The topology_core_cpumask is used to find a neighbour cpu in
calibrate_delay_is_known(). It might not be allocated at the first invocation
of that function on the boot cpu, when CONFIG_CPUMASK_OFFSTACK is set.
The mask is allocated later in native_smp_prepare_cpus. As a consequence the
underlying find_next_bit() call dereferences a NULL pointer.
Add a proper check to prevent this.
Fixes: c25323c073 "x86/tsc: Use topology functions"
Reported-and-tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603180843270.3978@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This changes several users of manual "on"/"off" parsing to use
strtobool.
Some side-effects:
- these uses will now parse y/n/1/0 meaningfully too
- the early_param uses will now bubble up parse errors
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Amitkumar Karwar <akarwar@marvell.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Joe Perches <joe@perches.com>
Cc: Kalle Valo <kvalo@codeaurora.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nishant Sarmukadam <nishants@marvell.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Steve French <sfrench@samba.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are few things about *pte_alloc*() helpers worth cleaning up:
- 'vma' argument is unused, let's drop it;
- most __pte_alloc() callers do speculative check for pmd_none(),
before taking ptl: let's introduce pte_alloc() macro which does
the check.
The only direct user of __pte_alloc left is userfaultfd, which has
different expectation about atomicity wrt pmd.
- pte_alloc_map() and pte_alloc_map_lock() are redefined using
pte_alloc().
[sudeep.holla@arm.com: fix build for arm64 hugetlbpage]
[sfr@canb.auug.org.au: fix arch/arm/mm/mmu.c some more]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
iopl(3) is supposed to work if iopl is already 3, even if
unprivileged. This didn't work right on Xen PV. Fix it.
Reviewewd-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/8ce12013e6e4c0a44a97e316be4a6faff31bd5ea.1458162709.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On Xen PV, regs->flags doesn't reliably reflect IOPL and the
exit-to-userspace code doesn't change IOPL. We need to context
switch it manually.
I'm doing this without going through paravirt because this is
specific to Xen PV. After the dust settles, we can merge this with
the 32-bit code, tidy up the iopl syscall implementation, and remove
the set_iopl pvop entirely.
Fixes XSA-171.
Reviewewd-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/693c3bd7aeb4d3c27c92c622b7d0f554a458173c.1458162709.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge first patch-bomb from Andrew Morton:
- some misc things
- ofs2 updates
- about half of MM
- checkpatch updates
- autofs4 update
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (120 commits)
autofs4: fix string.h include in auto_dev-ioctl.h
autofs4: use pr_xxx() macros directly for logging
autofs4: change log print macros to not insert newline
autofs4: make autofs log prints consistent
autofs4: fix some white space errors
autofs4: fix invalid ioctl return in autofs4_root_ioctl_unlocked()
autofs4: fix coding style line length in autofs4_wait()
autofs4: fix coding style problem in autofs4_get_set_timeout()
autofs4: coding style fixes
autofs: show pipe inode in mount options
kallsyms: add support for relative offsets in kallsyms address table
kallsyms: don't overload absolute symbol type for percpu symbols
x86: kallsyms: disable absolute percpu symbols on !SMP
checkpatch: fix another left brace warning
checkpatch: improve UNSPECIFIED_INT test for bare signed/unsigned uses
checkpatch: warn on bare unsigned or signed declarations without int
checkpatch: exclude asm volatile from complex macro check
mm: memcontrol: drop unnecessary lru locking from mem_cgroup_migrate()
mm: migrate: consolidate mem_cgroup_migrate() calls
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
...
We can use debug_pagealloc_enabled() to check if we can map the identity
mapping with 2MB pages. We can also add the state into the dump_stack
output.
The patch does not touch the code for the 1GB pages, which ignored
CONFIG_DEBUG_PAGEALLOC. Do we need to fence this as well?
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...
Pull irq updates from Thomas Gleixner:
"The 4.6 pile of irq updates contains:
- Support for IPI irqdomains to support proper integration of IPIs to
and from coprocessors. The first user of this new facility is
MIPS. The relevant MIPS patches come with the core to avoid merge
ordering issues and have been acked by Ralf.
- A new command line option to set the default interrupt affinity
mask at boot time.
- Support for some more new ARM and MIPS interrupt controllers:
tango, alpine-msix and bcm6345-l1
- Two small cleanups for x86/apic which we merged into irq/core to
avoid yet another branch in x86 with two tiny commits.
- The usual set of updates, cleanups in drivers/irqchip. Mostly in
the area of ARM-GIC, arada-37-xp and atmel chips. Nothing
outstanding here"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (56 commits)
irqchip/irq-alpine-msi: Release the correct domain on error
irqchip/mxs: Fix error check of of_io_request_and_map()
irqchip/sunxi-nmi: Fix error check of of_io_request_and_map()
genirq: Export IRQ functions for module use
irqchip/gic/realview: Support more RealView DCC variants
Documentation/bindings: Document the Alpine MSIX driver
irqchip: Add the Alpine MSIX interrupt controller
irqchip/gic-v3: Always return IRQ_SET_MASK_OK_DONE in gic_set_affinity
irqchip/gic-v3-its: Mark its_init() and its children as __init
irqchip/gic-v3: Remove gic_root_node variable from the ITS code
irqchip/gic-v3: ACPI: Add redistributor support via GICC structures
irqchip/gic-v3: Add ACPI support for GICv3/4 initialization
irqchip/gic-v3: Refactor gic_of_init() for GICv3 driver
x86/apic: Deinline _flat_send_IPI_mask, save ~150 bytes
x86/apic: Deinline __default_send_IPI_*, save ~200 bytes
dt-bindings: interrupt-controller: Add SoC-specific compatible string to Marvell ODMI
irqchip/mips-gic: Add new DT property to reserve IPIs
MIPS: Delete smp-gic.c
MIPS: Make smp CMP, CPS and MT use the new generic IPI functions
MIPS: Add generic SMP IPI support
...
Pull timer updates from Thomas Gleixner:
"The timer department delivers this time:
- Support for cross clock domain timestamps in the core code plus a
first user. That allows more precise timestamping for PTP and
later for audio and other peripherals.
The ptp/e1000e patches have been acked by the relevant maintainers
and are carried in the timer tree to avoid merge ordering issues.
- Support for unregistering the current clocksource watchdog. That
lifts a limitation for switching clocksources which has been there
from day 1
- The usual pile of fixes and updates to the core and the drivers.
Nothing outstanding and exciting"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
time/timekeeping: Work around false positive GCC warning
e1000e: Adds hardware supported cross timestamp on e1000e nic
ptp: Add PTP_SYS_OFFSET_PRECISE for driver crosstimestamping
x86/tsc: Always Running Timer (ART) correlated clocksource
hrtimer: Revert CLOCK_MONOTONIC_RAW support
time: Add history to cross timestamp interface supporting slower devices
time: Add driver cross timestamp interface for higher precision time synchronization
time: Remove duplicated code in ktime_get_raw_and_real()
time: Add timekeeping snapshot code capturing system time and counter
time: Add cycles to nanoseconds translation
jiffies: Use CLOCKSOURCE_MASK instead of constant
clocksource: Introduce clocksource_freq2mult()
clockevents/drivers/exynos_mct: Implement ->set_state_oneshot_stopped()
clockevents/drivers/arm_global_timer: Implement ->set_state_oneshot_stopped()
clockevents/drivers/arm_arch_timer: Implement ->set_state_oneshot_stopped()
clocksource/drivers/arm_global_timer: Register delay timer
clocksource/drivers/lpc32xx: Support timer-based ARM delay
clocksource/drivers/lpc32xx: Support periodic mode
clocksource/drivers/lpc32xx: Don't use the prescaler counter for clockevents
clocksource/drivers/rockchip: Add err handle for rk_timer_init
...
Pull x86 timer update from Ingo Molnar:
"A single simplification of the x86 TSC code"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsc: Use topology functions
Pull x86 mm updates from Ingo Molnar:
"The main changes in this cycle were:
- Enable full ASLR randomization for 32-bit programs (Hector
Marco-Gisbert)
- Add initial minimal INVPCI support, to flush global mappings (Andy
Lutomirski)
- Add KASAN enhancements (Andrey Ryabinin)
- Fix mmiotrace for huge pages (Karol Herbst)
- ... misc cleanups and small enhancements"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/32: Enable full randomization on i386 and X86_32
x86/mm/kmmio: Fix mmiotrace for hugepages
x86/mm: Avoid premature success when changing page attributes
x86/mm/ptdump: Remove paravirt_enabled()
x86/mm: Fix INVPCID asm constraint
x86/dmi: Switch dmi_remap() from ioremap() [uncached] to ioremap_cache()
x86/mm: If INVPCID is available, use it to flush global mappings
x86/mm: Add a 'noinvpcid' boot option to turn off INVPCID
x86/mm: Add INVPCID helpers
x86/kasan: Write protect kasan zero shadow
x86/kasan: Clear kasan_zero_page after TLB flush
x86/mm/numa: Check for failures in numa_clear_kernel_node_hotplug()
x86/mm/numa: Clean up numa_clear_kernel_node_hotplug()
x86/mm: Make kmap_prot into a #define
x86/mm/32: Set NX in __supported_pte_mask before enabling paging
x86/mm: Streamline and restore probe_memory_block_size()
Pull x86 microcode updates from Ingo Molnar:
"The biggest change in this cycle was the separation of the microcode
loading mechanism from the initrd code plus the support of built-in
microcode images.
There were also lots cleanups and general restructuring (by Borislav
Petkov)"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/microcode/intel: Drop orig_sum from ext signature checksum
x86/microcode/intel: Improve microcode sanity-checking error messages
x86/microcode/intel: Merge two consecutive if-statements
x86/microcode/intel: Get rid of DWSIZE
x86/microcode/intel: Change checksum variables to u32
x86/microcode: Use kmemdup() rather than duplicating its implementation
x86/microcode: Remove unnecessary paravirt_enabled check
x86/microcode: Document builtin microcode loading method
x86/microcode/AMD: Issue microcode updated message later
x86/microcode/intel: Cleanup get_matching_model_microcode()
x86/microcode/intel: Remove unused arg of get_matching_model_microcode()
x86/microcode/intel: Rename mc_saved_in_initrd
x86/microcode/intel: Use *wrmsrl variants
x86/microcode/intel: Cleanup apply_microcode_intel()
x86/microcode/intel: Move the BUG_ON up and turn it into WARN_ON
x86/microcode/intel: Rename mc_intel variable to mc
x86/microcode/intel: Rename mc_saved_count to num_saved
x86/microcode/intel: Rename local variables of type struct mc_saved_data
x86/microcode/AMD: Drop redundant printk prefix
x86/microcode: Issue update message only once
...
Pull x86 fpu updates from Ingo Molnar:
"The biggest change in terms of impact is the changing of the FPU
context switch model to 'eagerfpu' for all CPU types, via: commit
58122bf1d856: "x86/fpu: Default eagerfpu=on on all CPUs"
This makes all FPU saves and restores synchronous and makes the FPU
code a lot more obvious to read. In the next cycle, if this change is
problem free, we'll remove the old lazy FPU restore code altogether.
This change flushed out some old bugs, which should all be fixed by
now, BYMMV"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Default eagerfpu=on on all CPUs
x86/fpu: Speed up lazy FPU restores slightly
x86/fpu: Fold fpu_copy() into fpu__copy()
x86/fpu: Fix FNSAVE usage in eagerfpu mode
x86/fpu: Fix math emulation in eager fpu mode
Pull x86 boot updates from Ingo Molnar:
"Early command line options parsing enhancements from Dave Hansen, plus
minor cleanups and enhancements"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Remove unused 'is_big_kernel' variable
x86/boot: Use proper array element type in memset() size calculation
x86/boot: Pass in size to early cmdline parsing
x86/boot: Simplify early command line parsing
x86/boot: Fix early command-line parsing when partial word matches
x86/boot: Fix early command-line parsing when matching at end
x86/boot: Simplify kernel load address alignment check
x86/boot: Micro-optimize reset_early_page_tables()
Pull x86 asm updates from Ingo Molnar:
"This is another big update. Main changes are:
- lots of x86 system call (and other traps/exceptions) entry code
enhancements. In particular the complex parts of the 64-bit entry
code have been migrated to C code as well, and a number of dusty
corners have been refreshed. (Andy Lutomirski)
- vDSO special mapping robustification and general cleanups (Andy
Lutomirski)
- cpufeature refactoring, cleanups and speedups (Borislav Petkov)
- lots of other changes ..."
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
x86/cpufeature: Enable new AVX-512 features
x86/entry/traps: Show unhandled signal for i386 in do_trap()
x86/entry: Call enter_from_user_mode() with IRQs off
x86/entry/32: Change INT80 to be an interrupt gate
x86/entry: Improve system call entry comments
x86/entry: Remove TIF_SINGLESTEP entry work
x86/entry/32: Add and check a stack canary for the SYSENTER stack
x86/entry/32: Simplify and fix up the SYSENTER stack #DB/NMI fixup
x86/entry: Only allocate space for tss_struct::SYSENTER_stack if needed
x86/entry: Vastly simplify SYSENTER TF (single-step) handling
x86/entry/traps: Clear DR6 early in do_debug() and improve the comment
x86/entry/traps: Clear TIF_BLOCKSTEP on all debug exceptions
x86/entry/32: Restore FLAGS on SYSEXIT
x86/entry/32: Filter NT and speed up AC filtering in SYSENTER
x86/entry/compat: In SYSENTER, sink AC clearing below the existing FLAGS test
selftests/x86: In syscall_nt, test NT|TF as well
x86/asm-offsets: Remove PARAVIRT_enabled
x86/entry/32: Introduce and use X86_BUG_ESPFIX instead of paravirt_enabled
uprobes: __create_xol_area() must nullify xol_mapping.fault
x86/cpufeature: Create a new synthetic cpu capability for machine check recovery
...
Pull RAS updates from Ingo Molnar:
"Various RAS updates:
- AMD MCE support updates for future CPUs, fixes and 'SMCA' (Scalable
MCA) error decoding support (Aravind Gopalakrishnan)
- x86 memcpy_mcsafe() support, to enable smart(er) hardware error
recovery in NVDIMM drivers, based on an extension of the x86
exception handling code. (Tony Luck)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/sb_edac: Fix computation of channel address
x86/mm, x86/mce: Add memcpy_mcsafe()
x86/mce/AMD: Document some functionality
x86/mce: Clarify comments regarding deferred error
x86/mce/AMD: Fix logic to obtain block address
x86/mce/AMD, EDAC: Enable error decoding of Scalable MCA errors
x86/mce: Move MCx_CONFIG MSR definitions
x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries
x86/mm: Expand the exception table logic to allow new handling options
x86/mce/AMD: Set MCAX Enable bit
x86/mce/AMD: Carve out threshold block preparation
x86/mce/AMD: Fix LVT offset configuration for thresholding
x86/mce/AMD: Reduce number of blocks scanned per bank
x86/mce/AMD: Do not perform shared bank check for future processors
x86/mce: Fix order of AMD MCE init function call
Pull perf updates from Ingo Molnar:
"Main kernel side changes:
- Big reorganization of the x86 perf support code. The old code grew
organically deep inside arch/x86/kernel/cpu/perf* and its naming
became somewhat messy.
The new location is under arch/x86/events/, using the following
cleaner hierarchy of source code files:
perf/x86: Move perf_event.c .................. => x86/events/core.c
perf/x86: Move perf_event_amd.c .............. => x86/events/amd/core.c
perf/x86: Move perf_event_amd_ibs.c .......... => x86/events/amd/ibs.c
perf/x86: Move perf_event_amd_iommu.[ch] ..... => x86/events/amd/iommu.[ch]
perf/x86: Move perf_event_amd_uncore.c ....... => x86/events/amd/uncore.c
perf/x86: Move perf_event_intel_bts.c ........ => x86/events/intel/bts.c
perf/x86: Move perf_event_intel.c ............ => x86/events/intel/core.c
perf/x86: Move perf_event_intel_cqm.c ........ => x86/events/intel/cqm.c
perf/x86: Move perf_event_intel_cstate.c ..... => x86/events/intel/cstate.c
perf/x86: Move perf_event_intel_ds.c ......... => x86/events/intel/ds.c
perf/x86: Move perf_event_intel_lbr.c ........ => x86/events/intel/lbr.c
perf/x86: Move perf_event_intel_pt.[ch] ...... => x86/events/intel/pt.[ch]
perf/x86: Move perf_event_intel_rapl.c ....... => x86/events/intel/rapl.c
perf/x86: Move perf_event_intel_uncore.[ch] .. => x86/events/intel/uncore.[ch]
perf/x86: Move perf_event_intel_uncore_nhmex.c => x86/events/intel/uncore_nmhex.c
perf/x86: Move perf_event_intel_uncore_snb.c => x86/events/intel/uncore_snb.c
perf/x86: Move perf_event_intel_uncore_snbep.c => x86/events/intel/uncore_snbep.c
perf/x86: Move perf_event_knc.c .............. => x86/events/intel/knc.c
perf/x86: Move perf_event_p4.c ............... => x86/events/intel/p4.c
perf/x86: Move perf_event_p6.c ............... => x86/events/intel/p6.c
perf/x86: Move perf_event_msr.c .............. => x86/events/msr.c
(Borislav Petkov)
- Update various x86 PMU constraint and hw support details (Stephane
Eranian)
- Optimize kprobes for BPF execution (Martin KaFai Lau)
- Rewrite, refactor and fix the Intel uncore PMU driver code (Thomas
Gleixner)
- Rewrite, refactor and fix the Intel RAPL PMU code (Thomas Gleixner)
- Various fixes and smaller cleanups.
There are lots of perf tooling updates as well. A few highlights:
perf report/top:
- Hierarchy histogram mode for 'perf top' and 'perf report',
showing multiple levels, one per --sort entry: (Namhyung Kim)
On a mostly idle system:
# perf top --hierarchy -s comm,dso
Then expand some levels and use 'P' to take a snapshot:
# cat perf.hist.0
- 92.32% perf
58.20% perf
22.29% libc-2.22.so
5.97% [kernel]
4.18% libelf-0.165.so
1.69% [unknown]
- 4.71% qemu-system-x86
3.10% [kernel]
1.60% qemu-system-x86_64 (deleted)
+ 2.97% swapper
#
- Add 'L' hotkey to dynamicly set the percent threshold for
histogram entries and callchains, i.e. dynamicly do what the
--percent-limit command line option to 'top' and 'report' does.
(Namhyung Kim)
perf mem:
- Allow specifying events via -e in 'perf mem record', also listing
what events can be specified via 'perf mem record -e list' (Jiri
Olsa)
perf record:
- Add 'perf record' --all-user/--all-kernel options, so that one
can tell that all the events in the command line should be
restricted to the user or kernel levels (Jiri Olsa), i.e.:
perf record -e cycles:u,instructions:u
is equivalent to:
perf record --all-user -e cycles,instructions
- Make 'perf record' collect CPU cache info in the perf.data file header:
$ perf record usleep 1
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.017 MB perf.data (7 samples) ]
$ perf report --header-only -I | tail -10 | head -8
# CPU cache info:
# L1 Data 32K [0-1]
# L1 Instruction 32K [0-1]
# L1 Data 32K [2-3]
# L1 Instruction 32K [2-3]
# L2 Unified 256K [0-1]
# L2 Unified 256K [2-3]
# L3 Unified 4096K [0-3]
Will be used in 'perf c2c' and eventually in 'perf diff' to
allow, for instance running the same workload in multiple
machines and then when using 'diff' show the hardware difference.
(Jiri Olsa)
- Improved support for Java, using the JVMTI agent library to do
jitdumps that then will be inserted in synthesized
PERF_RECORD_MMAP2 events via 'perf inject' pointed to synthesized
ELF files stored in ~/.debug and keyed with build-ids, to allow
symbol resolution and even annotation with source line info, see
the changeset comments to see how to use it (Stephane Eranian)
perf script/trace:
- Decode data_src values (e.g. perf.data files generated by 'perf
mem record') in 'perf script': (Jiri Olsa)
# perf script
perf 693 [1] 4.088652: 1 cpu/mem-loads,ldlat=30/P: ffff88007d0b0f40 68100142 L1 hit|SNP None|TLB L1 or L2 hit|LCK No <SNIP>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Improve support to 'data_src', 'weight' and 'addr' fields in
'perf script' (Jiri Olsa)
- Handle empty print fmts in 'perf script -s' i.e. when running
python or perl scripts (Taeung Song)
perf stat:
- 'perf stat' now shows shadow metrics (insn per cycle, etc) in
interval mode too. E.g:
# perf stat -I 1000 -e instructions,cycles sleep 1
# time counts unit events
1.000215928 519,620 instructions # 0.69 insn per cycle
1.000215928 752,003 cycles
<SNIP>
- Port 'perf kvm stat' to PowerPC (Hemant Kumar)
- Implement CSV metrics output in 'perf stat' (Andi Kleen)
perf BPF support:
- Support converting data from bpf events in 'perf data' (Wang Nan)
- Print bpf-output events in 'perf script': (Wang Nan).
# perf record -e bpf-output/no-inherit,name=evt/ -e ./test_bpf_output_3.c/map:channel.event=evt/ usleep 1000
# perf script
usleep 4882 21384.532523: evt: ffffffff810e97d1 sys_nanosleep ([kernel.kallsyms])
BPF output: 0000: 52 61 69 73 65 20 61 20 Raise a
0008: 42 50 46 20 65 76 65 6e BPF even
0010: 74 21 00 00 t!..
BPF string: "Raise a BPF event!"
#
- Add API to set values of map entries in a BPF object, be it
individual map slots or ranges (Wang Nan)
- Introduce support for the 'bpf-output' event (Wang Nan)
- Add glue to read perf events in a BPF program (Wang Nan)
- Improve support for bpf-output events in 'perf trace' (Wang Nan)
... and tons of other changes as well - see the shortlog and git log
for details!"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (342 commits)
perf stat: Add --metric-only support for -A
perf stat: Implement --metric-only mode
perf stat: Document CSV format in manpage
perf hists browser: Check sort keys before hot key actions
perf hists browser: Allow thread filtering for comm sort key
perf tools: Add sort__has_comm variable
perf tools: Recalc total periods using top-level entries in hierarchy
perf tools: Remove nr_sort_keys field
perf hists browser: Cleanup hist_browser__fprintf_hierarchy_entry()
perf tools: Remove hist_entry->fmt field
perf tools: Fix command line filters in hierarchy mode
perf tools: Add more sort entry check functions
perf tools: Fix hist_entry__filter() for hierarchy
perf jitdump: Build only on supported archs
tools lib traceevent: Add '~' operation within arg_num_eval()
perf tools: Omit unnecessary cast in perf_pmu__parse_scale
perf tools: Pass perf_hpp_list all the way through setup_sort_list
perf tools: Fix perf script python database export crash
perf jitdump: DWARF is also needed
perf bench mem: Prepare the x86-64 build for upstream memcpy_mcsafe() changes
...
Pull read-only kernel memory updates from Ingo Molnar:
"This tree adds two (security related) enhancements to the kernel's
handling of read-only kernel memory:
- extend read-only kernel memory to a new class of formerly writable
kernel data: 'post-init read-only memory' via the __ro_after_init
attribute, and mark the ARM and x86 vDSO as such read-only memory.
This kind of attribute can be used for data that requires a once
per bootup initialization sequence, but is otherwise never modified
after that point.
This feature was based on the work by PaX Team and Brad Spengler.
(by Kees Cook, the ARM vDSO bits by David Brown.)
- make CONFIG_DEBUG_RODATA always enabled on x86 and remove the
Kconfig option. This simplifies the kernel and also signals that
read-only memory is the default model and a first-class citizen.
(Kees Cook)"
* 'mm-readonly-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ARM/vdso: Mark the vDSO code read-only after init
x86/vdso: Mark the vDSO code read-only after init
lkdtm: Verify that '__ro_after_init' works correctly
arch: Introduce post-init read-only memory
x86/mm: Always enable CONFIG_DEBUG_RODATA and remove the Kconfig option
mm/init: Add 'rodata=off' boot cmdline parameter to disable read-only kernel mappings
asm-generic: Consolidate mark_rodata_ro()
Pull locking changes from Ingo Molnar:
"Various updates:
- Futex scalability improvements: remove page lock use for shared
futex get_futex_key(), which speeds up 'perf bench futex hash'
benchmarks by over 40% on a 60-core Westmere. This makes anon-mem
shared futexes perform close to private futexes. (Mel Gorman)
- lockdep hash collision detection and fix (Alfredo Alvarez
Fernandez)
- lockdep testing enhancements (Alfredo Alvarez Fernandez)
- robustify lockdep init by using hlists (Andrew Morton, Andrey
Ryabinin)
- mutex and csd_lock micro-optimizations (Davidlohr Bueso)
- small x86 barriers tweaks (Michael S Tsirkin)
- qspinlock updates (Waiman Long)"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
locking/csd_lock: Use smp_cond_acquire() in csd_lock_wait()
locking/csd_lock: Explicitly inline csd_lock*() helpers
futex: Replace barrier() in unqueue_me() with READ_ONCE()
locking/lockdep: Detect chain_key collisions
locking/lockdep: Prevent chain_key collisions
tools/lib/lockdep: Fix link creation warning
tools/lib/lockdep: Add tests for AA and ABBA locking
tools/lib/lockdep: Add userspace version of READ_ONCE()
tools/lib/lockdep: Fix the build on recent kernels
locking/qspinlock: Move __ARCH_SPIN_LOCK_UNLOCKED to qspinlock_types.h
locking/mutex: Allow next waiter lockless wakeup
locking/pvqspinlock: Enable slowpath locking count tracking
locking/qspinlock: Use smp_cond_acquire() in pending code
locking/pvqspinlock: Move lock stealing count tracking code into pv_queued_spin_steal_lock()
locking/mcs: Fix mcs_spin_lock() ordering
futex: Remove requirement for lock_page() in get_futex_key()
futex: Rename barrier references in ordering guarantees
locking/atomics: Update comment about READ_ONCE() and structures
locking/lockdep: Eliminate lockdep_init()
locking/lockdep: Convert hash tables to hlists
...
Pull ram resource handling changes from Ingo Molnar:
"Core kernel resource handling changes to support NVDIMM error
injection.
This tree introduces a new I/O resource type, IORESOURCE_SYSTEM_RAM,
for System RAM while keeping the current IORESOURCE_MEM type bit set
for all memory-mapped ranges (including System RAM) for backward
compatibility.
With this resource flag it no longer takes a strcmp() loop through the
resource tree to find "System RAM" resources.
The new resource type is then used to extend ACPI/APEI error injection
facility to also support NVDIMM"
* 'core-resources-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ACPI/EINJ: Allow memory error injection to NVDIMM
resource: Kill walk_iomem_res()
x86/kexec: Remove walk_iomem_res() call with GART type
x86, kexec, nvdimm: Use walk_iomem_res_desc() for iomem search
resource: Add walk_iomem_res_desc()
memremap: Change region_intersects() to take @flags and @desc
arm/samsung: Change s3c_pm_run_res() to use System RAM type
resource: Change walk_system_ram() to use System RAM type
drivers: Initialize resource entry to zero
xen, mm: Set IORESOURCE_SYSTEM_RAM to System RAM
kexec: Set IORESOURCE_SYSTEM_RAM for System RAM
arch: Set IORESOURCE_SYSTEM_RAM flag for System RAM
ia64: Set System RAM type and descriptor
x86/e820: Set System RAM type and descriptor
resource: Add I/O resource descriptor
resource: Handle resource flags properly
resource: Add System RAM resource type
A few new AVX-512 instruction groups/features are added in cpufeatures.h
for enuermation: AVX512DQ, AVX512BW, and AVX512VL.
Clear the flags in fpu__xstate_clear_all_cpu_caps().
The specification for latest AVX-512 including the features can be found at:
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
Note, I didn't enable the flags in KVM. Hopefully the KVM guys can pick up
the flags and enable them in KVM.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/1457667498-37357-1-git-send-email-fenghua.yu@intel.com
[ Added more detailed feature descriptions. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
i486 derived cores like Intel Quark support only the very old,
legacy x87 FPU (FSAVE/FRSTOR, CPUID bit FXSR is not set), and
our FPU code wasn't handling the saving and restoring there
properly in the 'eagerfpu' case.
So after we made eagerfpu the default for all CPU types:
58122bf1d8 x86/fpu: Default eagerfpu=on on all CPUs
these old FPU designs broke. First, Andy Shevchenko reported a splat:
WARNING: CPU: 0 PID: 823 at arch/x86/include/asm/fpu/internal.h:163 fpu__clear+0x8c/0x160
which was us trying to execute FXRSTOR on those machines even though
they don't support it.
After taking care of that, Bryan O'Donoghue reported that a simple FPU
test still failed because we weren't initializing the FPU state properly
on those machines.
Take care of all that.
Reported-and-tested-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Reported-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20160311113206.GD4312@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit abd4f7505b ("x86: i386-show-unhandled-signals-v3") did turn on
the showing-unhandled-signal behaviour for i386 for some exception handlers,
but for no reason do_trap() is left out (my naive guess is because turning it on
for do_trap() would be too noisy since do_trap() is shared by several exceptions).
And since the same commit make "show_unhandled_signals" a debug tunable(in
/proc/sys/debug/exception-trace), and x86 by default turning it on.
So it would be strange for i386 users who turing it on manually and expect
seeing the unhandled signal output in log, but nothing.
This patch turns it on for i386 in do_trap() as well.
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: dave.hansen@linux.intel.com
Cc: heukelum@fastmail.fm
Cc: jbeulich@novell.com
Cc: jdike@addtoit.com
Cc: joe@perches.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/1457612398-4568-1-git-send-email-nasa4836@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want all of the syscall entries to run with interrupts off so that
we can efficiently run context tracking before enabling interrupts.
This will regress int $0x80 performance on 32-bit kernels by a
couple of cycles. This shouldn't matter much -- int $0x80 is not a
fast path.
This effectively reverts:
657c1eea00 ("x86/entry/32: Fix entry_INT80_32() to expect interrupts to be on")
... and fixes the same issue differently.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/59b4f90c9ebfccd8c937305dbbbca680bc74b905.1457558566.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Leonid Shatz noticed that the SDM interpretation of the following
recent commit:
394db20ca2 ("x86/fpu: Disable AVX when eagerfpu is off")
... is incorrect and that the original behavior of the FPU code was correct.
Because AVX is not stated in CR0 TS bit description, it was mistakenly
believed to be not supported for lazy context switch. This turns out
to be false:
Intel Software Developer's Manual Vol. 3A, Sec. 2.5 Control Registers:
'TS Task Switched bit (bit 3 of CR0) -- Allows the saving of the x87 FPU/
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be delayed until
an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed
by the new task.'
Intel Software Developer's Manual Vol. 2A, Sec. 2.4 Instruction Exception
Specification:
'AVX instructions refer to exceptions by classes that include #NM
"Device Not Available" exception for lazy context switch.'
So revert the commit.
Reported-by: Leonid Shatz <leonid.shatz@ravellosystems.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457569734-3785-1-git-send-email-yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The first instruction of the SYSENTER entry runs on its own tiny
stack. That stack can be used if a #DB or NMI is delivered before
the SYSENTER prologue switches to a real stack.
We have code in place to prevent us from overflowing the tiny stack.
For added paranoia, add a canary to the stack and check it in
do_debug() -- that way, if something goes wrong with the #DB logic,
we'll eventually notice.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6ff9a806f39098b166dc2c41c1db744df5272f29.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Right after SYSENTER, we can get a #DB or NMI. On x86_32, there's no IST,
so the exception handler is invoked on the temporary SYSENTER stack.
Because the SYSENTER stack is very small, we have a fixup to switch
off the stack quickly when this happens. The old fixup had several issues:
1. It checked the interrupt frame's CS and EIP. This wasn't
obviously correct on Xen or if vm86 mode was in use [1].
2. In the NMI handler, it did some frightening digging into the
stack frame. I'm not convinced this digging was correct.
3. The fixup didn't switch stacks and then switch back. Instead, it
synthesized a brand new stack frame that would redirect the IRET
back to the SYSENTER code. That frame was highly questionable.
For one thing, if NMI nested inside #DB, we would effectively
abort the #DB prologue, which was probably safe but was
frightening. For another, the code used PUSHFL to write the
FLAGS portion of the frame, which was simply bogus -- by the time
PUSHFL was called, at least TF, NT, VM, and all of the arithmetic
flags were clobbered.
Simplify this considerably. Instead of looking at the saved frame
to see where we came from, check the hardware ESP register against
the SYSENTER stack directly. Malicious user code cannot spoof the
kernel ESP register, and by moving the check after SAVE_ALL, we can
use normal PER_CPU accesses to find all the relevant addresses.
With this patch applied, the improved syscall_nt_32 test finally
passes on 32-bit kernels.
[1] It isn't obviously correct, but it is nonetheless safe from vm86
shenanigans as far as I can tell. A user can't point EIP at
entry_SYSENTER_32 while in vm86 mode because entry_SYSENTER_32,
like all kernel addresses, is greater than 0xffff and would thus
violate the CS segment limit.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b2cdbc037031c07ecf2c40a96069318aec0e7971.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to a blatant design error, SYSENTER doesn't clear TF (single-step).
As a result, if a user does SYSENTER with TF set, we will single-step
through the kernel until something clears TF. There is absolutely
nothing we can do to prevent this short of turning off SYSENTER [1].
Simplify the handling considerably with two changes:
1. We already sanitize EFLAGS in SYSENTER to clear NT and AC. We can
add TF to that list of flags to sanitize with no overhead whatsoever.
2. Teach do_debug() to ignore single-step traps in the SYSENTER prologue.
That's all we need to do.
Don't get too excited -- our handling is still buggy on 32-bit
kernels. There's nothing wrong with the SYSENTER code itself, but
the #DB prologue has a clever fixup for traps on the very first
instruction of entry_SYSENTER_32, and the fixup doesn't work quite
correctly. The next two patches will fix that.
[1] We could probably prevent it by forcing BTF on at all times and
making sure we clear TF before any branches in the SYSENTER
code. Needless to say, this is a bad idea.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a30d2ea06fe4b621fe6a9ef911b02c0f38feb6f2.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Leaving any bits set in DR6 on return from a debug exception is
asking for trouble. Prevent it by writing zero right away and
clarify the comment.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3857676e1be8fb27db4b89bbb1e2052b7f435ff4.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SDM says that debug exceptions clear BTF, and we need to keep
TIF_BLOCKSTEP in sync with BTF. Clear it unconditionally and improve
the comment.
I suspect that the fact that kmemcheck could cause TIF_BLOCKSTEP not
to be cleared was just an oversight.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/fa86e55d196e6dde5b38839595bde2a292c52fdc.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After fixing FPU option parsing, we now parse the 'no387' boot option
too early: no387 clears X86_FEATURE_FPU before it's even probed, so
the boot CPU promptly re-enables it.
I suspect it gets even more confused on SMP.
Fix the probing code to leave X86_FEATURE_FPU off if it's been
disabled by setup_clear_cpu_cap().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yu-cheng yu <yu-cheng.yu@intel.com>
Fixes: 4f81cbafcc ("x86/fpu: Fix early FPU command-line parsing")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Several cases of overlapping changes, as well as one instance
(vxlan) of a bug fix in 'net' overlapping with code movement
in 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
Make use of the EXTABLE_FAULT exception table entries to write
a kernel copy routine that doesn't crash the system if it
encounters a machine check. Prime use case for this is to copy
from large arrays of non-volatile memory used as storage.
We have to use an unrolled copy loop for now because current
hardware implementations treat a machine check in "rep mov"
as fatal. When that is fixed we can simplify.
Return type is a "bool". True means that we copied OK, false means
that it didn't.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@gmail.com>
Link: http://lkml.kernel.org/r/a44e1055efc2d2a9473307b22c91caa437aa3f8b.1456439214.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It no longer has any users.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: david.vrabel@citrix.com
Cc: konrad.wilk@oracle.com
Cc: lguest@lists.ozlabs.org
Cc: xen-devel@lists.xensource.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86_64 has very clean espfix handling on paravirt: espfix64 is set
up in native_iret, so paravirt systems that override iret bypass
espfix64 automatically. This is robust and straightforward.
x86_32 is messier. espfix is set up before the IRET paravirt patch
point, so it can't be directly conditionalized on whether we use
native_iret. We also can't easily move it into native_iret without
regressing performance due to a bizarre consideration. Specifically,
on 64-bit kernels, the logic is:
if (regs->ss & 0x4)
setup_espfix;
On 32-bit kernels, the logic is:
if ((regs->ss & 0x4) && (regs->cs & 0x3) == 3 &&
(regs->flags & X86_EFLAGS_VM) == 0)
setup_espfix;
The performance of setup_espfix itself is essentially irrelevant, but
the comparison happens on every IRET so its performance matters. On
x86_64, there's no need for any registers except flags to implement
the comparison, so we fold the whole thing into native_iret. On
x86_32, we don't do that because we need a free register to
implement the comparison efficiently. We therefore do espfix setup
before restoring registers on x86_32.
This patch gets rid of the explicit paravirt_enabled check by
introducing X86_BUG_ESPFIX on 32-bit systems and using an ALTERNATIVE
to skip espfix on paravirt systems where iret != native_iret. This is
also messy, but it's at least in line with other things we do.
This improves espfix performance by removing a branch, but no one
cares. More importantly, it removes a paravirt_enabled user, which is
good because paravirt_enabled is ill-defined and is going away.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: david.vrabel@citrix.com
Cc: konrad.wilk@oracle.com
Cc: lguest@lists.ozlabs.org
Cc: xen-devel@lists.xensource.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ignore_nmis is used in two distinct places:
1. modified through {stop,restart}_nmi by alternative_instructions
2. read by do_nmi to determine if default_do_nmi should be called or not
thus the access pattern conforms to __read_mostly and do_nmi() is a fastpath.
Signed-off-by: Kostenzer Felix <fkostenzer@live.at>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In an attempt to aid in understanding of what the threshold_block
structure holds, provide comments to describe the members here. Also,
trim comments around threshold_restart_bank() and update copyright info.
No functional change is introduced.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
[ Shorten comments. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1457021458-2522-6-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In upcoming processors, the BLKPTR field is no longer used to indicate
the MSR number of the additional register. Insted, it simply indicates
the prescence of additional MSRs.
Fix the logic here to gather MSR address from MSR_AMD64_SMCA_MCx_MISC()
for newer processors and fall back to existing logic for older
processors.
[ Drop nextaddr_out label; style cleanups. ]
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1457021458-2522-4-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For Scalable MCA enabled processors, errors are listed per IP block. And
since it is not required for an IP to map to a particular bank, we need
to use HWID and McaType values from the MCx_IPID register to figure out
which IP a given bank represents.
We also have a new bit (TCC) in the MCx_STATUS register to indicate Task
context is corrupt.
Add logic here to decode errors from all known IP blocks for Fam17h
Model 00-0fh and to print TCC errors.
[ Minor fixups. ]
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1457021458-2522-3-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Microcode checksum verification should be done using unsigned 32-bit
values otherwise the calculation overflow results in undefined
behaviour.
This is also nicely documented in the SDM, section "Microcode Update
Checksum":
"To check for a corrupt microcode update, software must perform a
unsigned DWORD (32-bit) checksum of the microcode update. Even though
some fields are signed, the checksum procedure treats all DWORDs as
unsigned. Microcode updates with a header version equal to 00000001H
must sum all DWORDs that comprise the microcode update. A valid
checksum check will yield a value of 00000000H."
but for some reason the code has been using ints from the very
beginning.
In practice, this bug possibly manifested itself only when doing the
microcode data checksum - apparently, currently shipped Intel microcode
doesn't have an extended signature table for which we do checksum
verification too.
UBSAN: Undefined behaviour in arch/x86/kernel/cpu/microcode/intel_lib.c:105:12
signed integer overflow:
-1500151068 + -2125470173 cannot be represented in type 'int'
CPU: 0 PID: 0 Comm: swapper Not tainted 4.5.0-rc5+ #495
...
Call Trace:
dump_stack
? inotify_ioctl
ubsan_epilogue
handle_overflow
__ubsan_handle_add_overflow
microcode_sanity_check
get_matching_model_microcode.isra.2.constprop.8
? early_idt_handler_common
? strlcpy
? find_cpio_data
load_ucode_intel_bsp
load_ucode_bsp
? load_ucode_bsp
x86_64_start_kernel
[ Expand and massage commit message. ]
Signed-off-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: hmh@hmh.eng.br
Link: http://lkml.kernel.org/r/1456834359-5132-1-git-send-email-chris.bainbridge@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On modern Intel systems TSC is derived from the new Always Running Timer
(ART). ART can be captured simultaneous to the capture of
audio and network device clocks, allowing a correlation between timebases
to be constructed. Upon capture, the driver converts the captured ART
value to the appropriate system clock using the correlated clocksource
mechanism.
On systems that support ART a new CPUID leaf (0x15) returns parameters
“m” and “n” such that:
TSC_value = (ART_value * m) / n + k [n >= 1]
[k is an offset that can adjusted by a privileged agent. The
IA32_TSC_ADJUST MSR is an example of an interface to adjust k.
See 17.14.4 of the Intel SDM for more details]
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: kevin.b.stanton@intel.com
Cc: kevin.j.clarke@intel.com
Cc: hpa@zytor.com
Cc: jeffrey.t.kirsher@intel.com
Cc: netdev@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
[jstultz: Tweaked to fix build issue, also reworked math for
64bit division on 32bit systems, as well as !CONFIG_CPU_FREQ build
fixes]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Pause/unpause graph tracing around do_suspend_lowlevel as it has
inconsistent call/return info after it jumps to the wakeup vector.
The graph trace buffer will otherwise become misaligned and
may eventually crash and hang on suspend.
To reproduce the issue and test the fix:
Run a function_graph trace over suspend/resume and set the graph
function to suspend_devices_and_enter. This consistently hangs the
system without this fix.
Signed-off-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Let the non boot cpus call into idle with the corresponding hotplug state, so
the hotplug core can handle the further bringup. That's a first step to
convert the boot side of the hotplugged cpus to do all the synchronization
with the other side through the state machine. For now it'll only start the
hotplug thread and kick the full bringup of the cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.614102639@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For per package oriented services we must be able to rely on the number of CPU
packages to be within bounds. Create a tracking facility, which
- calculates the number of possible packages depending on nr_cpu_ids after boot
- makes sure that the package id is within the number of possible packages. If
the apic id is outside we map it to a logical package id if there is enough
space available.
Provide interfaces for drivers to query the mapping and do translations from
physcial to logical ids.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221011.541071755@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
objtool reports the following warning for kretprobe_trampoline():
arch/x86/kernel/kprobes/core.o: warning: objtool: kretprobe_trampoline()+0x20: call without frame pointer save/setup
kretprobes are a special case where the stack is intentionally wrong.
The return address isn't known at the beginning of the trampoline, so
the stack frame can't be set up properly before it calls
trampoline_handler().
Because kretprobe handlers don't sleep, the frame pointer doesn't *have*
to be accurate in the trampoline. So it's ok to tell objtool to ignore
it. This results in no actual changes to the generated code.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/7eaf37de52456ff822ffc86b928edb5d48a40ef1.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a new macro, STACK_FRAME_NON_STANDARD(), which is used to denote a
function which does something unusual related to its stack frame. Use
of the macro prevents objtool from emitting a false positive warning.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/34487a17b23dba43c50941599d47054a9584b219.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Code which runs outside the kernel's normal mode of operation often does
unusual things which can cause a static analysis tool like objtool to
emit false positive warnings:
- boot image
- vdso image
- relocation
- realmode
- efi
- head
- purgatory
- modpost
Set OBJECT_FILES_NON_STANDARD for their related files and directories,
which will tell objtool to skip checking them. It's ok to skip them
because they don't affect runtime stack traces.
Also skip the following code which does the right thing with respect to
frame pointers, but is too "special" to be validated by a tool:
- entry
- mcount
Also skip the test_nx module because it modifies its exception handling
table at runtime, which objtool can't understand. Fortunately it's
just a test module so it doesn't matter much.
Currently objtool is the only user of OBJECT_FILES_NON_STANDARD, but it
might eventually be useful for other tools.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/366c080e3844e8a5b6a0327dc7e8c2b90ca3baeb.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kretprobe_trampoline_holder() wrapper around kretprobe_trampoline()
isn't used anywhere and adds some unnecessary frame pointer instructions
which never execute. Instead, just make kretprobe_trampoline() a proper
ELF function.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/92d921b102fb865a7c254cfde9e4a0a72b9a781e.1453405861.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
do_suspend_lowlevel() is a callable non-leaf function which doesn't
honor CONFIG_FRAME_POINTER, which can result in bad stack traces.
Create a stack frame for it when CONFIG_FRAME_POINTER is enabled.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/7383d87dd40a460e0d757a0793498b9d06a7ee0d.1453405861.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
vide() is a callable function, but is missing the ELF function type,
which confuses tools like stacktool.
Properly annotate it to be a callable function. The generated code is
unchanged.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/a324095f5c9390ff39b15b4562ea1bbeda1a8282.1453405861.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
drivers/net/phy/bcm7xxx.c
drivers/net/phy/marvell.c
drivers/net/vxlan.c
All three conflicts were cases of simple overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes the CONFIG_DEBUG_RODATA option and makes it always enabled.
This simplifies the code and also makes it clearer that read-only mapped
memory is just as fundamental a security feature in kernel-space as it is
in user-space.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Brown <david.brown@linaro.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-arch <linux-arch@vger.kernel.org>
Link: http://lkml.kernel.org/r/1455748879-21872-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's simpler to look at the topology mask than iterating over all online cpus
to find a cpu on the same package.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
. avoid walking the stack when there is no room left in the buffer
. generalize get_perf_callchain() to be called from bpf helper
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Protection keys provide new page-based protection in hardware.
But, they have an interesting attribute: they only affect data
accesses and never affect instruction fetches. That means that
if we set up some memory which is set as "access-disabled" via
protection keys, we can still execute from it.
This patch uses protection keys to set up mappings to do just that.
If a user calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only without PROT_READ/WRITE), the kernel will
notice this, and set a special protection key on the memory. It
also sets the appropriate bits in the Protection Keys User Rights
(PKRU) register so that the memory becomes unreadable and
unwritable.
I haven't found any userspace that does this today. With this
facility in place, we expect userspace to move to use it
eventually. Userspace _could_ start doing this today. Any
PROT_EXEC calls get converted to PROT_READ inside the kernel, and
would transparently be upgraded to "true" PROT_EXEC with this
code. IOW, userspace never has to do any PROT_EXEC runtime
detection.
This feature provides enhanced protection against leaking
executable memory contents. This helps thwart attacks which are
attempting to find ROP gadgets on the fly.
But, the security provided by this approach is not comprehensive.
The PKRU register which controls access permissions is a normal
user register writable from unprivileged userspace. An attacker
who can execute the 'wrpkru' instruction can easily disable the
protection provided by this feature.
The protection key that is used for execute-only support is
permanently dedicated at compile time. This is fine for now
because there is currently no API to set a protection key other
than this one.
Despite there being a constant PKRU value across the entire
system, we do not set it unless this feature is in use in a
process. That is to preserve the PKRU XSAVE 'init state',
which can lead to faster context switches.
PKRU *is* a user register and the kernel is modifying it. That
means that code doing:
pkru = rdpkru()
pkru |= 0x100;
mmap(..., PROT_EXEC);
wrpkru(pkru);
could lose the bits in PKRU that enforce execute-only
permissions. To avoid this, we suggest avoiding ever calling
mmap() or mprotect() when the PKRU value is expected to be
unstable.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: keescook@google.com
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210240.CB4BB5CA@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Protection Key Rights for User memory (PKRU) is a 32-bit
user-accessible register. It contains two bits for each
protection key: one to write-disable (WD) access to memory
covered by the key and another to access-disable (AD).
Userspace can read/write the register with the RDPKRU and WRPKRU
instructions. But, the register is saved and restored with the
XSAVE family of instructions, which means we have to treat it
like a floating point register.
The kernel needs to write to the register if it wants to
implement execute-only memory or if it implements a system call
to change PKRU.
To do this, we need to create a 'pkru_state' buffer, read the old
contents in to it, modify it, and then tell the FPU code that
there is modified data in there so it can (possibly) move the
buffer back in to the registers.
This uses the fpu__xfeature_set_state() function that we defined
in the previous patch.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210236.0BE13217@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to modify the Protection Key rights inside the kernel, so
we need to change PKRU's contents. But, if we do a plain
'wrpkru', when we return to userspace we might do an XRSTOR and
wipe out the kernel's 'wrpkru'. So, we need to go after PKRU in
the xsave buffer.
We do this by:
1. Ensuring that we have the XSAVE registers (fpregs) in the
kernel FPU buffer (fpstate)
2. Looking up the location of a given state in the buffer
3. Filling in the stat
4. Ensuring that the hardware knows that state is present there
(basically that the 'init optimization' is not in place).
5. Copying the newly-modified state back to the registers if
necessary.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210235.5A3139BF@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The arch-specific mm_context_t is a great place to put
protection-key allocation state.
But, we need to initialize the allocation state because pkey 0 is
always "allocated". All of the runtime initialization of
mm_context_t is done in *_ldt() manipulation functions. This
renames the existing LDT functions like this:
init_new_context() -> init_new_context_ldt()
destroy_context() -> destroy_context_ldt()
and makes init_new_context() and destroy_context() available for
generic use.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210234.DB34FCC5@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This sets the bit in 'cr4' to actually enable the protection
keys feature. We also include a boot-time disable for the
feature "nopku".
Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE cpuid
bit to appear set. At this point in boot, identify_cpu()
has already run the actual CPUID instructions and populated
the "cpu features" structures. We need to go back and
re-run identify_cpu() to make sure it gets updated values.
We *could* simply re-populate the 11th word of the cpuid
data, but this is probably quick enough.
Also note that with the cpu_has() check and X86_FEATURE_PKU
present in disabled-features.h, we do not need an #ifdef
for setup_pku().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210229.6708027C@viggo.jf.intel.com
[ Small readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The protection key can now be just as important as read/write
permissions on a VMA. We need some debug mechanism to help
figure out if it is in play. smaps seems like a logical
place to expose it.
arch/x86/kernel/setup.c is a bit of a weirdo place to put
this code, but it already had seq_file.h and there was not
a much better existing place to put it.
We also use no #ifdef. If protection keys is .config'd out we
will effectively get the same function as if we used the weak
generic function.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Mark Williamson <mwilliamson@undo-software.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210227.4F8EB3F8@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Protection Keys never affect kernel mappings. But, they can
affect whether the kernel will fault when it touches a user
mapping. The kernel doesn't touch user mappings without some
careful choreography and these accesses don't generally result in
oopses. But, if one does, we definitely want to have PKRU
available so we can figure out if protection keys played a role.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210225.BF0D4482@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Intel Software Developer Manual describes bit 24 in the MCG_CAP
MSR:
MCG_SER_P (software error recovery support present) flag,
bit 24 — Indicates (when set) that the processor supports
software error recovery
But only some models with this capability bit set will actually
generate recoverable machine checks.
Check the model name and set a synthetic capability bit. Provide
a command line option to set this bit anyway in case the kernel
doesn't recognise the model name.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2e5bfb23c89800a036fb8a45fa97a74bb16bc362.1455732970.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Extend the severity checking code to add a new context IN_KERN_RECOV
which is used to indicate that the machine check was triggered by code
in the kernel tagged with _ASM_EXTABLE_FAULT() so that the ex_handler_fault()
handler will provide the fixup code with the trap number.
Major re-work to the tail code in do_machine_check() to make all this
readable/maintainable. One functional change is that tolerant=3 no longer
stops recovery actions. Revert to only skipping sending SIGBUS to the
current process.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/89d243d05a7943bb187d1074bb30d9c4f482d5f5.1455732970.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Huge amounts of help from Andy Lutomirski and Borislav Petkov to
produce this. Andy provided the inspiration to add classes to the
exception table with a clever bit-squeezing trick, Boris pointed
out how much cleaner it would all be if we just had a new field.
Linus Torvalds blessed the expansion with:
' I'd rather not be clever in order to save just a tiny amount of space
in the exception table, which isn't really criticial for anybody. '
The third field is another relative function pointer, this one to a
handler that executes the actions.
We start out with three handlers:
1: Legacy - just jumps the to fixup IP
2: Fault - provide the trap number in %ax to the fixup code
3: Cleaned up legacy for the uaccess error hack
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f6af78fcbd348cf4939875cfda9c19689b5e50b8.1455732970.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that all functionality has been moved to arch/x86/events/, move the
perf_event.h header and adjust include paths.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1455098123-11740-18-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>