handling
  KVM: race-free exit from KVM_RUN without POSIX signals
  KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message
  KVM: PPC: Book3S PR: Ratelimit copy data failure error messages
  KVM: Support vCPU-based gfn->hva cache
  KVM: use separate generations for each address space
  ...
2017-02-22 18:22:53 -08:00
Jintack Lim 7b6b46311a KVM: arm/arm64: Emulate the EL1 phys timer registers
Emulate read and write operations to CNTP_TVAL, CNTP_CVAL and CNTP_CTL.
Now VMs are able to use the EL1 physical timer.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:37 +00:00
Jintack Lim c9a3c58f01 KVM: arm64: Add the EL1 physical timer access handler
KVM traps on the EL1 phys timer accesses from VMs, but it doesn't handle
those traps. This results in terminating VMs. Instead, set a handler for
the EL1 phys timer access, and inject an undefined exception as an
intermediate step.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:36 +00:00
Jintack Lim a91d18551e KVM: arm/arm64: Initialize the emulated EL1 physical timer
Initialize the emulated EL1 physical timer with the default irq number.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:34 +00:00
Will Deacon f85279b4bd arm64: KVM: Save/restore the host SPE state when entering/leaving a VM
The SPE buffer is virtually addressed, using the page tables of the CPU
MMU. Unusually, this means that the EL0/1 page table may be live whilst
we're executing at EL2 on non-VHE configurations. When VHE is in use,
we can use the same property to profile the guest behind its back.

This patch adds the relevant disabling and flushing code to KVM so that
the host can make use of SPE without corrupting guest memory, and any
attempts by a guest to use SPE will result in a trap.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-02 18:33:01 +00:00
Vijaya Kumar K d017d7b0bd KVM: arm/arm64: vgic: Implement VGICv3 CPU interface access
VGICv3 CPU interface registers are accessed using
KVM_DEV_ARM_VGIC_CPU_SYSREGS ioctl. These registers are accessed
as 64-bit. The cpu MPIDR value is passed along with register id.
It is used to identify the cpu for registers access.

The VM that supports SEIs expect it on destination machine to handle
guest aborts and hence checked for ICC_CTLR_EL1.SEIS compatibility.
Similarly, VM that supports Affinity Level 3 that is required for AArch64
mode, is required to be supported on destination machine. Hence checked
for ICC_CTLR_EL1.A3V compatibility.

The arch/arm64/kvm/vgic-sys-reg-v3.c handles read and write of VGIC
CPU registers for AArch64.

For AArch32 mode, arch/arm/kvm/vgic-v3-coproc.c file is created but
APIs are not implemented.

Updated arch/arm/include/uapi/asm/kvm.h with new definitions
required to compile for AArch32.

The version of VGIC v3 specification is defined here
Documentation/virtual/kvm/devices/arm-vgic-v3.txt

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-01-30 13:47:25 +00:00
Vijaya Kumar K 4b927b94d5 KVM: arm/arm64: vgic: Introduce find_reg_by_id()
In order to implement vGICv3 CPU interface access, we will need to perform
table lookup of system registers. We would need both index_to_params() and
find_reg() exported for that purpose, but instead we export a single
function which combines them both.

Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-01-30 13:47:16 +00:00
Christopher Covington fa715319c1 arm64: Use __tlbi() macros in KVM code
Refactor the KVM code to use the __tlbi macros, which will allow an errata
workaround that repeats tlbi dsb sequences to only change one location.
This is not intended to change the generated assembly and comparing before
and after vmlinux objdump shows no functional changes.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-01-27 13:52:34 +00:00
Christoffer Dall 10f92c4c53 KVM: arm/arm64: vgic: Add debugfs vgic-state file
Add a file to debugfs to read the in-kernel state of the vgic.  We don't
do any locking of the entire VGIC state while traversing all the IRQs,
so if the VM is running the user/developer may not see a quiesced state,
but should take care to pause the VM using facilities in user space for
that purpose.

We also don't support LPIs yet, but they can be added easily if needed.

Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-01-25 13:50:03 +01:00
Linus Torvalds 7c0f6ba682 Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al:

  PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
  sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
        $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)

to do the replacement at the end of the merge window.

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-24 11:46:01 -08:00
Linus Torvalds f4000cd997 arm64 updates for 4.10:
- struct thread_info moved off-stack (also touching
   include/linux/thread_info.h and include/linux/restart_block.h)
 
 - cpus_have_cap() reworked to avoid __builtin_constant_p() for static
   key use (also touching drivers/irqchip/irq-gic-v3.c)
 
 - Uprobes support (currently only for native 64-bit tasks)
 
 - Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
   switching to a reserved page table
 
 - CPU capacity information passing via DT or sysfs (used by the
   scheduler)
 
 - Support for systems without FP/SIMD (IOW, kernel avoids touching these
   registers; there is no soft-float ABI, nor kernel emulation for
   AArch64 FP/SIMD)
 
 - Handling of hardware watchpoint with unaligned addresses, varied
   lengths and offsets from base
 
 - Use of the page table contiguous hint for kernel mappings
 
 - Hugetlb fixes for sizes involving the contiguous hint
 
 - Remove unnecessary I-cache invalidation in flush_cache_range()
 
 - CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)
 
 - Boot-time checks for writable+executable kernel mappings
 
 - Simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
   and make the arm64 kernel headers self-consistent (Xen headers patch
   merged separately)
 
 - Workaround for broken .inst support in certain binutils versions
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJYUEd0AAoJEGvWsS0AyF7xLpIP/AvSZgtz6/N+UcJ70r1oPwZ/
 wIZl5OJ1hpfIEs+9XPU71TJbfETOusyOYwDUQmp8lXFDICk3snB4PvXFpLHOSytL
 N05eYnV2de+gyKstC3ysg0mZdpIrazjKQbmHPc1KeNHuf6ZPSuIqRFINr3rnpziY
 TeOVmFplgKnbDYcF4ejqcaEFEn5BkkpNNfqhX4mOHJIC4BMmglT/KefzHtK/39AT
 EdZWrsA9UTEA+ccgolYtq55YcZD9kQFmEy2BRhZLbOamH5UrsUOVl9sS6fRvA3Qs
 eSbnHBsdJ7n/ym6w/CK+KXKo3M/02H0JNXqhPlHaAqb+djlp7N74wyiERISR6GL9
 s+7Fh/uNhfMg7vYtWkN3TlXth9HmNXdpaouNe/m8seBvwdKH+KfC0IBhXCl0NziB
 hxwMI+OtV4wxzPgXTSkYlbqVEC49dAq9GnRtR+Bi5tY4a9+jeNwG/uIRcFMaRHJe
 Wq48050mHMlmOjnmr3N+0l7dNhda8/ZO03ZlPfqrccBccX0idqVypkG6Wj75ZK1b
 TTBvQ2A2Hqi7YtSqZNrUnTDx5O4IlywQpXLzIsDJPph8mrZ4h06lRr2fkh4FcKgH
 NQrr9tjTD9XLOJfl3u0VwSbWYucWrgMHYI1r5SA5xl1Xqp6YJ8Kfod3sdA+uxS3P
 SK03zJP1LM+e1HidQhKN
 =8Uk9
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - struct thread_info moved off-stack (also touching
   include/linux/thread_info.h and include/linux/restart_block.h)

 - cpus_have_cap() reworked to avoid __builtin_constant_p() for static
   key use (also touching drivers/irqchip/irq-gic-v3.c)

 - uprobes support (currently only for native 64-bit tasks)

 - Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
   switching to a reserved page table

 - CPU capacity information passing via DT or sysfs (used by the
   scheduler)

 - support for systems without FP/SIMD (IOW, kernel avoids touching
   these registers; there is no soft-float ABI, nor kernel emulation for
   AArch64 FP/SIMD)

 - handling of hardware watchpoint with unaligned addresses, varied
   lengths and offsets from base

 - use of the page table contiguous hint for kernel mappings

 - hugetlb fixes for sizes involving the contiguous hint

 - remove unnecessary I-cache invalidation in flush_cache_range()

 - CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)

 - boot-time checks for writable+executable kernel mappings

 - simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
   and make the arm64 kernel headers self-consistent (Xen headers patch
   merged separately)

 - Workaround for broken .inst support in certain binutils versions

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (60 commits)
  arm64: Disable PAN on uaccess_enable()
  arm64: Work around broken .inst when defective gas is detected
  arm64: Add detection code for broken .inst support in binutils
  arm64: Remove reference to asm/opcodes.h
  arm64: Get rid of asm/opcodes.h
  arm64: smp: Prevent raw_smp_processor_id() recursion
  arm64: head.S: Fix CNTHCTL_EL2 access on VHE system
  arm64: Remove I-cache invalidation from flush_cache_range()
  arm64: Enable HIBERNATION in defconfig
  arm64: Enable CONFIG_ARM64_SW_TTBR0_PAN
  arm64: xen: Enable user access before a privcmd hvc call
  arm64: Handle faults caused by inadvertent user access with PAN enabled
  arm64: Disable TTBR0_EL1 during normal kernel execution
  arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1
  arm64: Factor out TTBR0_EL1 post-update workaround into a specific asm macro
  arm64: Factor out PAN enabling/disabling into separate uaccess_* macros
  arm64: Update the synchronous external abort fault description
  selftests: arm64: add test for unaligned/inexact watchpoint handling
  arm64: Allow hw watchpoint of length 3,5,6 and 7
  arm64: hw_breakpoint: Handle inexact watchpoint addresses
  ...
2016-12-13 16:39:21 -08:00
Linus Torvalds 93173b5bf2 Small release, the most interesting stuff is x86 nested virt improvements.
x86: userspace can now hide nested VMX features from guests; nested
 VMX can now run Hyper-V in a guest; support for AVX512_4VNNIW and
 AVX512_FMAPS in KVM; infrastructure support for virtual Intel GPUs.
 
 PPC: support for KVM guests on POWER9; improved support for interrupt
 polling; optimizations and cleanups.
 
 s390: two small optimizations, more stuff is in flight and will be
 in 4.11.
 
 ARM: support for the GICv3 ITS on 32bit platforms.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQExBAABCAAbBQJYTkP0FBxwYm9uemluaUByZWRoYXQuY29tAAoJEL/70l94x66D
 lZIH/iT1n9OQXcuTpYYnQhuCenzI3GZZOIMTbCvK2i5bo0FIJKxVn0EiAAqZSXvO
 nO185FqjOgLuJ1AD1kJuxzye5suuQp4HIPWWgNHcexLuy43WXWKZe0IQlJ4zM2Xf
 u31HakpFmVDD+Cd1qN3yDXtDrRQ79/xQn2kw7CWb8olp+pVqwbceN3IVie9QYU+3
 gCz0qU6As0aQIwq2PyalOe03sO10PZlm4XhsoXgWPG7P18BMRhNLTDqhLhu7A/ry
 qElVMANT7LSNLzlwNdpzdK8rVuKxETwjlc1UP8vSuhrwad4zM2JJ1Exk26nC2NaG
 D0j4tRSyGFIdx6lukZm7HmiSHZ0=
 =mkoB
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "Small release, the most interesting stuff is x86 nested virt
  improvements.

  x86:
   - userspace can now hide nested VMX features from guests
   - nested VMX can now run Hyper-V in a guest
   - support for AVX512_4VNNIW and AVX512_FMAPS in KVM
   - infrastructure support for virtual Intel GPUs.

  PPC:
   - support for KVM guests on POWER9
   - improved support for interrupt polling
   - optimizations and cleanups.

  s390:
   - two small optimizations, more stuff is in flight and will be in
     4.11.

  ARM:
   - support for the GICv3 ITS on 32bit platforms"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
  arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
  KVM: arm/arm64: timer: Check for properly initialized timer on init
  KVM: arm/arm64: vgic-v2: Limit ITARGETSR bits to number of VCPUs
  KVM: x86: Handle the kthread worker using the new API
  KVM: nVMX: invvpid handling improvements
  KVM: nVMX: check host CR3 on vmentry and vmexit
  KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
  KVM: nVMX: propagate errors from prepare_vmcs02
  KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT
  KVM: nVMX: load GUEST_EFER after GUEST_CR0 during emulated VM-entry
  KVM: nVMX: generate MSR_IA32_CR{0,4}_FIXED1 from guest CPUID
  KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation
  KVM: nVMX: support restore of VMX capability MSRs
  KVM: nVMX: generate non-true VMX MSRs based on true versions
  KVM: x86: Do not clear RFLAGS.TF when a singlestep trap occurs.
  KVM: x86: Add kvm_skip_emulated_instruction and use it.
  KVM: VMX: Move skip_emulated_instruction out of nested_vmx_check_vmcs12
  KVM: VMX: Reorder some skip_emulated_instruction calls
  KVM: x86: Add a return value to kvm_emulate_cpuid
  KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
  ...
2016-12-13 15:47:02 -08:00
Marc Zyngier 21cbe3cc8a arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
The ARMv8 architecture allows the cycle counter to be configured
by setting PMSELR_EL0.SEL==0x1f and then accessing PMXEVTYPER_EL0,
hence accessing PMCCFILTR_EL0. But it disallows the use of
PMSELR_EL0.SEL==0x1f to access the cycle counter itself through
PMXEVCNTR_EL0.

Linux itself doesn't violate this rule, but we may end up with
PMSELR_EL0.SEL being set to 0x1f when we enter a guest. If that
guest accesses PMXEVCNTR_EL0, the access may UNDEF at EL1,
despite the guest not having done anything wrong.

In order to avoid this unfortunate course of events (haha!), let's
sanitize PMSELR_EL0 on guest entry. This ensures that the guest
won't explode unexpectedly.

Cc: stable@vger.kernel.org #4.6+
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-12-09 15:47:00 +00:00
Wei Huang 9e3f7a2969 arm64: KVM: pmu: Fix AArch32 cycle counter access
We're missing the handling code for the cycle counter accessed
from a 32bit guest, leading to unexpected results.

Cc: stable@vger.kernel.org # 4.6+
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-11-18 09:02:04 +00:00
Suzuki K Poulose 82e0191a1a arm64: Support systems without FP/ASIMD
The arm64 kernel assumes that FP/ASIMD units are always present
and accesses the FP/ASIMD specific registers unconditionally. This
could cause problems when they are absent. This patch adds the
support for kernel handling systems without FP/ASIMD by skipping the
register access within the kernel. For kvm, we trap the accesses
to FP/ASIMD and inject an undefined instruction exception to the VM.

The callers of the exported kernel_neon_begin_partial() should
make sure that the FP/ASIMD is supported.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
[catalin.marinas@arm.com: add comment on the ARM64_HAS_NO_FPSIMD conflict and the new location]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-16 18:05:10 +00:00
Vladimir Murzin 2988509dd8 ARM: KVM: Support vGICv3 ITS
This patch allows to build and use vGICv3 ITS in 32-bit mode.

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-11-14 10:32:54 +00:00
Marc Zyngier 94d0e5980d arm/arm64: KVM: Perform local TLB invalidation when multiplexing vcpus on a single CPU
Architecturally, TLBs are private to the (physical) CPU they're
associated with. But when multiple vcpus from the same VM are
being multiplexed on the same CPU, the TLBs are not private
to the vcpus (and are actually shared across the VMID).

Let's consider the following scenario:

- vcpu-0 maps PA to VA
- vcpu-1 maps PA' to VA

If run on the same physical CPU, vcpu-1 can hit TLB entries generated
by vcpu-0 accesses, and access the wrong physical page.

The solution to this is to keep a per-VM map of which vcpu ran last
on each given physical CPU, and invalidate local TLBs when switching
to a different vcpu from the same VM.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-11-04 17:56:28 +00:00
Linus Torvalds 6218590bcb KVM updates for v4.9-rc1
All architectures:
   Move `make kvmconfig` stubs from x86;  use 64 bits for debugfs stats.
 
 ARM:
   Important fixes for not using an in-kernel irqchip; handle SError
   exceptions and present them to guests if appropriate; proxying of GICV
   access at EL2 if guest mappings are unsafe; GICv3 on AArch32 on ARMv8;
   preparations for GICv3 save/restore, including ABI docs; cleanups and
   a bit of optimizations.
 
 MIPS:
   A couple of fixes in preparation for supporting MIPS EVA host kernels;
   MIPS SMP host & TLB invalidation fixes.
 
 PPC:
   Fix the bug which caused guests to falsely report lockups; other minor
   fixes; a small optimization.
 
 s390:
   Lazy enablement of runtime instrumentation; up to 255 CPUs for nested
   guests; rework of machine check deliver; cleanups and fixes.
 
 x86:
   IOMMU part of AMD's AVIC for vmexit-less interrupt delivery; Hyper-V
   TSC page; per-vcpu tsc_offset in debugfs; accelerated INS/OUTS in
   nVMX; cleanups and fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJX9iDrAAoJEED/6hsPKofoOPoIAIUlgojkb9l2l1XVDgsXdgQL
 sRVhYSVv7/c8sk9vFImrD5ElOPZd+CEAIqFOu45+NM3cNi7gxip9yftUVs7wI5aC
 eDZRWm1E4trDZLe54ZM9ThcqZzZZiELVGMfR1+ZndUycybwyWzafpXYsYyaXp3BW
 hyHM3qVkoWO3dxBWFwHIoO/AUJrWYkRHEByKyvlC6KPxSdBPSa5c1AQwMCoE0Mo4
 K/xUj4gBn9eMelNhg4Oqu/uh49/q+dtdoP2C+sVM8bSdquD+PmIeOhPFIcuGbGFI
 B+oRpUhIuntN39gz8wInJ4/GRSeTuR2faNPxMn4E1i1u4LiuJvipcsOjPfe0a18=
 =fZRB
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "All architectures:
   - move `make kvmconfig` stubs from x86
   - use 64 bits for debugfs stats

  ARM:
   - Important fixes for not using an in-kernel irqchip
   - handle SError exceptions and present them to guests if appropriate
   - proxying of GICV access at EL2 if guest mappings are unsafe
   - GICv3 on AArch32 on ARMv8
   - preparations for GICv3 save/restore, including ABI docs
   - cleanups and a bit of optimizations

  MIPS:
   - A couple of fixes in preparation for supporting MIPS EVA host
     kernels
   - MIPS SMP host & TLB invalidation fixes

  PPC:
   - Fix the bug which caused guests to falsely report lockups
   - other minor fixes
   - a small optimization

  s390:
   - Lazy enablement of runtime instrumentation
   - up to 255 CPUs for nested guests
   - rework of machine check deliver
   - cleanups and fixes

  x86:
   - IOMMU part of AMD's AVIC for vmexit-less interrupt delivery
   - Hyper-V TSC page
   - per-vcpu tsc_offset in debugfs
   - accelerated INS/OUTS in nVMX
   - cleanups and fixes"

* tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (140 commits)
  KVM: MIPS: Drop dubious EntryHi optimisation
  KVM: MIPS: Invalidate TLB by regenerating ASIDs
  KVM: MIPS: Split kernel/user ASID regeneration
  KVM: MIPS: Drop other CPU ASIDs on guest MMU changes
  KVM: arm/arm64: vgic: Don't flush/sync without a working vgic
  KVM: arm64: Require in-kernel irqchip for PMU support
  KVM: PPC: Book3s PR: Allow access to unprivileged MMCR2 register
  KVM: PPC: Book3S PR: Support 64kB page size on POWER8E and POWER8NVL
  KVM: PPC: Book3S: Remove duplicate setting of the B field in tlbie
  KVM: PPC: BookE: Fix a sanity check
  KVM: PPC: Book3S HV: Take out virtual core piggybacking code
  KVM: PPC: Book3S: Treat VTB as a per-subcore register, not per-thread
  ARM: gic-v3: Work around definition of gic_write_bpr1
  KVM: nVMX: Fix the NMI IDT-vectoring handling
  KVM: VMX: Enable MSR-BASED TPR shadow even if APICv is inactive
  KVM: nVMX: Fix reload apic access page warning
  kvmconfig: add virtio-gpu to config fragment
  config: move x86 kvm_guest.config to a common location
  arm64: KVM: Remove duplicating init code for setting VMID
  ARM: KVM: Support vgic-v3
  ...
2016-10-06 10:49:01 -07:00
Linus Torvalds 7af8a0f808 arm64 updates for 4.9:
- Support for execute-only page permissions
 - Support for hibernate and DEBUG_PAGEALLOC
 - Support for heterogeneous systems with mismatches cache line sizes
 - Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
 - arm64 PMU perf updates, including cpumasks for heterogeneous systems
 - Set UTS_MACHINE for building rpm packages
 - Yet another head.S tidy-up
 - Some cleanups and refactoring, particularly in the NUMA code
 - Lots of random, non-critical fixes across the board
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJX7k31AAoJELescNyEwWM0XX0H/iOaWCfKlWOhvBsStGUCsLrK
 XryTzQT2KjdnLKf3jwP+1ateCuBR5ROurYxoDCX5/7mD63c5KiI338Vbv61a1lE1
 AAwjt1stmQVUg/j+kqnuQwB/0DYg+2C8se3D3q5Iyn7zc19cDZJEGcBHNrvLMufc
 XgHrgHgl/rzBDDlHJXleknDFge/MfhU5/Q1vJMRRb4JYrpAtmIokzCO75CYMRcCT
 ND2QbmppKtsyuFPGUTVbAFzJlP6dGKb3eruYta7/ct5d0pJQxav3u98D2yWGfjdM
 YaYq1EmX5Pol7rWumqLtk0+mA9yCFcKLLc+PrJu20Vx0UkvOq8G8Xt70sHNvZU8=
 =gdPM
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "It's a bit all over the place this time with no "killer feature" to
  speak of.  Support for mismatched cache line sizes should help people
  seeing whacky JIT failures on some SoCs, and the big.LITTLE perf
  updates have been a long time coming, but a lot of the changes here
  are cleanups.

  We stray outside arch/arm64 in a few areas: the arch/arm/ arch_timer
  workaround is acked by Russell, the DT/OF bits are acked by Rob, the
  arch_timer clocksource changes acked by Marc, CPU hotplug by tglx and
  jump_label by Peter (all CC'd).

  Summary:

   - Support for execute-only page permissions
   - Support for hibernate and DEBUG_PAGEALLOC
   - Support for heterogeneous systems with mismatches cache line sizes
   - Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
   - arm64 PMU perf updates, including cpumasks for heterogeneous systems
   - Set UTS_MACHINE for building rpm packages
   - Yet another head.S tidy-up
   - Some cleanups and refactoring, particularly in the NUMA code
   - Lots of random, non-critical fixes across the board"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (100 commits)
  arm64: tlbflush.h: add __tlbi() macro
  arm64: Kconfig: remove SMP dependence for NUMA
  arm64: Kconfig: select OF/ACPI_NUMA under NUMA config
  arm64: fix dump_backtrace/unwind_frame with NULL tsk
  arm/arm64: arch_timer: Use archdata to indicate vdso suitability
  arm64: arch_timer: Work around QorIQ Erratum A-008585
  arm64: arch_timer: Add device tree binding for A-008585 erratum
  arm64: Correctly bounds check virt_addr_valid
  arm64: migrate exception table users off module.h and onto extable.h
  arm64: pmu: Hoist pmu platform device name
  arm64: pmu: Probe default hw/cache counters
  arm64: pmu: add fallback probe table
  MAINTAINERS: Update ARM PMU PROFILING AND DEBUGGING entry
  arm64: Improve kprobes test for atomic sequence
  arm64/kvm: use alternative auto-nop
  arm64: use alternative auto-nop
  arm64: alternative: add auto-nop infrastructure
  arm64: lse: convert lse alternatives NOP padding to use __nops
  arm64: barriers: introduce nops and __nops macros for NOP sequences
  arm64: sysreg: replace open-coded mrs_s/msr_s with {read,write}_sysreg_s
  ...
2016-10-03 08:58:35 -07:00
Vladimir Murzin acda5430be ARM: KVM: Support vgic-v3
This patch allows to build and use vgic-v3 in 32-bit mode.

Unfortunately, it can not be split in several steps without extra
stubs to keep patches independent and bisectable.  For instance,
virt/kvm/arm/vgic/vgic-v3.c uses function from vgic-v3-sr.c, handling
access to GICv3 cpu interface from the guest requires vgic_v3.vgic_sre
to be already defined.

It is how support has been done:

* handle SGI requests from the guest

* report configured SRE on access to GICv3 cpu interface from the guest

* required vgic-v3 macros are provided via uapi.h

* static keys are used to select GIC backend

* to make vgic-v3 build KVM_ARM_VGIC_V3 guard is removed along with
  the static inlines

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-22 13:22:21 +02:00
Vladimir Murzin 7a1ff70828 KVM: arm64: vgic-its: Introduce config option to guard ITS specific code
By now ITS code guarded with KVM_ARM_VGIC_V3 config option which was
introduced to hide everything specific to vgic-v3 from 32-bit world.
We are going to support vgic-v3 in 32-bit world and KVM_ARM_VGIC_V3
will gone, but we don't have support for ITS there yet and we need to
continue keeping ITS away.
Introduce the new config option to prevent ITS code being build in
32-bit mode when support for vgic-v3 is done.

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-22 13:21:47 +02:00
Vladimir Murzin 19f0ece439 arm64: KVM: Move vgic-v3 save/restore to virt/kvm/arm/hyp
So we can reuse the code under arch/arm

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-22 13:21:46 +02:00
Vladimir Murzin b5525ce898 arm64: KVM: Move GIC accessors to arch_gicv3.h
Since we are going to share vgic-v3 save/restore code with ARM keep
arch specific accessors separately.

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-22 13:21:46 +02:00
Vladimir Murzin 5a7a8426b2 arm64: KVM: Use static keys for selecting the GIC backend
Currently GIC backend is selected via alternative framework and this
is fine. We are going to introduce vgic-v3 to 32-bit world and there
we don't have patching framework in hand, so we can either check
support for GICv3 every time we need to choose which backend to use or
try to optimise it by using static keys. The later looks quite
promising because we can share logic involved in selecting GIC backend
between architectures if both uses static keys.

This patch moves arm64 from alternative to static keys framework for
selecting GIC backend. For that we embed static key into vgic_global
and enable the key during vgic initialisation based on what has
already been exposed by the host GIC driver.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-22 13:21:35 +02:00
Mark Rutland e506236a7b arm64/kvm: use alternative auto-nop
Make use of the new alternative_if and alternative_else_nop_endif and
get rid of our open-coded NOP sleds, making the code simpler to read.

Note that for __kvm_call_hyp the branch to __vhe_hyp_call has been moved
out of the alternative sequence, and in the default case there will be
four additional NOPs executed.

Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-09-12 10:46:07 +01:00
Mark Rutland 1f3d8699be arm64/kvm: use {read,write}_sysreg()
A while back we added {read,write}_sysreg accessors to handle accesses
to system registers, without the usual boilerplate asm volatile,
temporary variable, etc.

This patch makes use of these in the arm64 KVM code to make the code
shorter and clearer.

At the same time, a comment style violation next to a system register
access is fixed up in reset_pmcr, and comments describing whether
operations are reads or writes are removed as this is now painfully
obvious.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-09-09 11:42:27 +01:00
Marc Zyngier 3272f0d08e arm64: KVM: Inject a vSerror if detecting a bad GICV access at EL2
If, when proxying a GICV access at EL2, we detect that the guest is
doing something silly, report an EL1 SError instead ofgnoring the
access.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-08 12:53:00 +02:00
Marc Zyngier 395ea79ebe arm64: KVM: Handle async aborts delivered while at EL2
If EL1 generates an asynchronous abort and then traps into EL2
before the abort has been delivered, we may end-up with the
abort firing at the worse possible place: on the host.

In order to avoid this, it is necessary to take the abort at EL2,
by clearing the PSTATE.A bit. In order to survive this abort,
we do it at a point where we're in a known state with respect
to the world switch, and handle the resulting exception,
overloading the exit code in the process.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-08 12:53:00 +02:00