Expose the XSAVES feature to the guest if the kvm_x86_ops say it is
available.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
cs.base is declared as a __u64 variable and vector is a u32 so this
causes a static checker warning. The user indeed can set "sipi_vector"
to any u32 value in kvm_vcpu_ioctl_x86_set_vcpu_events(), but the
value should really have 8-bit precision only.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create a new header, and hide the device assignment functions there.
Move struct kvm_assigned_dev_kernel to assigned-dev.c by modifying
arch/x86/kvm/iommu.c to take a PCI device struct.
Based on a patch by Radim Krcmar <rkrcmark@redhat.com>.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that ia64 is gone, we can hide deprecated device assignment in x86.
Notable changes:
- kvm_vm_ioctl_assigned_device() was moved to x86/kvm_arch_vm_ioctl()
The easy parts were removed from generic kvm code, remaining
- kvm_iommu_(un)map_pages() would require new code to be moved
- struct kvm_assigned_dev_kernel depends on struct kvm_irq_ack_notifier
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ia64 does not need them anymore. Ack notifiers become x86-specific
too.
Suggested-by: Gleb Natapov <gleb@kernel.org>
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With the 3 private slots, this gives us 512 slots total.
Motivation for this is in addition to assigned devices
support more memory hotplug slots, where 1 slot is
used by a hotplugged memory stick.
It will allow to support upto 256 hotplug memory
slots and leave 253 slots for assigned devices and
other devices that use them.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Although Intel SDM mentions bit 63 is reserved, MOV to CR3 can have bit 63 set.
As Intel SDM states in section 4.10.4 "Invalidation of TLBs and
Paging-Structure Caches": " MOV to CR3. ... If CR4.PCIDE = 1 and bit 63 of the
instruction’s source operand is 0 ..."
In other words, bit 63 is not reserved. KVM emulator currently consider bit 63
as reserved. Fix it.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86 debug registers hold a linear address. Therefore, breakpoints detection
should consider CS.base, and check whether instruction linear address equals
(CS.base + RIP). This patch introduces a function to evaluate RIP linear
address and uses it for breakpoints detection.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If DR4/5 is accessed when it is unavailable (since CR4.DE is set), then #UD
should be generated even if CPL>0. This is according to Intel SDM Table 6-2:
"Priority Among Simultaneous Exceptions and Interrupts".
Note, that this may happen on the first DR access, even if the host does not
sets debug breakpoints. Obviously, it occurs when the host debugs the guest.
This patch moves the DR4/5 checks from __kvm_set_dr/_kvm_get_dr to handle_dr.
The emulator already checks DR4/5 availability in check_dr_read. Nested
virutalization related calls to kvm_set_dr/kvm_get_dr would not like to inject
exceptions to the guest.
As for SVM, the patch follows the previous logic as much as possible. Anyhow,
it appears the DR interception code might be buggy - even if the DR access
may cause an exception, the instruction is skipped.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM does not deliver x2APIC broadcast messages with physical mode. Intel SDM
(10.12.9 ICR Operation in x2APIC Mode) states: "A destination ID value of
FFFF_FFFFH is used for broadcast of interrupts in both logical destination and
physical destination modes."
In addition, the local-apic enables cluster mode broadcast. As Intel SDM
10.6.2.2 says: "Broadcast to all local APICs is achieved by setting all
destination bits to one." This patch enables cluster mode broadcast.
The fix tries to combine broadcast in different modes through a unified code.
One rare case occurs when the source of IPI has its APIC disabled. In such
case, the source can still issue IPIs, but since the source is not obliged to
have the same LAPIC mode as the enabled ones, we cannot rely on it.
Since it is a rare case, it is unoptimized and done on the slow-path.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Wanpeng Li <wanpeng.li@linux.intel.com>
[As per Radim's review, use unsigned int for X2APIC_BROADCAST, return bool from
kvm_apic_broadcast. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The previous patch blocked invalid writes directly when the MSR
is written. As a precaution, prevent future similar mistakes by
gracefulling handle GPs caused by writes to shared MSRs.
Cc: stable@vger.kernel.org
Signed-off-by: Andrew Honig <ahonig@google.com>
[Remove parts obsoleted by Nadav's patch. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Upon WRMSR, the CPU should inject #GP if a non-canonical value (address) is
written to certain MSRs. The behavior is "almost" identical for AMD and Intel
(ignoring MSRs that are not implemented in either architecture since they would
anyhow #GP). However, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
non-canonical address is written on Intel but not on AMD (which ignores the top
32-bits).
Accordingly, this patch injects a #GP on the MSRs which behave identically on
Intel and AMD. To eliminate the differences between the architecutres, the
value which is written to IA32_SYSENTER_ESP and IA32_SYSENTER_EIP is turned to
canonical value before writing instead of injecting a #GP.
Some references from Intel and AMD manuals:
According to Intel SDM description of WRMSR instruction #GP is expected on
WRMSR "If the source register contains a non-canonical address and ECX
specifies one of the following MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_KERNEL_GS_BASE, IA32_LSTAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP."
According to AMD manual instruction manual:
LSTAR/CSTAR (SYSCALL): "The WRMSR instruction loads the target RIP into the
LSTAR and CSTAR registers. If an RIP written by WRMSR is not in canonical
form, a general-protection exception (#GP) occurs."
IA32_GS_BASE and IA32_FS_BASE (WRFSBASE/WRGSBASE): "The address written to the
base field must be in canonical form or a #GP fault will occur."
IA32_KERNEL_GS_BASE (SWAPGS): "The address stored in the KernelGSbase MSR must
be in canonical form."
This patch fixes CVE-2014-3610.
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to make the APIC access page migratable, stop pinning it in
memory.
And because the APIC access page is not pinned in memory, we can
remove kvm_arch->apic_access_page. When we need to write its
physical address into vmcs, we use gfn_to_page() to get its page
struct, which is needed to call page_to_phys(); the page is then
immediately unpinned.
Suggested-by: Gleb Natapov <gleb@kernel.org>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, the APIC access page is pinned by KVM for the entire life
of the guest. We want to make it migratable in order to make memory
hot-unplug available for machines that run KVM.
This patch prepares to handle this in generic code, through a new
request bit (that will be set by the MMU notifier) and a new hook
that is called whenever the request bit is processed.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will be used to let the guest run while the APIC access page is
not pinned. Because subsequent patches will fill in the function
for x86, place the (still empty) x86 implementation in the x86.c file
instead of adding an inline function in kvm_host.h.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1. We were calling clear_flush_young_notify in unmap_one, but we are
within an mmu notifier invalidate range scope. The spte exists no more
(due to range_start) and the accessed bit info has already been
propagated (due to kvm_pfn_set_accessed). Simply call
clear_flush_young.
2. We clear_flush_young on a primary MMU PMD, but this may be mapped
as a collection of PTEs by the secondary MMU (e.g. during log-dirty).
This required expanding the interface of the clear_flush_young mmu
notifier, so a lot of code has been trivially touched.
3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate
the access bit by blowing the spte. This requires proper synchronizing
with MMU notifier consumers, like every other removal of spte's does.
Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A one-line wrapper around kvm_make_request is not particularly
useful. Replace kvm_mmu_flush_tlb() with kvm_make_request().
Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_arch->ept_identity_pagetable holds the ept identity pagetable page. But
it is never used to refer to the page at all.
In vcpu initialization, it indicates two things:
1. indicates if ept page is allocated
2. indicates if a memory slot for identity page is initialized
Actually, kvm_arch->ept_identity_pagetable_done is enough to tell if the ept
identity pagetable is initialized. So we can remove ept_identity_pagetable.
NOTE: In the original code, ept identity pagetable page is pinned in memroy.
As a result, it cannot be migrated/hot-removed. After this patch, since
kvm_arch->ept_identity_pagetable is removed, ept identity pagetable page
is no longer pinned in memory. And it can be migrated/hot-removed.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Gleb Natapov <gleb@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, if a permission error happens during the translation of
the final GPA to HPA, walk_addr_generic returns 0 but does not fill
in walker->fault. To avoid this, add an x86_exception* argument
to the translate_gpa function, and let it fill in walker->fault.
The nested_page_fault field will be true, since the walk_mmu is the
nested_mmu and translate_gpu instead operates on the "outer" (NPT)
instance.
Reported-by: Valentine Sinitsyn <valentine.sinitsyn@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a nested page fault happens during emulation, we will inject a vmexit,
not a page fault. However because writeback happens after the injection,
we will write ctxt->eip from L2 into the L1 EIP. We do not write back
if an instruction caused an interception vmexit---do the same for page
faults.
Suggested-by: Gleb Natapov <gleb@kernel.org>
Reviewed-by: Gleb Natapov <gleb@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following events can lead to an incorrect KVM_EXIT_MMIO bubbling
up to userspace:
(1) Guest accesses gpa X without a memory slot. The gfn is cached in
struct kvm_vcpu_arch (mmio_gfn). On Intel EPT-enabled hosts, KVM sets
the SPTE write-execute-noread so that future accesses cause
EPT_MISCONFIGs.
(2) Host userspace creates a memory slot via KVM_SET_USER_MEMORY_REGION
covering the page just accessed.
(3) Guest attempts to read or write to gpa X again. On Intel, this
generates an EPT_MISCONFIG. The memory slot generation number that
was incremented in (2) would normally take care of this but we fast
path mmio faults through quickly_check_mmio_pf(), which only checks
the per-vcpu mmio cache. Since we hit the cache, KVM passes a
KVM_EXIT_MMIO up to userspace.
This patch fixes the issue by using the memslot generation number
to validate the mmio cache.
Cc: stable@vger.kernel.org
Signed-off-by: David Matlack <dmatlack@google.com>
[xiaoguangrong: adjust the code to make it simpler for stable-tree fix.]
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Tested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the beggining was on_each_cpu(), which required an unused argument to
kvm_arch_ops.hardware_{en,dis}able, but this was soon forgotten.
Remove unnecessary arguments that stem from this.
Signed-off-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Opaque KVM structs are useful for prototypes in asm/kvm_host.h, to avoid
"'struct foo' declared inside parameter list" warnings (and consequent
breakage due to conflicting types).
Move them from individual files to a generic place in linux/kvm_types.h.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
sched_in preempt notifier is available for x86, allow its use in
specific virtualization technlogies as well.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The only user of the fpu_activate hook was dropped in commit
2d04a05bd7 (KVM: x86 emulator: emulate CLTS internally, 2011-04-20).
vmx_fpu_activate and svm_fpu_activate are still called on #NM (and for
Intel CLTS), but never from common code; hence, there's no need for
a hook.
Reviewed-by: Yang Zhang <yang.z.zhang@intel.com>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 682367c494,
which causes 32-bit SMP Windows 7 guests to panic.
SeaBIOS has a limit on the number of MTRRs that it can handle,
and this patch exceeded the limit. Better revert it.
Thanks to Nadav Amit for debugging the cause.
Cc: stable@nongnu.org
Reported-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
few days.
MIPS and s390 have little going on this release; just bugfixes, some
small, some larger.
The highlights for x86 are nested VMX improvements (Jan Kiszka), optimizations
for old processor (up to Nehalem, by me and Bandan Das), and a lot of x86
emulator bugfixes (Nadav Amit).
Stephen Rothwell reported a trivial conflict with the tracing branch.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABAgAGBQJT300XAAoJEBvWZb6bTYby3V8QAJz+XyajnhJ8wH55Vxczz22L
i2gtUGmBLhEXsBcaVKO4BBfek88lLzg0SGLjfW5wCMQmKtxVlrwTCXNkBoPGjapd
NwHtWkMKym44PDhRovn7zkSumkxC43uFIBR/ebrhP6Bvhh9s+MnkQUxfw9ILB+YV
EeKyEG8sSgxFCciuHbp3mIXpDcO6r/ldy6I7009OdyhLoMY+Kvmk7kRe9wtAivdg
CGJi60QvGOn2RGRPOCEtF6UWr8Ae8fe1t84o0hkXPv/j3jtabzAatXKJa4dYNbIs
7Mp4NQpxaGV6rq3WCYVeZRxGs+UReGDAS3Il4Z8C9eTOTooSfxdVr8acpM8PY6I8
UmLT6ECLGycc4ELXrETtR+QLmiXACyJqyVxz4aiLV3kWSWfamKD3hBeQK9NizNcE
VoPDl+PyISvR1tW4KstBuzfUWAEXi+gO78cqqFr/VW6cl7HKpA1DFQaPfGkYKDae
2CPwcLwI5/M6RtSgkyXTkEqNZLc2BjldqSeM1lmWjhZVW56X2iqePUL46Vab3Yvt
U+sELtwEE560NLN3hbaHUsLR1tcUix5w8vTzcXPxgoHQBszHCcAZTWd1XHulr64F
rp/cangqtkPKcu5j1mNhQs38oLjHI1MUsbQrqFoD4tmHjQ75iXHRFzYGoIVKXyHG
AnGbQzJzBcdAANhm3LW0
=UXxV
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM changes from Paolo Bonzini:
"These are the x86, MIPS and s390 changes; PPC and ARM will come in a
few days.
MIPS and s390 have little going on this release; just bugfixes, some
small, some larger.
The highlights for x86 are nested VMX improvements (Jan Kiszka),
optimizations for old processor (up to Nehalem, by me and Bandan Das),
and a lot of x86 emulator bugfixes (Nadav Amit).
Stephen Rothwell reported a trivial conflict with the tracing branch"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (104 commits)
x86/kvm: Resolve shadow warnings in macro expansion
KVM: s390: rework broken SIGP STOP interrupt handling
KVM: x86: always exit on EOIs for interrupts listed in the IOAPIC redir table
KVM: vmx: remove duplicate vmx_mpx_supported() prototype
KVM: s390: Fix memory leak on busy SIGP stop
x86/kvm: Resolve shadow warning from min macro
kvm: Resolve missing-field-initializers warnings
Replace NR_VMX_MSR with its definition
KVM: x86: Assertions to check no overrun in MSR lists
KVM: x86: set rflags.rf during fault injection
KVM: x86: Setting rflags.rf during rep-string emulation
KVM: x86: DR6/7.RTM cannot be written
KVM: nVMX: clean up nested_release_vmcs12 and code around it
KVM: nVMX: fix lifetime issues for vmcs02
KVM: x86: Defining missing x86 vectors
KVM: x86: emulator injects #DB when RFLAGS.RF is set
KVM: x86: Cleanup of rflags.rf cleaning
KVM: x86: Clear rflags.rf on emulated instructions
KVM: x86: popf emulation should not change RF
KVM: x86: Clearing rflags.rf upon skipped emulated instruction
...
Haswell and newer Intel CPUs have support for RTM, and in that case DR6.RTM is
not fixed to 1 and DR7.RTM is not fixed to zero. That is not the case in the
current KVM implementation. This bug is apparent only if the MOV-DR instruction
is emulated or the host also debugs the guest.
This patch is a partial fix which enables DR6.RTM and DR7.RTM to be cleared and
set respectively. It also sets DR6.RTM upon every debug exception. Obviously,
it is not a complete fix, as debugging of RTM is still unsupported.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For the next patch we will need to know the full state of the
interrupt shadow; we will then set KVM_REQ_EVENT when one bit
is cleared.
However, right now get_interrupt_shadow only returns the one
corresponding to the emulated instruction, or an unconditional
0 if the emulated instruction does not have an interrupt shadow.
This is confusing and does not allow us to check for cleared
bits as mentioned above.
Clean the callback up, and modify toggle_interruptibility to
match the comment above the call. As a small result, the
call to set_interrupt_shadow will be skipped in the common
case where int_shadow == 0 && mask == 0.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I've observed kvmclock being marked as unstable on a modern
single-socket system with a stable TSC and qemu-1.6.2 or qemu-2.0.0.
The culprit was failure in TSC matching because of overflow of
kvm_arch::nr_vcpus_matched_tsc in case there were multiple TSC writes
in a single synchronization cycle.
Turns out that qemu does multiple TSC writes during init, below is the
evidence of that (qemu-2.0.0):
The first one:
0xffffffffa08ff2b4 : vmx_write_tsc_offset+0xa4/0xb0 [kvm_intel]
0xffffffffa04c9c05 : kvm_write_tsc+0x1a5/0x360 [kvm]
0xffffffffa04cfd6b : kvm_arch_vcpu_postcreate+0x4b/0x80 [kvm]
0xffffffffa04b8188 : kvm_vm_ioctl+0x418/0x750 [kvm]
The second one:
0xffffffffa08ff2b4 : vmx_write_tsc_offset+0xa4/0xb0 [kvm_intel]
0xffffffffa04c9c05 : kvm_write_tsc+0x1a5/0x360 [kvm]
0xffffffffa090610d : vmx_set_msr+0x29d/0x350 [kvm_intel]
0xffffffffa04be83b : do_set_msr+0x3b/0x60 [kvm]
0xffffffffa04c10a8 : msr_io+0xc8/0x160 [kvm]
0xffffffffa04caeb6 : kvm_arch_vcpu_ioctl+0xc86/0x1060 [kvm]
0xffffffffa04b6797 : kvm_vcpu_ioctl+0xc7/0x5a0 [kvm]
#0 kvm_vcpu_ioctl at /build/buildd/qemu-2.0.0+dfsg/kvm-all.c:1780
#1 kvm_put_msrs at /build/buildd/qemu-2.0.0+dfsg/target-i386/kvm.c:1270
#2 kvm_arch_put_registers at /build/buildd/qemu-2.0.0+dfsg/target-i386/kvm.c:1909
#3 kvm_cpu_synchronize_post_init at /build/buildd/qemu-2.0.0+dfsg/kvm-all.c:1641
#4 cpu_synchronize_post_init at /build/buildd/qemu-2.0.0+dfsg/include/sysemu/kvm.h:330
#5 cpu_synchronize_all_post_init () at /build/buildd/qemu-2.0.0+dfsg/cpus.c:521
#6 main at /build/buildd/qemu-2.0.0+dfsg/vl.c:4390
The third one:
0xffffffffa08ff2b4 : vmx_write_tsc_offset+0xa4/0xb0 [kvm_intel]
0xffffffffa04c9c05 : kvm_write_tsc+0x1a5/0x360 [kvm]
0xffffffffa090610d : vmx_set_msr+0x29d/0x350 [kvm_intel]
0xffffffffa04be83b : do_set_msr+0x3b/0x60 [kvm]
0xffffffffa04c10a8 : msr_io+0xc8/0x160 [kvm]
0xffffffffa04caeb6 : kvm_arch_vcpu_ioctl+0xc86/0x1060 [kvm]
0xffffffffa04b6797 : kvm_vcpu_ioctl+0xc7/0x5a0 [kvm]
#0 kvm_vcpu_ioctl at /build/buildd/qemu-2.0.0+dfsg/kvm-all.c:1780
#1 kvm_put_msrs at /build/buildd/qemu-2.0.0+dfsg/target-i386/kvm.c:1270
#2 kvm_arch_put_registers at /build/buildd/qemu-2.0.0+dfsg/target-i386/kvm.c:1909
#3 kvm_cpu_synchronize_post_reset at /build/buildd/qemu-2.0.0+dfsg/kvm-all.c:1635
#4 cpu_synchronize_post_reset at /build/buildd/qemu-2.0.0+dfsg/include/sysemu/kvm.h:323
#5 cpu_synchronize_all_post_reset () at /build/buildd/qemu-2.0.0+dfsg/cpus.c:512
#6 main at /build/buildd/qemu-2.0.0+dfsg/vl.c:4482
The fix is to count each vCPU only once when matched, so that
nr_vcpus_matched_tsc holds the size of the matched set. This is
achieved by reusing generation counters. Every vCPU with
this_tsc_generation == cur_tsc_generation is in the matched set. The
match set is cleared by setting cur_tsc_generation to a value which no
other vCPU is set to (by incrementing it).
I needed to bump up the counter size form u8 to u64 to ensure it never
overflows. Otherwise in cases TSC is not written the same number of
times on each vCPU the counter could overflow and incorrectly indicate
some vCPUs as being in the matched set. This scenario seems unlikely
but I'm not sure if it can be disregarded.
Signed-off-by: Tomasz Grabiec <tgrabiec@cloudius-systems.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM does not really do much with the PAT, so this went unnoticed for a
long time. It is exposed however if you try to do rdmsr on the PAT
register.
Reported-by: Valentine Sinitsyn <valentine.sinitsyn@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recent Intel CPUs have 10 variable range MTRRs. Since operating systems
sometime make assumptions on CPUs while they ignore capability MSRs, it is
better for KVM to be consistent with recent CPUs. Reporting more MTRRs than
actually supported has no functional implications.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The rdpmc emulation checks that the counter (ECX) is not higher than 2, without
taking into considerations bits 30:31 role (e.g., bit 30 marks whether the
counter is fixed). The fix uses the pmu information for checking the validity
of the pmu counter.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CS.RPL is not equal to the CPL in the few instructions between
setting CR0.PE and reloading CS. And CS.DPL is also not equal
to the CPL for conforming code segments.
However, SS.DPL *is* always equal to the CPL except for the weird
case of SYSRET on AMD processors, which sets SS.DPL=SS.RPL from the
value in the STAR MSR, but force CPL=3 (Intel instead forces
SS.DPL=SS.RPL=CPL=3).
So this patch:
- modifies SVM to update the CPL from SS.DPL rather than CS.RPL;
the above case with SYSRET is not broken further, and the way
to fix it would be to pass the CPL to userspace and back
- modifies VMX to always return the CPL from SS.DPL (except
forcing it to 0 if we are emulating real mode via vm86 mode;
in vm86 mode all DPLs have to be 3, but real mode does allow
privileged instructions). It also removes the CPL cache,
which becomes a duplicate of the SS access rights cache.
This fixes doing KVM_IOCTL_SET_SREGS exactly after setting
CR0.PE=1 but before CS has been reloaded.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to Intel specifications, PAE and non-PAE does not have any reserved
bits. In long-mode, regardless to PCIDE, only the high bits (above the
physical address) are reserved.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When not running in guest-debug mode, the guest controls the debug
registers and having to take an exit for each DR access is a waste
of time. If the guest gets into a state where each context switch
causes DR to be saved and restored, this can take away as much as 40%
of the execution time from the guest.
After this patch, VMX- and SVM-specific code can set a flag in
switch_db_regs, telling vcpu_enter_guest that on the next exit the debug
registers might be dirty and need to be reloaded (syncing will be taken
care of by a new callback in kvm_x86_ops). This flag can be set on the
first access to a debug registers, so that multiple accesses to the
debug registers only cause one vmexit.
Note that since the guest will be able to read debug registers and
enable breakpoints in DR7, we need to ensure that they are synchronized
on entry to the guest---including DR6 that was not synced before.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It's no longer possible to enter enable_irq_window in guest mode when
L1 intercepts external interrupts and we are entering L2. This is now
caught in vcpu_enter_guest. So we can remove the check from the VMX
version of enable_irq_window, thus the need to return an error code from
both enable_irq_window and enable_nmi_window.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the check for leaving L2 on pending and intercepted IRQs or NMIs
from the *_allowed handler into a dedicated callback. Invoke this
callback at the relevant points before KVM checks if IRQs/NMIs can be
injected. The callback has the task to switch from L2 to L1 if needed
and inject the proper vmexit events.
The rework fixes L2 wakeups from HLT and provides the foundation for
preemption timer emulation.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
commit 0061d53daf introduced a mechanism to execute a global clock
update for a vm. We can apply this periodically in order to propagate
host NTP corrections. Also, if all vcpus of a vm are pinned, then
without an additional trigger, no guest NTP corrections can propagate
either, as the current trigger is only vcpu cpu migration.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When we update a vcpu's local clock it may pick up an NTP correction.
We can't wait an indeterminate amount of time for other vcpus to pick
up that correction, so commit 0061d53daf introduced a global clock
update. However, we can't request a global clock update on every vcpu
load either (which is what happens if the tsc is marked as unstable).
The solution is to rate-limit the global clock updates. Marcelo
calculated that we should delay the global clock updates no more
than 0.1s as follows:
Assume an NTP correction c is applied to one vcpu, but not the other,
then in n seconds the delta of the vcpu system_timestamps will be
c * n. If we assume a correction of 500ppm (worst-case), then the two
vcpus will diverge 50us in 0.1s, which is a considerable amount.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In contrast to VMX, SVM dose not automatically transfer DR6 into the
VCPU's arch.dr6. So if we face a DR6 read, we must consult a new vendor
hook to obtain the current value. And as SVM now picks the DR6 state
from its VMCB, we also need a set callback in order to write updates of
DR6 back.
Fixes a regression of 020df0794f.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off: Peter Lieven <pl@kamp.de>
Signed-off: Gleb Natapov
Signed-off: Vadim Rozenfeld <vrozenfe@redhat.com>
After some consideration I decided to submit only Hyper-V reference
counters support this time. I will submit iTSC support as a separate
patch as soon as it is ready.
v1 -> v2
1. mark TSC page dirty as suggested by
Eric Northup <digitaleric@google.com> and Gleb
2. disable local irq when calling get_kernel_ns,
as it was done by Peter Lieven <pl@amp.de>
3. move check for TSC page enable from second patch
to this one.
v3 -> v4
Get rid of ref counter offset.
v4 -> v5
replace __copy_to_user with kvm_write_guest
when updateing iTSC page.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The prototype for kvm_check_iopl appeared in commit
f850e2e603 ("KVM: x86 emulator: Check IOPL
level during io instruction emulation"), but the function never actually
existed. Remove the prototype.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
complete_pio ceased to exist in commit
7972995b0c ("KVM: x86 emulator: Move
string pio emulation into emulator.c"), but the prototype remained.
Remove its prototype.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
We currently use some ad-hoc arch variables tied to legacy KVM device
assignment to manage emulation of instructions that depend on whether
non-coherent DMA is present. Create an interface for this, adapting
legacy KVM device assignment and adding VFIO via the KVM-VFIO device.
For now we assume that non-coherent DMA is possible any time we have a
VFIO group. Eventually an interface can be developed as part of the
VFIO external user interface to query the coherency of a group.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Default to operating in coherent mode. This simplifies the logic when
we switch to a model of registering and unregistering noncoherent I/O
with KVM.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The gfn_to_index function relies on huge page defines which either may
not make sense on systems that don't support huge pages or are defined
in an unconvenient way for other architectures. Since this is
x86-specific, move the function to arch/x86/include/asm/kvm_host.h.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
kvm_mmu initialization is mostly filling in function pointers, there is
no way for it to fail. Clean up unused return values.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The new_cr3 MMU callback has been a wrapper for mmu_free_roots since commit
e676505 (KVM: MMU: Force cr3 reload with two dimensional paging on mov
cr3 emulation, 2012-07-08).
The commit message mentioned that "mmu_free_roots() is somewhat of an overkill,
but fixing that is more complicated and will be done after this minimal fix".
One year has passed, and no one really felt the need to do a different fix.
Wrap the call with a kvm_mmu_new_cr3 function for clarity, but remove the
callback.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The free MMU callback has been a wrapper for mmu_free_roots since mmu_free_roots
itself was introduced (commit 17ac10a, [PATCH] KVM: MU: Special treatment
for shadow pae root pages, 2007-01-05), and has always been the same for all
MMU cases. Remove the indirection as it is useless.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This makes the interface more deterministic for userspace, which can expect
(after configuring only the features it supports) to get exactly the same
state from the kernel, independent of the host CPU and kernel version.
Suggested-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
A guest can still attempt to save and restore XSAVE states even if they
have been masked in CPUID leaf 0Dh. This usually is not visible to
the guest, but is still wrong: "Any attempt to set a reserved bit (as
determined by the contents of EAX and EDX after executing CPUID with
EAX=0DH, ECX= 0H) in XCR0 for a given processor will result in a #GP
exception".
The patch also performs the same checks as __kvm_set_xcr in KVM_SET_XSAVE.
This catches migration from newer to older kernel/processor before the
guest starts running.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
kvm_hc_kick_cpu allows the calling vcpu to kick another vcpu out of halt state.
the presence of these hypercalls is indicated to guest via
kvm_feature_pv_unhalt.
Fold pv_unhalt flag into GET_MP_STATE ioctl to aid migration
During migration, any vcpu that got kicked but did not become runnable
(still in halted state) should be runnable after migration.
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Suzuki Poulose <suzuki@in.ibm.com>
[Raghu: Apic related changes, folding pvunhalted into vcpu_runnable
Added flags for future use (suggested by Gleb)]
[ Raghu: fold pv_unhalt flag as suggested by Eric Northup]
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: Gleb Natapov <gleb@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Inject nEPT fault to L1 guest. This patch is original from Xinhao.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Jun Nakajima <jun.nakajima@intel.com>
Signed-off-by: Xinhao Xu <xinhao.xu@intel.com>
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[KVM maintainers:
The underlying support for this is in perf/core now. So please merge
this patch into the KVM tree.]
This is not arch perfmon, but older CPUs will just ignore it. This makes
it possible to do at least some TSX measurements from a KVM guest
v2: Various fixes to address review feedback
v3: Ignore the bits when no CPUID. No #GP. Force raw events with TSX bits.
v4: Use reserved bits for #GP
v5: Remove obsolete argument
Acked-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On the x86 side, there are some optimizations and documentation updates.
The big ARM/KVM change for 3.11, support for AArch64, will come through
Catalin Marinas's tree. s390 and PPC have misc cleanups and bugfixes.
There is a conflict due to "s390/pgtable: fix ipte notify bit" having
entered 3.10 through Martin Schwidefsky's s390 tree. This pull request
has additional changes on top, so this tree's version is the correct one.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iQIcBAABAgAGBQJR0oU6AAoJEBvWZb6bTYbynnsP/RSUrrHrA8Wu1tqVfAKu+1y5
6OIihqZ9x11/YMaNofAfv86jqxFu0/j7CzMGphNdjzujqKI+Q1tGe7oiVCmKzoG+
UvSctWsz0lpllgBtnnrm5tcfmG6rrddhLtpA7m320+xCVx8KV5P4VfyHZEU+Ho8h
ziPmb2mAQ65gBNX6nLHEJ3ITTgad6gt4NNbrKIYpyXuWZQJypzaRqT/vpc4md+Ed
dCebMXsL1xgyb98EcnOdrWH1wV30MfucR7IpObOhXnnMKeeltqAQPvaOlKzZh4dK
+QfxJfdRZVS0cepcxzx1Q2X3dgjoKQsHq1nlIyz3qu1vhtfaqBlixLZk0SguZ/R9
1S1YqucZiLRO57RD4q0Ak5oxwobu18ZoqJZ6nledNdWwDe8bz/W2wGAeVty19ky0
qstBdM9jnwXrc0qrVgZp3+s5dsx3NAm/KKZBoq4sXiDLd/yBzdEdWIVkIrU3X9wU
3X26wOmBxtsB7so/JR7ciTsQHelmLicnVeXohAEP9CjIJffB81xVXnXs0P0SYuiQ
RzbSCwjPzET4JBOaHWT0Dhv0DTS/EaI97KzlN32US3Bn3WiLlS1oDCoPFoaLqd2K
LxQMsXS8anAWxFvexfSuUpbJGPnKSidSQoQmJeMGBa9QhmZCht3IL16/Fb641ToN
xBohzi49L9FDbpOnTYfz
=1zpG
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"On the x86 side, there are some optimizations and documentation
updates. The big ARM/KVM change for 3.11, support for AArch64, will
come through Catalin Marinas's tree. s390 and PPC have misc cleanups
and bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (87 commits)
KVM: PPC: Ignore PIR writes
KVM: PPC: Book3S PR: Invalidate SLB entries properly
KVM: PPC: Book3S PR: Allow guest to use 1TB segments
KVM: PPC: Book3S PR: Don't keep scanning HPTEG after we find a match
KVM: PPC: Book3S PR: Fix invalidation of SLB entry 0 on guest entry
KVM: PPC: Book3S PR: Fix proto-VSID calculations
KVM: PPC: Guard doorbell exception with CONFIG_PPC_DOORBELL
KVM: Fix RTC interrupt coalescing tracking
kvm: Add a tracepoint write_tsc_offset
KVM: MMU: Inform users of mmio generation wraparound
KVM: MMU: document fast invalidate all mmio sptes
KVM: MMU: document fast invalidate all pages
KVM: MMU: document fast page fault
KVM: MMU: document mmio page fault
KVM: MMU: document write_flooding_count
KVM: MMU: document clear_spte_count
KVM: MMU: drop kvm_mmu_zap_mmio_sptes
KVM: MMU: init kvm generation close to mmio wrap-around value
KVM: MMU: add tracepoint for check_mmio_spte
KVM: MMU: fast invalidate all mmio sptes
...
Document it to Documentation/virtual/kvm/mmu.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document it to Documentation/virtual/kvm/mmu.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_mmu_zap_mmio_sptes and use kvm_mmu_invalidate_zap_all_pages
instead to handle mmio generation number overflow
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch tries to introduce a very simple and scale way to invalidate
all mmio sptes - it need not walk any shadow pages and hold mmu-lock
KVM maintains a global mmio valid generation-number which is stored in
kvm->memslots.generation and every mmio spte stores the current global
generation-number into his available bits when it is created
When KVM need zap all mmio sptes, it just simply increase the global
generation-number. When guests do mmio access, KVM intercepts a MMIO #PF
then it walks the shadow page table and get the mmio spte. If the
generation-number on the spte does not equal the global generation-number,
it will go to the normal #PF handler to update the mmio spte
Since 19 bits are used to store generation-number on mmio spte, we zap all
mmio sptes when the number is round
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As Marcelo pointed out that
| "(retention of large number of pages while zapping)
| can be fatal, it can lead to OOM and host crash"
We introduce a list, kvm->arch.zapped_obsolete_pages, to link all
the pages which are deleted from the mmu cache but not actually
freed. When page reclaiming is needed, we always zap this kind of
pages first.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The current kvm_mmu_zap_all is really slow - it is holding mmu-lock to
walk and zap all shadow pages one by one, also it need to zap all guest
page's rmap and all shadow page's parent spte list. Particularly, things
become worse if guest uses more memory or vcpus. It is not good for
scalability
In this patch, we introduce a faster way to invalidate all shadow pages.
KVM maintains a global mmu invalid generation-number which is stored in
kvm->arch.mmu_valid_gen and every shadow page stores the current global
generation-number into sp->mmu_valid_gen when it is created
When KVM need zap all shadow pages sptes, it just simply increase the
global generation-number then reload root shadow pages on all vcpus.
Vcpu will create a new shadow page table according to current kvm's
generation-number. It ensures the old pages are not used any more.
Then the obsolete pages (sp->mmu_valid_gen != kvm->arch.mmu_valid_gen)
are zapped by using lock-break technique
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
With VMX, enable_irq_window can now return -EBUSY, in which case an
immediate exit shall be requested before entering the guest. Account for
this also in enable_nmi_window which uses enable_irq_window in absence
of vnmi support, e.g.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM guests today use 8bit APIC ids allowing for 256 ID's. Reserving one
ID for Broadcast interrupts should leave 255 ID's. In case of KVM there
is no need for reserving another ID for IO-APIC so the hard max limit for
VCPUS can be increased from 254 to 255. (This was confirmed by Gleb Natapov
http://article.gmane.org/gmane.comp.emulators.kvm.devel/99713 )
Signed-off-by: Chegu Vinod <chegu_vinod@hp.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The VMX implementation of enable_irq_window raised
KVM_REQ_IMMEDIATE_EXIT after we checked it in vcpu_enter_guest. This
caused infinite loops on vmentry. Fix it by letting enable_irq_window
signal the need for an immediate exit via its return value and drop
KVM_REQ_IMMEDIATE_EXIT.
This issue only affects nested VMX scenarios.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The concept of routing interrupt lines to an irqchip is nothing
that is IOAPIC specific. Every irqchip has a maximum number of pins
that can be linked to irq lines.
So let's add a new define that allows us to reuse generic code for
non-IOAPIC platforms.
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
As we may emulate the loading of EFER on VM-entry and VM-exit, implement
the checks that VMX performs on the guest and host values on vmlaunch/
vmresume. Factor out kvm_valid_efer for this purpose which checks for
set reserved bits.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Only deliver the posted interrupt when target vcpu is running
and there is no previous interrupt pending in pir.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The "acknowledge interrupt on exit" feature controls processor behavior
for external interrupt acknowledgement. When this control is set, the
processor acknowledges the interrupt controller to acquire the
interrupt vector on VM exit.
After enabling this feature, an interrupt which arrived when target cpu is
running in vmx non-root mode will be handled by vmx handler instead of handler
in idt. Currently, vmx handler only fakes an interrupt stack and jump to idt
table to let real handler to handle it. Further, we will recognize the interrupt
and only delivery the interrupt which not belong to current vcpu through idt table.
The interrupt which belonged to current vcpu will be handled inside vmx handler.
This will reduce the interrupt handle cost of KVM.
Also, interrupt enable logic is changed if this feature is turnning on:
Before this patch, hypervior call local_irq_enable() to enable it directly.
Now IF bit is set on interrupt stack frame, and will be enabled on a return from
interrupt handler if exterrupt interrupt exists. If no external interrupt, still
call local_irq_enable() to enable it.
Refer to Intel SDM volum 3, chapter 33.2.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
During invalid guest state emulation vcpu cannot enter guest mode to try
to reexecute instruction that emulator failed to emulate, so emulation
will happen again and again. Prevent that by telling the emulator that
instruction reexecution should not be attempted.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The variable kvm_rebooting is a common kvm variable, so move its
declaration from arch/x86/include/asm/kvm_host.h to
include/asm/kvm_host.h.
Fixes this sparse warning when building on arm64:
virt/kvm/kvm_main.c⚠️ symbol 'kvm_rebooting' was not declared. Should it be static?
Signed-off-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The variables vm_list and kvm_lock are common to all architectures, so
move the declarations from arch/x86/include/asm/kvm_host.h to
include/linux/kvm_host.h.
Fixes sparse warnings like these when building for arm64:
virt/kvm/kvm_main.c: warning: symbol 'kvm_lock' was not declared. Should it be static?
virt/kvm/kvm_main.c: warning: symbol 'vm_list' was not declared. Should it be static?
Signed-off-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
In order to migrate the PMU state correctly, we need to restore the
values of MSR_CORE_PERF_GLOBAL_STATUS (a read-only register) and
MSR_CORE_PERF_GLOBAL_OVF_CTRL (which has side effects when written).
We also need to write the full 40-bit value of the performance counter,
which would only be possible with a v3 architectural PMU's full-width
counter MSRs.
To distinguish host-initiated writes from the guest's, pass the
full struct msr_data to kvm_pmu_set_msr.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Merge reason:
From: Alexander Graf <agraf@suse.de>
"Just recently this really important patch got pulled into Linus' tree for 3.9:
commit 1674400aae
Author: Anton Blanchard <anton <at> samba.org>
Date: Tue Mar 12 01:51:51 2013 +0000
Without that commit, I can not boot my G5, thus I can't run automated tests on it against my queue.
Could you please merge kvm/next against linus/master, so that I can base my trees against that?"
* upstream/master: (653 commits)
PCI: Use ROM images from firmware only if no other ROM source available
sparc: remove unused "config BITS"
sparc: delete "if !ULTRA_HAS_POPULATION_COUNT"
KVM: Fix bounds checking in ioapic indirect register reads (CVE-2013-1798)
KVM: x86: Convert MSR_KVM_SYSTEM_TIME to use gfn_to_hva_cache functions (CVE-2013-1797)
KVM: x86: fix for buffer overflow in handling of MSR_KVM_SYSTEM_TIME (CVE-2013-1796)
arm64: Kconfig.debug: Remove unused CONFIG_DEBUG_ERRORS
arm64: Do not select GENERIC_HARDIRQS_NO_DEPRECATED
inet: limit length of fragment queue hash table bucket lists
qeth: Fix scatter-gather regression
qeth: Fix invalid router settings handling
qeth: delay feature trace
sgy-cts1000: Remove __dev* attributes
KVM: x86: fix deadlock in clock-in-progress request handling
KVM: allow host header to be included even for !CONFIG_KVM
hwmon: (lm75) Fix tcn75 prefix
hwmon: (lm75.h) Update header inclusion
MAINTAINERS: Remove Mark M. Hoffman
xfs: ensure we capture IO errors correctly
xfs: fix xfs_iomap_eof_prealloc_initial_size type
...
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
There is a potential use after free issue with the handling of
MSR_KVM_SYSTEM_TIME. If the guest specifies a GPA in a movable or removable
memory such as frame buffers then KVM might continue to write to that
address even after it's removed via KVM_SET_USER_MEMORY_REGION. KVM pins
the page in memory so it's unlikely to cause an issue, but if the user
space component re-purposes the memory previously used for the guest, then
the guest will be able to corrupt that memory.
Tested: Tested against kvmclock unit test
Signed-off-by: Andrew Honig <ahonig@google.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When we create or move a memory slot, we need to zap mmio sptes.
Currently, zap_all() is used for this and this is causing two problems:
- extra page faults after zapping mmu pages
- long mmu_lock hold time during zapping mmu pages
For the latter, Marcelo reported a disastrous mmu_lock hold time during
hot-plug, which made the guest unresponsive for a long time.
This patch takes a simple way to fix these problems: do not zap mmu
pages unless they are marked mmio cached. On our test box, this took
only 50us for the 4GB guest and we did not see ms of mmu_lock hold time
any more.
Note that we still need to do zap_all() for other cases. So another
work is also needed: Xiao's work may be the one.
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This will be used not to zap unrelated mmu pages when creating/moving
a memory slot later.
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
A VCPU sending INIT or SIPI to some other VCPU races for setting the
remote VCPU's mp_state. When we were unlucky, KVM_MP_STATE_INIT_RECEIVED
was overwritten by kvm_emulate_halt and, thus, got lost.
This introduces APIC events for those two signals, keeping them in
kvm_apic until kvm_apic_accept_events is run over the target vcpu
context. kvm_apic_has_events reports to kvm_arch_vcpu_runnable if there
are pending events, thus if vcpu blocking should end.
The patch comes with the side effect of effectively obsoleting
KVM_MP_STATE_SIPI_RECEIVED. We still accept it from user space, but
immediately translate it to KVM_MP_STATE_INIT_RECEIVED + KVM_APIC_SIPI.
The vcpu itself will no longer enter the KVM_MP_STATE_SIPI_RECEIVED
state. That also means we no longer exit to user space after receiving a
SIPI event.
Furthermore, we already reset the VCPU on INIT, only fixing up the code
segment later on when SIPI arrives. Moreover, we fix INIT handling for
the BSP: it never enter wait-for-SIPI but directly starts over on INIT.
Tested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Neither vmx nor svm nor the common part may generate an error on
kvm_vcpu_reset. So drop the return code.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Virtual interrupt delivery avoids KVM to inject vAPIC interrupts
manually, which is fully taken care of by the hardware. This needs
some special awareness into existing interrupr injection path:
- for pending interrupt, instead of direct injection, we may need
update architecture specific indicators before resuming to guest.
- A pending interrupt, which is masked by ISR, should be also
considered in above update action, since hardware will decide
when to inject it at right time. Current has_interrupt and
get_interrupt only returns a valid vector from injection p.o.v.
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
basically to benefit from apicv, we need to enable virtualized x2apic mode.
Currently, we only enable it when guest is really using x2apic.
Also, clear MSR bitmap for corresponding x2apic MSRs when guest enabled x2apic:
0x800 - 0x8ff: no read intercept for apicv register virtualization,
except APIC ID and TMCCT which need software's assistance to
get right value.
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The current reexecute_instruction can not well detect the failed instruction
emulation. It allows guest to retry all the instructions except it accesses
on error pfn
For example, some cases are nested-write-protect - if the page we want to
write is used as PDE but it chains to itself. Under this case, we should
stop the emulation and report the case to userspace
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
With the 3 private slots, this gives us a nice round 128 slots total.
The primary motivation for this is to support more assigned devices.
Each assigned device can theoretically use up to 8 slots (6 MMIO BARs,
1 ROM BAR, 1 spare for a split MSI-X table mapping) though it's far
more typical for a device to use 3-4 slots. If we assume a typical VM
uses a dozen slots for non-assigned devices purposes, we should always
be able to support 14 worst case assigned devices or 28 to 37 typical
devices.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Seems like everyone copied x86 and defined 4 private memory slots
that never actually get used. Even x86 only uses 3 of the 4. These
aren't exposed so there's no need to add padding.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
It's easy to confuse KVM_MEMORY_SLOTS and KVM_MEM_SLOTS_NUM. One is
the user accessible slots and the other is user + private. Make this
more obvious.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
CPUID.7.0.EBX[1]=1 indicates IA32_TSC_ADJUST MSR 0x3b is supported
Basic design is to emulate the MSR by allowing reads and writes to a guest
vcpu specific location to store the value of the emulated MSR while adding
the value to the vmcs tsc_offset. In this way the IA32_TSC_ADJUST value will
be included in all reads to the TSC MSR whether through rdmsr or rdtsc. This
is of course as long as the "use TSC counter offsetting" VM-execution control
is enabled as well as the IA32_TSC_ADJUST control.
However, because hardware will only return the TSC + IA32_TSC_ADJUST +
vmsc tsc_offset for a guest process when it does and rdtsc (with the correct
settings) the value of our virtualized IA32_TSC_ADJUST must be stored in one
of these three locations. The argument against storing it in the actual MSR
is performance. This is likely to be seldom used while the save/restore is
required on every transition. IA32_TSC_ADJUST was created as a way to solve
some issues with writing TSC itself so that is not an option either.
The remaining option, defined above as our solution has the problem of
returning incorrect vmcs tsc_offset values (unless we intercept and fix, not
done here) as mentioned above. However, more problematic is that storing the
data in vmcs tsc_offset will have a different semantic effect on the system
than does using the actual MSR. This is illustrated in the following example:
The hypervisor set the IA32_TSC_ADJUST, then the guest sets it and a guest
process performs a rdtsc. In this case the guest process will get
TSC + IA32_TSC_ADJUST_hyperviser + vmsc tsc_offset including
IA32_TSC_ADJUST_guest. While the total system semantics changed the semantics
as seen by the guest do not and hence this will not cause a problem.
Signed-off-by: Will Auld <will.auld@intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In order to track who initiated the call (host or guest) to modify an msr
value I have changed function call parameters along the call path. The
specific change is to add a struct pointer parameter that points to (index,
data, caller) information rather than having this information passed as
individual parameters.
The initial use for this capability is for updating the IA32_TSC_ADJUST msr
while setting the tsc value. It is anticipated that this capability is
useful for other tasks.
Signed-off-by: Will Auld <will.auld@intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
With master clock, a pvclock clock read calculates:
ret = system_timestamp + [ (rdtsc + tsc_offset) - tsc_timestamp ]
Where 'rdtsc' is the host TSC.
system_timestamp and tsc_timestamp are unique, one tuple
per VM: the "master clock".
Given a host with synchronized TSCs, its obvious that
guest TSC must be matched for the above to guarantee monotonicity.
Allow master clock usage only if guest TSCs are synchronized.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM added a global variable to guarantee monotonicity in the guest.
One of the reasons for that is that the time between
1. ktime_get_ts(×pec);
2. rdtscll(tsc);
Is variable. That is, given a host with stable TSC, suppose that
two VCPUs read the same time via ktime_get_ts() above.
The time required to execute 2. is not the same on those two instances
executing in different VCPUS (cache misses, interrupts...).
If the TSC value that is used by the host to interpolate when
calculating the monotonic time is the same value used to calculate
the tsc_timestamp value stored in the pvclock data structure, and
a single <system_timestamp, tsc_timestamp> tuple is visible to all
vcpus simultaneously, this problem disappears. See comment on top
of pvclock_update_vm_gtod_copy for details.
Monotonicity is then guaranteed by synchronicity of the host TSCs
and guest TSCs.
Set TSC stable pvclock flag in that case, allowing the guest to read
clock from userspace.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJQbY/2AAoJEI7yEDeUysxlymQQAIv5svpAI/FUe3FhvBi3IW2h
WWMIpbdhHyocaINT18qNp8prO0iwoaBfgsnU8zuB34MrbdUgiwSHgM6T4Ff4NGa+
R4u+gpyKYwxNQYKeJyj04luXra/krxwHL1u9OwN7o44JuQXAmzrw2tZ9ad1ArvL3
eoZ6kGsPcdHPZMZWw2jN5xzBsRtqybm0GPPQh1qPXdn8UlPPd1X7owvbaud2y4+e
StVIpGY6wrsO36f7UcA4Gm1EP/1E6Lm5KMXJyHgM9WBRkEfp92jTY5+XKv91vK8Z
VKUd58QMdZE5NCNBkAR9U5N9aH0oSXnFU/g8hgiwGvrhS3IsSkKUePE6sVyMVTIO
VptKRYe0AdmD/g25p6ApJsguV7ITlgoCPaE4rMmRcW9/bw8+iY098r7tO7w11H8M
TyFOXihc3B+rlH8WdzOblwxHMC4yRuiPIktaA3WwbX7eA7Xv/ZRtdidifXKtgsVE
rtubVqwGyYcHoX1Y+JiByIW1NN0pYncJhPEdc8KbRe2wKs3amA9rio1mUpBYYBPO
B0ygcITftyXbhcTtssgcwBDGXB0AAGqI7wqdtJhFeIrKwHXD7fNeAGRwO8oKxmlj
0aPwo9fDtpI+e6BFTohEgjZBocRvXXNWLnDSFB0E7xDR31bACck2FG5FAp1DxdS7
lb/nbAsXf9UJLgGir4I1
=kN6V
-----END PGP SIGNATURE-----
Merge tag 'kvm-3.7-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Avi Kivity:
"Highlights of the changes for this release include support for vfio
level triggered interrupts, improved big real mode support on older
Intels, a streamlines guest page table walker, guest APIC speedups,
PIO optimizations, better overcommit handling, and read-only memory."
* tag 'kvm-3.7-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (138 commits)
KVM: s390: Fix vcpu_load handling in interrupt code
KVM: x86: Fix guest debug across vcpu INIT reset
KVM: Add resampling irqfds for level triggered interrupts
KVM: optimize apic interrupt delivery
KVM: MMU: Eliminate pointless temporary 'ac'
KVM: MMU: Avoid access/dirty update loop if all is well
KVM: MMU: Eliminate eperm temporary
KVM: MMU: Optimize is_last_gpte()
KVM: MMU: Simplify walk_addr_generic() loop
KVM: MMU: Optimize pte permission checks
KVM: MMU: Update accessed and dirty bits after guest pagetable walk
KVM: MMU: Move gpte_access() out of paging_tmpl.h
KVM: MMU: Optimize gpte_access() slightly
KVM: MMU: Push clean gpte write protection out of gpte_access()
KVM: clarify kvmclock documentation
KVM: make processes waiting on vcpu mutex killable
KVM: SVM: Make use of asm.h
KVM: VMX: Make use of asm.h
KVM: VMX: Make lto-friendly
KVM: x86: lapic: Clean up find_highest_vector() and count_vectors()
...
Conflicts:
arch/s390/include/asm/processor.h
arch/x86/kvm/i8259.c
If we reset a vcpu on INIT, we so far overwrote dr7 as provided by
KVM_SET_GUEST_DEBUG, and we also cleared switch_db_regs unconditionally.
Fix this by saving the dr7 used for guest debugging and calculating the
effective register value as well as switch_db_regs on any potential
change. This will change to focus of the set_guest_debug vendor op to
update_dp_bp_intercept.
Found while trying to stop on start_secondary.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Exporting KVM exit information to userspace to be consumed by perf.
Signed-off-by: Dong Hao <haodong@linux.vnet.ibm.com>
[ Dong Hao <haodong@linux.vnet.ibm.com>: rebase it on acme's git tree ]
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Runzhen Wang <runzhen@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1347870675-31495-2-git-send-email-haodong@linux.vnet.ibm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Most interrupt are delivered to only one vcpu. Use pre-build tables to
find interrupt destination instead of looping through all vcpus. In case
of logical mode loop only through vcpus in a logical cluster irq is sent
to.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Instead of branchy code depending on level, gpte.ps, and mmu configuration,
prepare everything in a bitmap during mode changes and look it up during
runtime.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
walk_addr_generic() permission checks are a maze of branchy code, which is
performed four times per lookup. It depends on the type of access, efer.nxe,
cr0.wp, cr4.smep, and in the near future, cr4.smap.
Optimize this away by precalculating all variants and storing them in a
bitmap. The bitmap is recalculated when rarely-changing variables change
(cr0, cr4) and is indexed by the often-changing variables (page fault error
code, pte access permissions).
The permission check is moved to the end of the loop, otherwise an SMEP
fault could be reported as a false positive, when PDE.U=1 but PTE.U=0.
Noted by Xiao Guangrong.
The result is short, branch-free code.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Current code assumes that IO exit was due to instruction emulation
and handles execution back to emulator directly. This patch adds new
userspace IO exit completion callback that can be set by any other code
that caused IO exit to userspace.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
kvm_guest_time_update unconditionally clears hv_clock.flags field,
so the notification never reaches the guest.
Fix it by allowing PVCLOCK_GUEST_STOPPED to passthrough.
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Two reasons:
- x86 can integrate rmap and rmap_pde and remove heuristics in
__gfn_to_rmap().
- Some architectures do not need rmap.
Since rmap is one of the most memory consuming stuff in KVM, ppc'd
better restrict the allocation to Book3S HV.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
Merge patches queued during the run-up to the merge window.
* queue: (25 commits)
KVM: Choose better candidate for directed yield
KVM: Note down when cpu relax intercepted or pause loop exited
KVM: Add config to support ple or cpu relax optimzation
KVM: switch to symbolic name for irq_states size
KVM: x86: Fix typos in pmu.c
KVM: x86: Fix typos in lapic.c
KVM: x86: Fix typos in cpuid.c
KVM: x86: Fix typos in emulate.c
KVM: x86: Fix typos in x86.c
KVM: SVM: Fix typos
KVM: VMX: Fix typos
KVM: remove the unused parameter of gfn_to_pfn_memslot
KVM: remove is_error_hpa
KVM: make bad_pfn static to kvm_main.c
KVM: using get_fault_pfn to get the fault pfn
KVM: MMU: track the refcount when unmap the page
KVM: x86: remove unnecessary mark_page_dirty
KVM: MMU: Avoid handling same rmap_pde in kvm_handle_hva_range()
KVM: MMU: Push trace_kvm_age_page() into kvm_age_rmapp()
KVM: MMU: Add memslot parameter to hva handlers
...
Signed-off-by: Avi Kivity <avi@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJQDRDNAAoJEI7yEDeUysxlkl8P/3C2AHx2webOU8sVzhfU6ONZ
ZoGevwBjyZIeJEmiWVpFTTEew1l0PXtpyOocXGNUXIddVnhXTQOKr/Scj4uFbmx8
ROqgK8NSX9+xOGrBPCoN7SlJkmp+m6uYtwYkl2SGnsEVLWMKkc7J7oqmszCcTQvN
UXMf7G47/Ul2NUSBdv4Yvizhl4kpvWxluiweDw3E/hIQKN0uyP7CY58qcAztw8nG
csZBAnnuPFwIAWxHXW3eBBv4UP138HbNDqJ/dujjocM6GnOxmXJmcZ6b57gh+Y64
3+w9IR4qrRWnsErb/I8inKLJ1Jdcf7yV2FmxYqR4pIXay2Yzo1BsvFd6EB+JavUv
pJpixrFiDDFoQyXlh4tGpsjpqdXNMLqyG4YpqzSZ46C8naVv9gKE7SXqlXnjyDlb
Llx3hb9Fop8O5ykYEGHi+gIISAK5eETiQl4yw9RUBDpxydH4qJtqGIbLiDy8y9wi
Xyi8PBlNl+biJFsK805lxURqTp/SJTC3+Zb7A7CzYEQm5xZw3W/CKZx1ZYBfpaa/
pWaP6tB7JwgLIVXi4HQayLWqMVwH0soZIn9yazpOEFv6qO8d5QH5RAxAW2VXE3n5
JDlrajar/lGIdiBVWfwTJLb86gv3QDZtIWoR9mZuLKeKWE/6PRLe7HQpG1pJovsm
2AsN5bS0BWq+aqPpZHa5
=pECD
-----END PGP SIGNATURE-----
Merge tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Avi Kivity:
"Highlights include
- full big real mode emulation on pre-Westmere Intel hosts (can be
disabled with emulate_invalid_guest_state=0)
- relatively small ppc and s390 updates
- PCID/INVPCID support in guests
- EOI avoidance; 3.6 guests should perform better on 3.6 hosts on
interrupt intensive workloads)
- Lockless write faults during live migration
- EPT accessed/dirty bits support for new Intel processors"
Fix up conflicts in:
- Documentation/virtual/kvm/api.txt:
Stupid subchapter numbering, added next to each other.
- arch/powerpc/kvm/booke_interrupts.S:
PPC asm changes clashing with the KVM fixes
- arch/s390/include/asm/sigp.h, arch/s390/kvm/sigp.c:
Duplicated commits through the kvm tree and the s390 tree, with
subsequent edits in the KVM tree.
* tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits)
KVM: fix race with level interrupts
x86, hyper: fix build with !CONFIG_KVM_GUEST
Revert "apic: fix kvm build on UP without IOAPIC"
KVM guest: switch to apic_set_eoi_write, apic_write
apic: add apic_set_eoi_write for PV use
KVM: VMX: Implement PCID/INVPCID for guests with EPT
KVM: Add x86_hyper_kvm to complete detect_hypervisor_platform check
KVM: PPC: Critical interrupt emulation support
KVM: PPC: e500mc: Fix tlbilx emulation for 64-bit guests
KVM: PPC64: booke: Set interrupt computation mode for 64-bit host
KVM: PPC: bookehv: Add ESR flag to Data Storage Interrupt
KVM: PPC: bookehv64: Add support for std/ld emulation.
booke: Added crit/mc exception handler for e500v2
booke/bookehv: Add host crit-watchdog exception support
KVM: MMU: document mmu-lock and fast page fault
KVM: MMU: fix kvm_mmu_pagetable_walk tracepoint
KVM: MMU: trace fast page fault
KVM: MMU: fast path of handling guest page fault
KVM: MMU: introduce SPTE_MMU_WRITEABLE bit
KVM: MMU: fold tlb flush judgement into mmu_spte_update
...
When more than 1 source id is in use for the same GSI, we have the
following race related to handling irq_states race:
CPU 0 clears bit 0. CPU 0 read irq_state as 0. CPU 1 sets level to 1.
CPU 1 calls kvm_ioapic_set_irq(1). CPU 0 calls kvm_ioapic_set_irq(0).
Now ioapic thinks the level is 0 but irq_state is not 0.
Fix by performing all irq_states bitmap handling under pic/ioapic lock.
This also removes the need for atomics with irq_states handling.
Reported-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This makes it possible to loop over rmap_pde arrays in the same way as
we do over rmap so that we can optimize kvm_handle_hva_range() easily in
the following patch.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When we tested KVM under memory pressure, with THP enabled on the host,
we noticed that MMU notifier took a long time to invalidate huge pages.
Since the invalidation was done with mmu_lock held, it not only wasted
the CPU but also made the host harder to respond.
This patch mitigates this by using kvm_handle_hva_range().
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Alexander Graf <agraf@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch handles PCID/INVPCID for guests.
Process-context identifiers (PCIDs) are a facility by which a logical processor
may cache information for multiple linear-address spaces so that the processor
may retain cached information when software switches to a different linear
address space. Refer to section 4.10.1 in IA32 Intel Software Developer's Manual
Volume 3A for details.
For guests with EPT, the PCID feature is enabled and INVPCID behaves as running
natively.
For guests without EPT, the PCID feature is disabled and INVPCID triggers #UD.
Signed-off-by: Junjie Mao <junjie.mao@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
There are macros that are Intel specific and not x86 generic. Rename
them into INTEL_*.
This patch removes X86_PMC_IDX_GENERIC and does:
$ sed -i -e 's/X86_PMC_MAX_/INTEL_PMC_MAX_/g' \
arch/x86/include/asm/kvm_host.h \
arch/x86/include/asm/perf_event.h \
arch/x86/kernel/cpu/perf_event.c \
arch/x86/kernel/cpu/perf_event_p4.c \
arch/x86/kvm/pmu.c
$ sed -i -e 's/X86_PMC_IDX_FIXED/INTEL_PMC_IDX_FIXED/g' \
arch/x86/include/asm/perf_event.h \
arch/x86/kernel/cpu/perf_event.c \
arch/x86/kernel/cpu/perf_event_intel.c \
arch/x86/kernel/cpu/perf_event_intel_ds.c \
arch/x86/kvm/pmu.c
$ sed -i -e 's/X86_PMC_MSK_/INTEL_PMC_MSK_/g' \
arch/x86/include/asm/perf_event.h \
arch/x86/kernel/cpu/perf_event.c
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1340217996-2254-2-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implementation of PV EOI using shared memory.
This reduces the number of exits an interrupt
causes as much as by half.
The idea is simple: there's a bit, per APIC, in guest memory,
that tells the guest that it does not need EOI.
We set it before injecting an interrupt and clear
before injecting a nested one. Guest tests it using
a test and clear operation - this is necessary
so that host can detect interrupt nesting -
and if set, it can skip the EOI MSR.
There's a new MSR to set the address of said register
in guest memory. Otherwise not much changed:
- Guest EOI is not required
- Register is tested & ISR is automatically cleared on exit
For testing results see description of previous patch
'kvm_para: guest side for eoi avoidance'.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Pull KVM changes from Avi Kivity:
"Changes include additional instruction emulation, page-crossing MMIO,
faster dirty logging, preventing the watchdog from killing a stopped
guest, module autoload, a new MSI ABI, and some minor optimizations
and fixes. Outside x86 we have a small s390 and a very large ppc
update.
Regarding the new (for kvm) rebaseless workflow, some of the patches
that were merged before we switch trees had to be rebased, while
others are true pulls. In either case the signoffs should be correct
now."
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
arch/powerpc/kvm/book3s_segment.S and arch/x86/include/asm/kvm_para.h.
I suspect the kvm_para.h resolution ends up doing the "do I have cpuid"
check effectively twice (it was done differently in two different
commits), but better safe than sorry ;)
* 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (125 commits)
KVM: make asm-generic/kvm_para.h have an ifdef __KERNEL__ block
KVM: s390: onereg for timer related registers
KVM: s390: epoch difference and TOD programmable field
KVM: s390: KVM_GET/SET_ONEREG for s390
KVM: s390: add capability indicating COW support
KVM: Fix mmu_reload() clash with nested vmx event injection
KVM: MMU: Don't use RCU for lockless shadow walking
KVM: VMX: Optimize %ds, %es reload
KVM: VMX: Fix %ds/%es clobber
KVM: x86 emulator: convert bsf/bsr instructions to emulate_2op_SrcV_nobyte()
KVM: VMX: unlike vmcs on fail path
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
...
Using RCU for lockless shadow walking can increase the amount of memory
in use by the system, since RCU grace periods are unpredictable. We also
have an unconditional write to a shared variable (reader_counter), which
isn't good for scaling.
Replace that with a scheme similar to x86's get_user_pages_fast(): disable
interrupts during lockless shadow walk to force the freer
(kvm_mmu_commit_zap_page()) to wait for the TLB flush IPI to find the
processor with interrupts enabled.
We also add a new vcpu->mode, READING_SHADOW_PAGE_TABLES, to prevent
kvm_flush_remote_tlbs() from avoiding the IPI.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The patch introduces a bitmap that will hold reasons apic should be
checked during vmexit. This is in a preparation for vp eoi patch
that will add one more check on vmexit. With the bitmap we can do
if(apic_attention) to check everything simultaneously which will
add zero overhead on the fast path.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Remove open-coded exception table entries in arch/x86/include/asm/kvm_host.h,
and replace them with _ASM_EXTABLE() macros; this will allow us to
change the format and type of the exception table entries.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Link: http://lkml.kernel.org/r/CA%2B55aFyijf43qSu3N9nWHEBwaGbb7T2Oq9A=9EyR=Jtyqfq_cQ@mail.gmail.com
Dropped such mappings when we enabled dirty logging and we will never
create new ones until we stop the logging.
For this we introduce a new function which can be used to write protect
a range of PT level pages: although we do not need to care about a range
of pages at this point, the following patch will need this feature to
optimize the write protection of many pages.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently, all task switches check privileges against the DPL of the
TSS. This is only correct for jmp/call to a TSS. If a task gate is used,
the DPL of this take gate is used for the check instead. Exceptions,
external interrupts and iret shouldn't perform any check.
[avi: kill kvm-kmod remnants]
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Some members of kvm_memory_slot are not used by every architecture.
This patch is the first step to make this difference clear by
introducing kvm_memory_slot::arch; lpage_info is moved into it.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This allows us to track the original nanosecond and counter values
at each phase of TSC writing by the guest. This gets us perfect
offset matching for stable TSC systems, and perfect software
computed TSC matching for machines with unstable TSC.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
During a host suspend, TSC may go backwards, which KVM interprets
as an unstable TSC. Technically, KVM should not be marking the
TSC unstable, which causes the TSC clocksource to go bad, but we
need to be adjusting the TSC offsets in such a case.
Dealing with this issue is a little tricky as the only place we
can reliably do it is before much of the timekeeping infrastructure
is up and running. On top of this, we are not in a KVM thread
context, so we may not be able to safely access VCPU fields.
Instead, we compute our best known hardware offset at power-up and
stash it to be applied to all VCPUs when they actually start running.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Redefine the API to take a parameter indicating whether an
adjustment is in host or guest cycles.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The variable last_host_tsc was removed from upstream code. I am adding
it back for two reasons. First, it is unnecessary to use guest TSC
computation to conclude information about the host TSC. The guest may
set the TSC backwards (this case handled by the previous patch), but
the computation of guest TSC (and fetching an MSR) is significanlty more
work and complexity than simply reading the hardware counter. In addition,
we don't actually need the guest TSC for any part of the computation,
by always recomputing the offset, we can eliminate the need to deal with
the current offset and any scaling factors that may apply.
The second reason is that later on, we are going to be using the host
TSC value to restore TSC offsets after a host S4 suspend, so we need to
be reading the host values, not the guest values here.
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
There are a few improvements that can be made to the TSC offset
matching code. First, we don't need to call the 128-bit multiply
(especially on a constant number), the code works much nicer to
do computation in nanosecond units.
Second, the way everything is setup with software TSC rate scaling,
we currently have per-cpu rates. Obviously this isn't too desirable
to use in practice, but if for some reason we do change the rate of
all VCPUs at runtime, then reset the TSCs, we will only want to
match offsets for VCPUs running at the same rate.
Finally, for the case where we have an unstable host TSC, but
rate scaling is being done in hardware, we should call the platform
code to compute the TSC offset, so the math is reorganized to recompute
the base instead, then transform the base into an offset using the
existing API.
[avi: fix 64-bit division on i386]
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM: Fix 64-bit division in kvm_write_tsc()
Breaks i386 build.
Signed-off-by: Avi Kivity <avi@redhat.com>
This requires some restructuring; rather than use 'virtual_tsc_khz'
to indicate whether hardware rate scaling is in effect, we consider
each VCPU to always have a virtual TSC rate. Instead, there is new
logic above the vendor-specific hardware scaling that decides whether
it is even necessary to use and updates all rate variables used by
common code. This means we can simply query the virtual rate at
any point, which is needed for software rate scaling.
There is also now a threshold added to the TSC rate scaling; minor
differences and variations of measured TSC rate can accidentally
provoke rate scaling to be used when it is not needed. Instead,
we have a tolerance variable called tsc_tolerance_ppm, which is
the maximum variation from user requested rate at which scaling
will be used. The default is 250ppm, which is the half the
threshold for NTP adjustment, allowing for some hardware variation.
In the event that hardware rate scaling is not available, we can
kludge a bit by forcing TSC catchup to turn on when a faster than
hardware speed has been requested, but there is nothing available
yet for the reverse case; this requires a trap and emulate software
implementation for RDTSC, which is still forthcoming.
[avi: fix 64-bit division on i386]
Signed-off-by: Zachary Amsden <zamsden@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Increase recommended max vcpus from 64 to 160 (tested internally
at Red Hat).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
In some cases guests should not provide workarounds for errata even when the
physical processor is affected. For example, because of erratum 400 on family
10h processors a Linux guest will read an MSR (resulting in VMEXIT) before
going to idle in order to avoid getting stuck in a non-C0 state. This is not
necessary: HLT and IO instructions are intercepted and therefore there is no
reason for erratum 400 workaround in the guest.
This patch allows us to present a guest with certain errata as fixed,
regardless of the state of actual hardware.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Add a helper function that emulates the RDPMC instruction operation.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Use perf_events to emulate an architectural PMU, version 2.
Based on PMU version 1 emulation by Avi Kivity.
[avi: adjust for cpuid.c]
[jan: fix anonymous field initialization for older gcc]
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Move the mmu code in kvm_arch_vcpu_init() to kvm_mmu_create()
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently, write protecting a slot needs to walk all the shadow pages
and checks ones which have a pte mapping a page in it.
The walk is overly heavy when dirty pages in that slot are not so many
and checking the shadow pages would result in unwanted cache pollution.
To mitigate this problem, we use rmap_write_protect() and check only
the sptes which can be reached from gfns marked in the dirty bitmap
when the number of dirty pages are less than that of shadow pages.
This criterion is reasonable in its meaning and worked well in our test:
write protection became some times faster than before when the ratio of
dirty pages are low and was not worse even when the ratio was near the
criterion.
Note that the locking for this write protection becomes fine grained.
The reason why this is safe is descripted in the comments.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Avi Kivity <avi@redhat.com>
The host side pv mmu support has been marked for feature removal in
January 2011. It's not in use, is slower than shadow or hardware
assisted paging, and a maintenance burden. It's November 2011, time to
remove it.
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Detecting write-flooding does not work well, when we handle page written, if
the last speculative spte is not accessed, we treat the page is
write-flooding, however, we can speculative spte on many path, such as pte
prefetch, page synced, that means the last speculative spte may be not point
to the written page and the written page can be accessed via other sptes, so
depends on the Accessed bit of the last speculative spte is not enough
Instead of detected page accessed, we can detect whether the spte is accessed
after it is written, if the spte is not accessed but it is written frequently,
we treat is not a page table or it not used for a long time
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Fast prefetch spte for the unsync shadow page on invlpg path
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
In current code, the accessed bit is always set when page fault occurred,
do not need to set it on pte write path
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If the emulation is caused by #PF and it is non-page_table writing instruction,
it means the VM-EXIT is caused by shadow page protected, we can zap the shadow
page and retry this instruction directly
The idea is from Avi
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If simultaneous NMIs happen, we're supposed to queue the second
and next (collapsing them), but currently we sometimes collapse
the second into the first.
Fix by using a counter for pending NMIs instead of a bool; since
the counter limit depends on whether the processor is currently
in an NMI handler, which can only be checked in vcpu context
(via the NMI mask), we add a new KVM_REQ_NMI to request recalculation
of the counter.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM assumed in several places that reading the TSC MSR returns the value for
L1. This is incorrect, because when L2 is running, the correct TSC read exit
emulation is to return L2's value.
We therefore add a new x86_ops function, read_l1_tsc, to use in places that
specifically need to read the L1 TSC, NOT the TSC of the current level of
guest.
Note that one change, of one line in kvm_arch_vcpu_load, is made redundant
by a different patch sent by Zachary Amsden (and not yet applied):
kvm_arch_vcpu_load() should not read the guest TSC, and if it didn't, of
course we didn't have to change the call of kvm_get_msr() to read_l1_tsc().
[avi: moved callback to kvm_x86_ops tsc block]
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Acked-by: Zachary Amsdem <zamsden@gmail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Architecturally, PDPTEs are cached in the PDPTRs when CR3 is reloaded.
On SVM, it is not possible to implement this, but on VMX this is possible
and was indeed implemented until nested SVM changed this to unconditionally
read PDPTEs dynamically. This has noticable impact when running PAE guests.
Fix by changing the MMU to read PDPTRs from the cache, falling back to
reading from memory for the nested MMU.
Signed-off-by: Avi Kivity <avi@redhat.com>
Tested-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The vmexit tracepoints format the exit_reason to make it human-readable.
Since the exit_reason depends on the instruction set (vmx or svm),
formatting is handled with ftrace_print_symbols_seq() by referring to
the appropriate exit reason table.
However, the ftrace_print_symbols_seq() function is not meant to be used
directly in tracepoints since it does not export the formatting table
which userspace tools like trace-cmd and perf use to format traces.
In practice perf dies when formatting vmexit-related events and
trace-cmd falls back to printing the numeric value (with extra
formatting code in the kvm plugin to paper over this limitation). Other
userspace consumers of vmexit-related tracepoints would be in similar
trouble.
To avoid significant changes to the kvm_exit tracepoint, this patch
moves the vmx and svm exit reason tables into arch/x86/kvm/trace.h and
selects the right table with __print_symbolic() depending on the
instruction set. Note that __print_symbolic() is designed for exporting
the formatting table to userspace and allows trace-cmd and perf to work.
Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The patch raises the hard limit of VCPU count to 254.
This will allow developers to easily work on scalability
and will allow users to test high VCPU setups easily without
patching the kernel.
To prevent possible issues with current setups, KVM_CAP_NR_VCPUS
now returns the recommended VCPU limit (which is still 64) - this
should be a safe value for everybody, while a new KVM_CAP_MAX_VCPUS
returns the hard limit which is now 254.
Cc: Avi Kivity <avi@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Suggested-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Use rcu to protect shadow pages table to be freed, so we can safely walk it,
it should run fastly and is needed by mmio page fault
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The idea is from Avi:
| Maybe it's time to kill off bypass_guest_pf=1. It's not as effective as
| it used to be, since unsync pages always use shadow_trap_nonpresent_pte,
| and since we convert between the two nonpresent_ptes during sync and unsync.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If the page fault is caused by mmio, we can cache the mmio info, later, we do
not need to walk guest page table and quickly know it is a mmio fault while we
emulate the mmio instruction
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
To implement steal time, we need the hypervisor to pass the guest
information about how much time was spent running other processes
outside the VM, while the vcpu had meaningful work to do - halt
time does not count.
This information is acquired through the run_delay field of
delayacct/schedstats infrastructure, that counts time spent in a
runqueue but not running.
Steal time is a per-cpu information, so the traditional MSR-based
infrastructure is used. A new msr, KVM_MSR_STEAL_TIME, holds the
memory area address containing information about steal time
This patch contains the hypervisor part of the steal time infrasructure,
and can be backported independently of the guest portion.
[avi, yongjie: export delayacct_on, to avoid build failures in some configs]
Signed-off-by: Glauber Costa <glommer@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Rik van Riel <riel@redhat.com>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Yongjie Ren <yongjie.ren@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When CR0.WP=0, we sometimes map user pages as kernel pages (to allow
the kernel to write to them). Unfortunately this also allows the kernel
to fetch from these pages, even if CR4.SMEP is set.
Adjust for this by also setting NX on the spte in these circumstances.
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch allows the guest to enable the VMXE bit in CR4, which is a
prerequisite to running VMXON.
Whether to allow setting the VMXE bit now depends on the architecture (svm
or vmx), so its checking has moved to kvm_x86_ops->set_cr4(). This function
now returns an int: If kvm_x86_ops->set_cr4() returns 1, __kvm_set_cr4()
will also return 1, and this will cause kvm_set_cr4() will throw a #GP.
Turning on the VMXE bit is allowed only when the nested VMX feature is
enabled, and turning it off is forbidden after a vmxon.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Parent pte rmap and page rmap are very similar, so use the same arithmetic
for them
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Abstract the operation of rmap to spte_list, then we can use it for the
reverse mapping of parent pte in the later patch
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Simply return from kvm_mmu_pte_write path if no shadow page is
write-protected, then we can avoid to walk all shadow pages and hold
mmu-lock
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We clean up a failed VMREAD by clearing the output register. Do
it in the exception handler instead of unconditionally. This is
worthwhile since there are more than a hundred call sites.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Since the emulator now checks segment limits and access rights, it
generates a lot more accesses to the vmcs segment fields. Undo some
of the performance hit by cacheing those fields in a read-only cache
(the entire cache is invalidated on any write, or on guest exit).
Signed-off-by: Avi Kivity <avi@redhat.com>
Avoid using ctxt->vcpu; we can do everything with ->get_cr() and ->set_cr().
A side effect is that we no longer activate the fpu on emulated CLTS; but that
should be very rare.
Signed-off-by: Avi Kivity <avi@redhat.com>
The last_guest_tsc is used in vcpu_load to adjust the
tsc_offset since tsc-scaling is merged. So the
last_guest_tsc needs to be updated in vcpu_put instead of
the the last_host_tsc. This is fixed with this patch.
Reported-by: Jan Kiszka <jan.kiszka@web.de>
Tested-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently we sync registers back and forth before/after exiting
to userspace for IO, but during IO device model shouldn't need to
read/write the registers, so we can as well skip those sync points. The
only exaception is broken vmware backdor interface. The new code sync
registers content during IO only if registers are read from/written to
by userspace in the middle of the IO operation and this almost never
happens in practise.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch implements two new vm-ioctls to get and set the
virtual_tsc_khz if the machine supports tsc-scaling. Setting
the tsc-frequency is only possible before userspace creates
any vcpu.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
With TSC scaling in SVM the tsc-offset needs to be
calculated differently. This patch propagates this
calculation into the architecture specific modules so that
this complexity can be handled there.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch implements a call-back into the architecture code
to allow the propagation of changes to the virtual tsc_khz
of the vcpu.
On SVM it updates the tsc_ratio variable, on VMX it does
nothing.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch changes the kvm_guest_time_update function to use
TSC frequency the guest actually has for updating its clock.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The mmu_seq verification can be removed since we get the pfn in the
protection of mmu_lock.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch adds all necessary intercept checks for
instructions that access the crX registers.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch adds a callback into kvm_x86_ops so that svm and
vmx code can do intercept checks on emulated instructions.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Since sse instructions can issue 16-byte mmios, we need to support them. We
can't increase the kvm_run mmio buffer size to 16 bytes without breaking
compatibility, so instead we break the large mmios into two smaller 8-byte
ones. Since the bus is 64-bit we aren't breaking any atomicity guarantees.
Signed-off-by: Avi Kivity <avi@redhat.com>
We may read the cpl quite often in the same vmexit (instruction privilege
check, memory access checks for instruction and operands), so we gain
a bit if we cache the value.
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch does:
- call vcpu->arch.mmu.update_pte directly
- use gfn_to_pfn_atomic in update_pte path
The suggestion is from Avi.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
No need to record the gfn to verifier the pte has the same mode as
current vcpu, it's because we only speculatively update the pte only
if the pte and vcpu have the same mode
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Code under this lock requires non-preemptibility. Ensure this also over
-rt by converting it to raw spinlock.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Code under this lock requires non-preemptibility. Ensure this also over
-rt by converting it to raw spinlock.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
For GRU and EPT, we need gup-fast to set referenced bit too (this is why
it's correct to return 0 when shadow_access_mask is zero, it requires
gup-fast to set the referenced bit). qemu-kvm access already sets the
young bit in the pte if it isn't zero-copy, if it's zero copy or a shadow
paging EPT minor fault we relay on gup-fast to signal the page is in
use...
We also need to check the young bits on the secondary pagetables for NPT
and not nested shadow mmu as the data may never get accessed again by the
primary pte.
Without this closer accuracy, we'd have to remove the heuristic that
avoids collapsing hugepages in hugepage virtual regions that have not even
a single subpage in use.
->test_young is full backwards compatible with GRU and other usages that
don't have young bits in pagetables set by the hardware and that should
nuke the secondary mmu mappings when ->clear_flush_young runs just like
EPT does.
Removing the heuristic that checks the young bit in
khugepaged/collapse_huge_page completely isn't so bad either probably but
I thought it was worth it and this makes it reliable.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It only allows to audit one guest in the system since:
- 'audit_point' is a glob variable
- mmu_audit_disable() is called in kvm_mmu_destroy(), so audit is disabled
after a guest exited
this patch fix those issues then allow to audit more guests at the same time
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Instead of syncing the guest cr3 every exit, which is expensince on vmx
with ept enabled, sync it only on demand.
[sheng: fix incorrect cr3 seen by Windows XP]
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
In case of a nested page fault or an intercepted #PF newer SVM
implementations provide a copy of the faulting instruction bytes
in the VMCB.
Use these bytes to feed the instruction emulator and avoid the costly
guest instruction fetch in this case.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
emulate_instruction had many callers, but only one used all
parameters. One parameter was unused, another one is now
hidden by a wrapper function (required for a future addition
anyway), so most callers use now a shorter parameter list.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
move the complete_insn_gp() helper function out of the VMX part
into the generic x86 part to make it usable by SVM.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The handling of CR8 writes in KVM is currently somewhat cumbersome.
This patch makes it look like the other CR register handlers
and fixes a possible issue in VMX, where the RIP would be incremented
despite an injected #GP.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Retry #PF for softmmu only when the current vcpu has the same cr3 as the time
when #PF occurs
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
It's the speculative path if 'no_apf = 1' and we will specially handle this
speculative path in the later patch, so 'prefault' is better to fit the sense.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Since vmx blocks INIT signals, we disable virtualization extensions during
reboot. This leads to virtualization instructions faulting; we trap these
faults and spin while the reboot continues.
Unfortunately spinning on a non-preemptible kernel may block a task that
reboot depends on; this causes the reboot to hang.
Fix by skipping over the instruction and hoping for the best.
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces a generic representation of guest-mode
fpr a vcpu. This currently only exists in the SVM code.
Having this representation generic will help making the
non-svm code aware of nesting when this is necessary.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Currently page fault cr2 and nesting infomation are carried outside
the fault data structure. Instead they are placed in the vcpu struct,
which results in confusion as global variables are manipulated instead
of passing parameters.
Fix this issue by adding address and nested fields to struct x86_exception,
so this struct can carry all information associated with a fault.
Signed-off-by: Avi Kivity <avi@redhat.com>
Tested-by: Joerg Roedel <joerg.roedel@amd.com>
Tested-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Remove it since we can judge it by using sp->unsync
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The exit reason alone is insufficient to understand exactly why an exit
occured; add ISA-specific trace parameters for additional information.
Because fetching these parameters is expensive on vmx, and because these
parameters are fetched even if tracing is disabled, we fetch the
parameters via a callback instead of as traditional trace arguments.
Signed-off-by: Avi Kivity <avi@redhat.com>
If apf is generated in L2 guest and is completed in L1 guest, it will
prefault this apf in L1 guest's mmu context.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Remove the declaration of kvm_mmu_set_base_ptes()
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If guest can detect that it runs in non-preemptable context it can
handle async PFs at any time, so let host know that it can send async
PF even if guest cpu is not in userspace.
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>