btrfs_evict_inode() needs to be more careful about stealing from the
global_rsv. We dont' want to end up aborting commit with ENOSPC just
because the evict_inode code was too greedy.
Signed-off-by: Chris Mason <clm@fb.com>
We're triggering a huge number of commits from
btrfs_async_reclaim_metadata_space. These aren't really requried,
because everyone calling the async reclaim code is going to end up
triggering a commit on their own.
Signed-off-by: Chris Mason <clm@fb.com>
When truncate starts, it allocates some space in the block reserves so
that we'll have enough to update metadata along the way.
For very large files, we can easily go through all of that space as we
loop through the extents. This changes truncate to refill the space
reservation as it progresses through the file.
Signed-off-by: Chris Mason <clm@fb.com>
As we delete large extents, we end up doing huge amounts of COW in order
to delete the corresponding crcs. This adds accounting so that we keep
track of that space and flushing of delayed refs so that we don't build
up too much delayed crc work.
This helps limit the delayed work that must be done at commit time and
tries to avoid ENOSPC aborts because the crcs eat all the global
reserves.
Signed-off-by: Chris Mason <clm@fb.com>
When we are deleting large files with large extents, we are building up
a huge set of delayed refs for processing. Truncate isn't checking
often enough to see if we need to back off and process those, or let
a commit proceed.
The end result is long stalls after the rm, and very long commit times.
During the commits, other processes back up waiting to start new
transactions and we get into trouble.
Signed-off-by: Chris Mason <clm@fb.com>
Building alpha:allmodconfig fails with
fs/btrfs/inode.c: In function 'check_direct_IO':
fs/btrfs/inode.c:8050:2: error: implicit declaration of function 'iov_iter_alignment'
due to a missing include file.
Fixes: 3737c63e1fb0 ("fs: move struct kiocb to fs.h")
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This was used to make sure that a fresh btrfs from an older mkfs.btrfs,
but it also allows us to mount a buggy btrfs if this btrfs has the right
superblock head part but has something wrong with chunk tree part[1], and
after that we can hit BUG_ON()s set in the code to prevent something
impossible.
Since David has released "Btrfs progs v3.19-rc2", just remove the check,
if anyone who wants to make a fresh btrfs, please use the latest one.
[1]: http://www.spinics.net/lists/linux-btrfs/msg42358.html
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Omar Sandoval <osandov@osandov.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Orphans in the fs tree are cleaned up via open_ctree and subvolume
orphans are cleaned via btrfs_lookup_dentry -- except when a default
subvolume is in use. The name for the default subvolume uses a manual
lookup that doesn't trigger orphan cleanup and needs to trigger it
manually as well. This doesn't apply to the remount case since the
subvolumes are cleaned up by walking the root radix tree.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The private_data member of the Btrfs control device file
(/dev/btrfs-control) is used to hold the current transaction and needs
to be initialized to NULL to signify that no transaction is in progress.
We explicitly set the control file's private_data to NULL to be
independent of whatever value the misc subsystem initializes it to.
Backstory:
----------
The misc subsystem (which is used by /dev/btrfs-control) initializes
a file's private_data to point to the misc device when a driver has
registered a custom open file operation and initializes it to NULL
when a custom open file operation has *not* been provided.
This subtle quirk is confusing, to the point where kernel code registers
*empty* file open operations to have private_data point to the misc
device structure.
And it leads to bugs, where the addition or removal of a custom open
file operation surprisingly changes the initial contents of a file's
private_data structure.
To simplify things in the misc subsystem, a patch [1] has been proposed
to *always* set private_data to point to the misc device instead of
only doing this when a custom open file operation has been registered.
But before we can fix this in the misc subsystem itself, we need to
modify the (few) drivers that rely on this very subtle behavior.
[1] https://lkml.org/lkml/2014/12/4/939
Signed-off-by: Martin Kepplinger <martink@posteo.de>
Signed-off-by: Tom Van Braeckel <tomvanbraeckel@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
fiemap_fill_next_extent returns 0 on success, -errno on error, 1 if this was
the last extent that will fit in user array. If 1 is returned, the return
value may eventually returned to user space, which should not happen, according
to manpage of ioctl.
Signed-off-by: Chengyu Song <csong84@gatech.edu>
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Due to insufficient check in btrfs_is_valid_xattr, this unexpectedly
works:
$ touch file
$ setfattr -n user. -v 1 file
$ getfattr -d file
user.="1"
ie. the missing attribute name after the namespace.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=94291
Reported-by: William Douglas <william.douglas@intel.com>
CC: <stable@vger.kernel.org> # 2.6.29+
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
While committing a transaction we free the log roots before we write the
new super block. Freeing the log roots implies marking the disk location
of every node/leaf (metadata extent) as pinned before the new super block
is written. This is to prevent the disk location of log metadata extents
from being reused before the new super block is written, otherwise we
would have a corrupted log tree if before the new super block is written
a crash/reboot happens and the location of any log tree metadata extent
ended up being reused and rewritten.
Even though we pinned the log tree's metadata extents, we were issuing a
discard against them if the fs was mounted with the -o discard option,
resulting in corruption of the log tree if a crash/reboot happened before
writing the new super block - the next time the fs was mounted, during
the log replay process we would find nodes/leafs of the log btree with
a content full of zeroes, causing the process to fail and require the
use of the tool btrfs-zero-log to wipeout the log tree (and all data
previously fsynced becoming lost forever).
Fix this by not doing a discard when pinning an extent. The discard will
be done later when it's safe (after the new super block is committed) at
extent-tree.c:btrfs_finish_extent_commit().
Fixes: e688b7252f (Btrfs: fix extent pinning bugs in the tree log)
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can get into inconsistency between inodes and directory entries
after fsyncing a directory. The issue is that while a directory gets
the new dentries persisted in the fsync log and replayed at mount time,
the link count of the inode that directory entries point to doesn't
get updated, staying with an incorrect link count (smaller then the
correct value). This later leads to stale file handle errors when
accessing (including attempt to delete) some of the links if all the
other ones are removed, which also implies impossibility to delete the
parent directories, since the dentries can not be removed.
Another issue is that (unlike ext3/4, xfs, f2fs, reiserfs, nilfs2),
when fsyncing a directory, new files aren't logged (their metadata and
dentries) nor any child directories. So this patch fixes this issue too,
since it has the same resolution as the incorrect inode link count issue
mentioned before.
This is very easy to reproduce, and the following excerpt from my test
case for xfstests shows how:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our main test file and directory.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foo | _filter_xfs_io
mkdir $SCRATCH_MNT/mydir
# Make sure all metadata and data are durably persisted.
sync
# Add a hard link to 'foo' inside our test directory and fsync only the
# directory. The btrfs fsync implementation had a bug that caused the new
# directory entry to be visible after the fsync log replay but, the inode
# of our file remained with a link count of 1.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_2
# Add a few more links and new files.
# This is just to verify nothing breaks or gives incorrect results after the
# fsync log is replayed.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_3
$XFS_IO_PROG -f -c "pwrite -S 0xff 0 64K" $SCRATCH_MNT/hello | _filter_xfs_io
ln $SCRATCH_MNT/hello $SCRATCH_MNT/mydir/hello_2
# Add some subdirectories and new files and links to them. This is to verify
# that after fsyncing our top level directory 'mydir', all the subdirectories
# and their files/links are registered in the fsync log and exist after the
# fsync log is replayed.
mkdir -p $SCRATCH_MNT/mydir/x/y/z
ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/foo_y_link
ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/z/foo_z_link
touch $SCRATCH_MNT/mydir/x/y/z/qwerty
# Now fsync only our top directory.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/mydir
# And fsync now our new file named 'hello', just to verify later that it has
# the expected content and that the previous fsync on the directory 'mydir' had
# no bad influence on this fsync.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/hello
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Verify the content of our file 'foo' remains the same as before, 8192 bytes,
# all with the value 0xaa.
echo "File 'foo' content after log replay:"
od -t x1 $SCRATCH_MNT/foo
# Remove the first name of our inode. Because of the directory fsync bug, the
# inode's link count was 1 instead of 5, so removing the 'foo' name ended up
# deleting the inode and the other names became stale directory entries (still
# visible to applications). Attempting to remove or access the remaining
# dentries pointing to that inode resulted in stale file handle errors and
# made it impossible to remove the parent directories since it was impossible
# for them to become empty.
echo "file 'foo' link count after log replay: $(stat -c %h $SCRATCH_MNT/foo)"
rm -f $SCRATCH_MNT/foo
# Now verify that all files, links and directories created before fsyncing our
# directory exist after the fsync log was replayed.
[ -f $SCRATCH_MNT/mydir/foo_2 ] || echo "Link mydir/foo_2 is missing"
[ -f $SCRATCH_MNT/mydir/foo_3 ] || echo "Link mydir/foo_3 is missing"
[ -f $SCRATCH_MNT/hello ] || echo "File hello is missing"
[ -f $SCRATCH_MNT/mydir/hello_2 ] || echo "Link mydir/hello_2 is missing"
[ -f $SCRATCH_MNT/mydir/x/y/foo_y_link ] || \
echo "Link mydir/x/y/foo_y_link is missing"
[ -f $SCRATCH_MNT/mydir/x/y/z/foo_z_link ] || \
echo "Link mydir/x/y/z/foo_z_link is missing"
[ -f $SCRATCH_MNT/mydir/x/y/z/qwerty ] || \
echo "File mydir/x/y/z/qwerty is missing"
# We expect our file here to have a size of 64Kb and all the bytes having the
# value 0xff.
echo "file 'hello' content after log replay:"
od -t x1 $SCRATCH_MNT/hello
# Now remove all files/links, under our test directory 'mydir', and verify we
# can remove all the directories.
rm -f $SCRATCH_MNT/mydir/x/y/z/*
rmdir $SCRATCH_MNT/mydir/x/y/z
rm -f $SCRATCH_MNT/mydir/x/y/*
rmdir $SCRATCH_MNT/mydir/x/y
rmdir $SCRATCH_MNT/mydir/x
rm -f $SCRATCH_MNT/mydir/*
rmdir $SCRATCH_MNT/mydir
# An fsck, run by the fstests framework everytime a test finishes, also detected
# the inconsistency and printed the following error message:
#
# root 5 inode 257 errors 2001, no inode item, link count wrong
# unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
# unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref
status=0
exit
The expected golden output for the test is:
wrote 8192/8192 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 65536/65536 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File 'foo' content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0020000
file 'foo' link count after log replay: 5
file 'hello' content after log replay:
0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
*
0200000
Which is the output after this patch and when running the test against
ext3/4, xfs, f2fs, reiserfs or nilfs2. Without this patch, the test's
output is:
wrote 8192/8192 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 65536/65536 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File 'foo' content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0020000
file 'foo' link count after log replay: 1
Link mydir/foo_2 is missing
Link mydir/foo_3 is missing
Link mydir/x/y/foo_y_link is missing
Link mydir/x/y/z/foo_z_link is missing
File mydir/x/y/z/qwerty is missing
file 'hello' content after log replay:
0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
*
0200000
rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y/z': No such file or directory
rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y': No such file or directory
rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x': No such file or directory
rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_2': Stale file handle
rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_3': Stale file handle
rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir': Directory not empty
Fsck, without this fix, also complains about the wrong link count:
root 5 inode 257 errors 2001, no inode item, link count wrong
unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref
So fix this by logging the inodes that the dentries point to when
fsyncing a directory.
A test case for xfstests follows.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
After looking at Liu Bo's recent patch (titled
"Btrfs: fix comp_oper to get right order") I realized the search made by
qgroup_oper_exists() was buggy because its rbtree navigation comparison
function, comp_oper_exist(), only looks at the fields bytenr and ref_root
of a tree node, ignoring the seq field completely. This was wrong because
when we insert a node into the rbtree we use comp_oper(), which takes a
decision based first on bytenr, then on seq and then on the ref_root field.
That means qgroup_oper_exists() could miss the fact that at least one
operation with given bytenr and ref_root exists.
Consider the following simple example of a 3 nodes qgroup operations
rbtree (created using comp_oper before this patch), where each node's key
is a tuple with the shape (bytenr, seq, ref_root, op):
[ (4096, 2, 20, op X) ]
/ \
/ \
[ (4096, 1, 5, op Y) ] [ (4096, 3, 10, op Z) ]
qgroup_oper_exists() when called to search for an existing operation for
bytenr 4096 and ref root 10 wouldn't find anything because it would go to
the left subtree instead of the right subtree, since comp_oper_exits()
ignores the seq field completely.
Fix this by changing the insertion navigation function to use the ref_root
field right after using the bytenr field and before using the seq field,
so that qgroup_oper_exists() / comp_oper_exist() work as expected.
This patch applies on top of the patch mentioned above from Liu.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we fallocate(), without the keep size flag, into an area already covered
by an extent previously fallocated, we were updating the inode's i_size but
we weren't updating the inode item in the fs/subvol tree. A following umount
+ mount would result in a loss of the inode's size (and an fsync would miss
too the fact that the inode changed).
Reproducer:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ fallocate -n -l 1M /mnt/foobar
$ fallocate -l 512K /mnt/foobar
$ umount /mnt
$ mount /dev/sdd /mnt
$ od -t x1 /mnt/foobar
0000000
The expected result is:
$ od -t x1 /mnt/foobar
0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
2000000
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The logic to detect path loops when attempting to apply a pending
directory rename, introduced in commit
f959492fc1 (Btrfs: send, fix more issues related to directory renames)
is no longer needed, and the respective fstests test case for that commit,
btrfs/045, now passes without this code (as well as all the other test
cases for send/receive).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If a directory's reference ends up being orphanized, because the inode
currently being processed has a new path that matches that directory's
path, make sure we evict the name of the directory from the name cache.
This is because there might be descendent inodes (either directories or
regular files) that will be orphanized later too, and therefore the
orphan name of the ancestor must be used, otherwise we send issue rename
operations with a wrong path in the send stream.
Reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir -p /mnt/data/n1/n2/p1/p2
$ mkdir /mnt/data/n4
$ mkdir -p /mnt/data/p1/p2
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ mv /mnt/data/p1/p2 /mnt/data
$ mv /mnt/data/n1/n2/p1/p2 /mnt/data/p1
$ mv /mnt/data/p2 /mnt/data/n1/n2/p1
$ mv /mnt/data/n1/n2 /mnt/data/p1
$ mv /mnt/data/p1 /mnt/data/n4
$ mv /mnt/data/n4/p1/n2/p1 /mnt/data
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send /mnt/snap1 -f /tmp/1.send
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.send
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt2
$ btrfs receive /mnt2 -f /tmp/1.send
$ btrfs receive /mnt2 -f /tmp/2.send
ERROR: rename data/p1/p2 -> data/n4/p1/p2 failed. no such file or directory
Directories data/p1 (inode 263) and data/p1/p2 (inode 264) in the parent
snapshot are both orphanized during the incremental send, and as soon as
data/p1 is orphanized, we must make sure that when orphanizing data/p1/p2
we use a source path of o263-6-o/p2 for the rename operation instead of
the old path data/p1/p2 (the one before the orphanization of inode 263).
A test case for xfstests follows soon.
Reported-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the clone root was not readonly or the dead flag was set on it, we were
leaving without decrementing the root's send_progress counter (and before
we just incremented it). If a concurrent snapshot deletion was in progress
and ended up being aborted, it would be impossible to later attempt to
delete again the snapshot, since the root's send_in_progress counter could
never go back to 0.
We were also setting clone_sources_to_rollback to i + 1 too early - if we
bailed out because the clone root we got is not readonly or flagged as dead
we ended up later derreferencing a null pointer because we didn't assign
the clone root to sctx->clone_roots[i].root:
for (i = 0; sctx && i < clone_sources_to_rollback; i++)
btrfs_root_dec_send_in_progress(
sctx->clone_roots[i].root);
So just don't increment the send_in_progress counter if the root is readonly
or flagged as dead.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
After we locked the root's root item, a concurrent snapshot deletion
call might have set the dead flag on it. So check if the dead flag
is set and abort if it is, just like we do for the parent root.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If we deleted xattrs from a file and fsynced the file, after a log replay
the xattrs would remain associated to the file. This was an unexpected
behaviour and differs from what other filesystems do, such as for example
xfs and ext3/4.
Fix this by, on fsync log replay, check if every xattr in the fs/subvol
tree (that belongs to a logged inode) has a matching xattr in the log,
and if it does not, delete it from the fs/subvol tree. This is a similar
approach to what we do for dentries when we replay a directory from the
fsync log.
This issue is trivial to reproduce, and the following excerpt from my
test for xfstests triggers the issue:
_crash_and_mount()
{
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
}
rm -f $seqres.full
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create out test file and add 3 xattrs to it.
touch $SCRATCH_MNT/foobar
$SETFATTR_PROG -n user.attr1 -v val1 $SCRATCH_MNT/foobar
$SETFATTR_PROG -n user.attr2 -v val2 $SCRATCH_MNT/foobar
$SETFATTR_PROG -n user.attr3 -v val3 $SCRATCH_MNT/foobar
# Make sure everything is durably persisted.
sync
# Now delete the second xattr and fsync the inode.
$SETFATTR_PROG -x user.attr2 $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar
_crash_and_mount
# After the fsync log is replayed, the file should have only 2 xattrs, the ones
# named user.attr1 and user.attr3. The btrfs fsync log replay bug left the file
# with the 3 xattrs that we had before deleting the second one and fsyncing the
# file.
echo "xattr names and values after first fsync log replay:"
$GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/foobar | _filter_scratch
# Now write some data to our file, fsync it, remove the first xattr, add a new
# hard link to our file and commit the fsync log by fsyncing some other new
# file. This is to verify that after log replay our first xattr does not exist
# anymore.
echo "hello world!" >> $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar
$SETFATTR_PROG -x user.attr1 $SCRATCH_MNT/foobar
ln $SCRATCH_MNT/foobar $SCRATCH_MNT/foobar_link
touch $SCRATCH_MNT/qwerty
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/qwerty
_crash_and_mount
# Now only the xattr with name user.attr3 should be set in our file.
echo "xattr names and values after second fsync log replay:"
$GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/foobar | _filter_scratch
status=0
exit
The expected golden output, which is produced with this patch applied or
when testing against xfs or ext3/4, is:
xattr names and values after first fsync log replay:
# file: SCRATCH_MNT/foobar
user.attr1="val1"
user.attr3="val3"
xattr names and values after second fsync log replay:
# file: SCRATCH_MNT/foobar
user.attr3="val3"
Without this patch applied, the output is:
xattr names and values after first fsync log replay:
# file: SCRATCH_MNT/foobar
user.attr1="val1"
user.attr2="val2"
user.attr3="val3"
xattr names and values after second fsync log replay:
# file: SCRATCH_MNT/foobar
user.attr1="val1"
user.attr2="val2"
user.attr3="val3"
A patch with a test case for xfstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs fixes from Chris Mason:
"Most of these are fixing extent reservation accounting, or corners
with tree writeback during commit.
Josef's set does add a test, which isn't strictly a fix, but it'll
keep us from making this same mistake again"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix outstanding_extents accounting in DIO
Btrfs: add sanity test for outstanding_extents accounting
Btrfs: just free dummy extent buffers
Btrfs: account merges/splits properly
Btrfs: prepare block group cache before writing
Btrfs: fix ASSERT(list_empty(&cur_trans->dirty_bgs_list)
Btrfs: account for the correct number of extents for delalloc reservations
Btrfs: fix merge delalloc logic
Btrfs: fix comp_oper to get right order
Btrfs: catch transaction abortion after waiting for it
btrfs: fix sizeof format specifier in btrfs_check_super_valid()
We are keeping track of how many extents we need to reserve properly based on
the amount we want to write, but we were still incrementing outstanding_extents
if we wrote less than what we requested. This isn't quite right since we will
be limited to our max extent size. So instead lets do something horrible! Keep
track of how many outstanding_extents we reserved, and decrement each time we
allocate an extent. If we use our entire reserve make sure to jack up
outstanding_extents on the inode so the accounting works out properly. Thanks,
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
I introduced a regression wrt outstanding_extents accounting. These are tricky
areas that aren't easily covered by xfstests as we could change MAX_EXTENT_SIZE
at any time. So add sanity tests to cover the various conditions that are
tricky in order to make sure we don't introduce regressions in the future.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we fail during our sanity tests we could get NULL deref's because we unload
the module before the dummy extent buffers are free'd via RCU. So check for
this case and just free the things directly. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
My fix
Btrfs: fix merge delalloc logic
only fixed half of the problems, it didn't fix the case where we have two large
extents on either side and then join them together with a new small extent. We
need to instead keep track of how many extents we have accounted for with each
side of the new extent, and then see how many extents we need for the new large
extent. If they match then we know we need to keep our reservation, otherwise
we need to drop our reservation. This shows up with a case like this
[BTRFS_MAX_EXTENT_SIZE+4K][4K HOLE][BTRFS_MAX_EXTENT_SIZE+4K]
Previously the logic would have said that the number extents required for the
new size (3) is larger than the number of extents required for the largest side
(2) therefore we need to keep our reservation. But this isn't the case, since
both sides require a reservation of 2 which leads to 4 for the whole range
currently reserved, but we only need 3, so we need to drop one of the
reservations. The same problem existed for splits, we'd think we only need 3
extents when creating the hole but in reality we need 4. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Writing the block group cache will modify the extent tree quite a bit because it
truncates the old space cache and pre-allocates new stuff. To try and cut down
on the churn lets do the setup dance first, then later on hopefully we can avoid
looping with newly dirtied roots. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Dave could hit this assert consistently running btrfs/078. This is because
when we update the block groups we could truncate the free space, which would
try to delete the csums for that range and dirty the csum root. For this to
happen we have to have already written out the csum root so it's kind of hard to
hit this case. This patch fixes this by changing the logic to only write the
dirty block groups if the dirty_cowonly_roots list is empty. This will get us
the same effect as before since we add the extent root last, and will cover the
case that we dirty some other root again but not the extent root. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Direct IO can easily pass in an buffer that is greater than
BTRFS_MAX_EXTENT_SIZE, so take this into account when reserving extents in the
delalloc reservation code. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
My patch to properly count outstanding extents wrt MAX_EXTENT_SIZE introduced a
regression when re-dirtying already dirty areas. We have logic in split to make
sure we are taking the largest space into account but didn't have it for merge,
so it was sometimes making us think we were turning a tiny extent into a huge
extent, when in reality we already had a huge extent and needed to use the other
side in our logic. This fixes the regression that was reported by a user on
list. Thanks,
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Case (oper1->seq > oper2->seq) should differ with case (oper1->seq < oper2->seq).
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This problem is uncovered by a test case: http://patchwork.ozlabs.org/patch/244297.
Fsync() can report success when it actually doesn't. When we
have several threads running fsync() at the same tiem and in one fsync() we
get a transaction abortion due to some problems(in the test case it's disk
failures), and other fsync()s may return successfully which makes userspace
programs think that data is now safely flushed into disk.
It's because that after fsyncs() fail btrfs_sync_log() due to disk failures,
they get to try btrfs_commit_transaction() where it finds that there is
already a transaction being committed, and they'll just call wait_for_commit()
and return. Note that we actually check "trans->aborted" in btrfs_end_transaction,
but it's likely that the error message is still not yet throwed out and only after
wait_for_commit() we're sure whether the transaction is committed successfully.
This add the necessary check and it now passes the test.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch fixes mips compilation warning:
fs/btrfs/disk-io.c: In function 'btrfs_check_super_valid':
fs/btrfs/disk-io.c:3927:21: warning: format '%lu' expects argument
of type 'long unsigned int', but argument 3 has type 'unsigned int' [-Wformat]
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Outside of misc fixes, Filipe has a few fsync corners and we're
pulling in one more of Josef's fixes from production use here"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
Btrfs: fix data loss in the fast fsync path
Btrfs: remove extra run_delayed_refs in update_cowonly_root
Btrfs: incremental send, don't rename a directory too soon
btrfs: fix lost return value due to variable shadowing
Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr
Btrfs: fix off-by-one logic error in btrfs_realloc_node
Btrfs: add missing inode update when punching hole
Btrfs: abort the transaction if we fail to update the free space cache inode
Btrfs: fix fsync race leading to ordered extent memory leaks
Improper arithmetics when calculting the address of the extended ref could
lead to an out of bounds memory read and kernel panic.
Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
cc: stable@vger.kernel.org # v3.7+
Signed-off-by: Chris Mason <clm@fb.com>
When using the fast file fsync code path we can miss the fact that new
writes happened since the last file fsync and therefore return without
waiting for the IO to finish and write the new extents to the fsync log.
Here's an example scenario where the fsync will miss the fact that new
file data exists that wasn't yet durably persisted:
1. fs_info->last_trans_committed == N - 1 and current transaction is
transaction N (fs_info->generation == N);
2. do a buffered write;
3. fsync our inode, this clears our inode's full sync flag, starts
an ordered extent and waits for it to complete - when it completes
at btrfs_finish_ordered_io(), the inode's last_trans is set to the
value N (via btrfs_update_inode_fallback -> btrfs_update_inode ->
btrfs_set_inode_last_trans);
4. transaction N is committed, so fs_info->last_trans_committed is now
set to the value N and fs_info->generation remains with the value N;
5. do another buffered write, when this happens btrfs_file_write_iter
sets our inode's last_trans to the value N + 1 (that is
fs_info->generation + 1 == N + 1);
6. transaction N + 1 is started and fs_info->generation now has the
value N + 1;
7. transaction N + 1 is committed, so fs_info->last_trans_committed
is set to the value N + 1;
8. fsync our inode - because it doesn't have the full sync flag set,
we only start the ordered extent, we don't wait for it to complete
(only in a later phase) therefore its last_trans field has the
value N + 1 set previously by btrfs_file_write_iter(), and so we
have:
inode->last_trans <= fs_info->last_trans_committed
(N + 1) (N + 1)
Which made us not log the last buffered write and exit the fsync
handler immediately, returning success (0) to user space and resulting
in data loss after a crash.
This can actually be triggered deterministically and the following excerpt
from a testcase I made for xfstests triggers the issue. It moves a dummy
file across directories and then fsyncs the old parent directory - this
is just to trigger a transaction commit, so moving files around isn't
directly related to the issue but it was chosen because running 'sync' for
example does more than just committing the current transaction, as it
flushes/waits for all file data to be persisted. The issue can also happen
at random periods, since the transaction kthread periodicaly commits the
current transaction (about every 30 seconds by default).
The body of the test is:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our main test file 'foo', the one we check for data loss.
# By doing an fsync against our file, it makes btrfs clear the 'needs_full_sync'
# bit from its flags (btrfs inode specific flags).
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" \
-c "fsync" $SCRATCH_MNT/foo | _filter_xfs_io
# Now create one other file and 2 directories. We will move this second file
# from one directory to the other later because it forces btrfs to commit its
# currently open transaction if we fsync the old parent directory. This is
# necessary to trigger the data loss bug that affected btrfs.
mkdir $SCRATCH_MNT/testdir_1
touch $SCRATCH_MNT/testdir_1/bar
mkdir $SCRATCH_MNT/testdir_2
# Make sure everything is durably persisted.
sync
# Write more 8Kb of data to our file.
$XFS_IO_PROG -c "pwrite -S 0xbb 8K 8K" $SCRATCH_MNT/foo | _filter_xfs_io
# Move our 'bar' file into a new directory.
mv $SCRATCH_MNT/testdir_1/bar $SCRATCH_MNT/testdir_2/bar
# Fsync our first directory. Because it had a file moved into some other
# directory, this made btrfs commit the currently open transaction. This is
# a condition necessary to trigger the data loss bug.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir_1
# Now fsync our main test file. If the fsync succeeds, we expect the 8Kb of
# data we wrote previously to be persisted and available if a crash happens.
# This did not happen with btrfs, because of the transaction commit that
# happened when we fsynced the parent directory.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Now check that all data we wrote before are available.
echo "File content after log replay:"
od -t x1 $SCRATCH_MNT/foo
status=0
exit
The expected golden output for the test, which is what we get with this
fix applied (or when running against ext3/4 and xfs), is:
wrote 8192/8192 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 8192/8192 bytes at offset 8192
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0020000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
*
0040000
Without this fix applied, the output shows the test file does not have
the second 8Kb extent that we successfully fsynced:
wrote 8192/8192 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 8192/8192 bytes at offset 8192
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0020000
So fix this by skipping the fsync only if we're doing a full sync and
if the inode's last_trans is <= fs_info->last_trans_committed, or if
the inode is already in the log. Also remove setting the inode's
last_trans in btrfs_file_write_iter since it's useless/unreliable.
Also because btrfs_file_write_iter no longer sets inode->last_trans to
fs_info->generation + 1, don't set last_trans to 0 if we bail out and don't
bail out if last_trans is 0, otherwise something as simple as the following
example wouldn't log the second write on the last fsync:
1. write to file
2. fsync file
3. fsync file
|--> btrfs_inode_in_log() returns true and it set last_trans to 0
4. write to file
|--> btrfs_file_write_iter() no longers sets last_trans, so it
remained with a value of 0
5. fsync
|--> inode->last_trans == 0, so it bails out without logging the
second write
A test case for xfstests will be sent soon.
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
1) We can safely use the function's 'i'. Fixes warning
fs/btrfs/volumes.c:5257:7: warning: declaration of 'i' shadows a previous local
fs/btrfs/volumes.c:4951:6: warning: shadowed declaration is here
2) A local variable duplicates name of an argument, we can use the value
directly. Fixes warning
fs/btrfs/volumes.c:5433:8: warning: declaration of 'length' shadows a parameter
fs/btrfs/volumes.c:4935:27: warning: shadowed declaration is here
Signed-off-by: David Sterba <dsterba@suse.cz>
The conversion macros use nested container_of that leads to a warning
fs/btrfs/sysfs.c: In function 'btrfs_feature_visible':
fs/btrfs/sysfs.c:183:8: warning: declaration of '__mptr' shadows a previous local
fs/btrfs/sysfs.c:183:8: warning: shadowed declaration is here
Use of functions will add proper type checking.
Signed-off-by: David Sterba <dsterba@suse.cz>
The divisor is derived from nodesize or PAGE_SIZE, fits into 32bit type.
Get rid of a few more do_div instances.
Signed-off-by: David Sterba <dsterba@suse.cz>
Using {} as initializer for struct seq_elem does not properly initialize
the list_head member, but it currently works because it gets set through
btrfs_get_tree_mod_seq if 'seq' is 0.
Signed-off-by: David Sterba <dsterba@suse.cz>
There are lockstart and lockend defined in the function and not used
after their duplicate definition scope ends, it's safe to reuse them.
Signed-off-by: David Sterba <dsterba@suse.cz>
Convert kmalloc(nr * size, ..) to kmalloc_array that does additional
overflow checks, the zeroing variant is kcalloc.
Signed-off-by: David Sterba <dsterba@suse.cz>
Switch to div_u64 if the divisor is a numeric constant or sum of
sizeof()s. We can remove a few instances of do_div that has the hidden
semtantics of changing the 1st argument.
Small power-of-two divisors are converted to bitshifts, large values are
kept intact for clarity.
Signed-off-by: David Sterba <dsterba@suse.cz>
Clean the opencoded variant, cond_resched_lock also checks the lock for
contention so it might help in some cases that were not covered by
simple need_resched().
Signed-off-by: David Sterba <dsterba@suse.cz>
There's one more case where we can't issue a rename operation for a
directory as soon as we process it. We used to delay directory renames
only if they have some ancestor directory with a higher inode number
that got renamed too, but there's another case where we need to delay
the rename too - when a directory A is renamed to the old name of a
directory B but that directory B has its rename delayed because it
has now (in the send root) an ancestor with a higher inode number that
was renamed. If we don't delay the directory rename in this case, the
receiving end of the send stream will attempt to rename A to the old
name of B before B got renamed to its new name, which results in a
"directory not empty" error. So fix this by delaying directory renames
for this case too.
Steps to reproduce:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/a
$ mkdir /mnt/b
$ mkdir /mnt/c
$ touch /mnt/a/file
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ mv /mnt/c /mnt/x
$ mv /mnt/a /mnt/x/y
$ mv /mnt/b /mnt/a
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send /mnt/snap1 -f /tmp/1.send
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.send
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt2
$ btrfs receive /mnt2 -f /tmp/1.send
$ btrfs receive /mnt2 -f /tmp/2.send
ERROR: rename b -> a failed. Directory not empty
A test case for xfstests follows soon.
Reported-by: Ames Cornish <ames@cornishes.net>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
A block-local variable stores error code but btrfs_get_blocks_direct may
not return it in the end as there's a ret defined in the function scope.
CC: <stable@vger.kernel.org> # 3.6+
Fixes: d187663ef2 ("Btrfs: lock extents as we map them in DIO")
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The return value from btrfs_lookup_xattr() can be a pointer encoding an
error, therefore deal with it. This fixes commit 5f5bc6b1e2
("Btrfs: make xattr replace operations atomic").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The end_slot variable actually matches the number of pointers in the
node and not the last slot (which is 'nritems - 1'). Therefore in order
to check that the current slot in the for loop doesn't match the last
one, the correct logic is to check if 'i' is less than 'end_slot - 1'
and not 'end_slot - 2'.
Fix this and set end_slot to be 'nritems - 1', as it's less confusing
since the variable name implies it's inclusive rather then exclusive.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When punching a file hole if we endup only zeroing parts of a page,
because the start offset isn't a multiple of the sector size or the
start offset and length fall within the same page, we were not updating
the inode item. This prevented an fsync from doing anything, if no other
file changes happened in the current transaction, because the fields
in btrfs_inode used to check if the inode needs to be fsync'ed weren't
updated.
This issue is easy to reproduce and the following excerpt from the
xfstest case I made shows how to trigger it:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test file.
$XFS_IO_PROG -f -c "pwrite -S 0x22 -b 16K 0 16K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Fsync the file, this makes btrfs update some btrfs inode specific fields
# that are used to track if the inode needs to be written/updated to the fsync
# log or not. After this fsync, the new values for those fields indicate that
# a subsequent fsync does not need to touch the fsync log.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Force a commit of the current transaction. After this point, any operation
# that modifies the data or metadata of our file, should update those fields in
# the btrfs inode with values that make the next fsync operation write to the
# fsync log.
sync
# Punch a hole in our file. This small range affects only 1 page.
# This made the btrfs hole punching implementation write only some zeroes in
# one page, but it did not update the btrfs inode fields used to determine if
# the next fsync needs to write to the fsync log.
$XFS_IO_PROG -c "fpunch 8000 4K" $SCRATCH_MNT/foo
# Another variation of the previously mentioned case.
$XFS_IO_PROG -c "fpunch 15000 100" $SCRATCH_MNT/foo
# Now fsync the file. This was a no-operation because the previous hole punch
# operation didn't update the inode's fields mentioned before, so they remained
# with the values they had after the first fsync - that is, they indicate that
# it is not needed to write to fsync log.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
echo "File content before:"
od -t x1 $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Enable writes and mount the fs. This makes the fsync log replay code run.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Because the last fsync didn't do anything, here the file content matched what
# it was after the first fsync, before the holes were punched, and not what it
# was after the holes were punched.
echo "File content after:"
od -t x1 $SCRATCH_MNT/foo
This issue has been around since 2012, when the punch hole implementation
was added, commit 2aaa665581 ("Btrfs: add hole punching").
A test case for xfstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Our gluster boxes were hitting a problem where they'd run out of space when
updating the block group cache and therefore wouldn't be able to update the free
space inode. This is a problem because this is how we invalidate the cache and
protect ourselves from errors further down the stack, so if this fails we have
to abort the transaction so we make sure we don't end up with stale free space
cache. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can have multiple fsync operations against the same file during the
same transaction and they can collect the same ordered extents while they
don't complete (still accessible from the inode's ordered tree). If this
happens, those ordered extents will never get their reference counts
decremented to 0, leading to memory leaks and inode leaks (an iput for an
ordered extent's inode is scheduled only when the ordered extent's refcount
drops to 0). The following sequence diagram explains this race:
CPU 1 CPU 2
btrfs_sync_file()
btrfs_sync_file()
mutex_lock(inode->i_mutex)
btrfs_log_inode()
btrfs_get_logged_extents()
--> collects ordered extent X
--> increments ordered
extent X's refcount
btrfs_submit_logged_extents()
mutex_unlock(inode->i_mutex)
mutex_lock(inode->i_mutex)
btrfs_sync_log()
btrfs_wait_logged_extents()
--> list_del_init(&ordered->log_list)
btrfs_log_inode()
btrfs_get_logged_extents()
--> Adds ordered extent X
to logged_list because
at this point:
list_empty(&ordered->log_list)
&& test_bit(BTRFS_ORDERED_LOGGED,
&ordered->flags) == 0
--> Increments ordered extent
X's refcount
--> check if ordered extent's io is
finished or not, start it if
necessary and wait for it to finish
--> sets bit BTRFS_ORDERED_LOGGED
on ordered extent X's flags
and adds it to trans->ordered
btrfs_sync_log() finishes
btrfs_submit_logged_extents()
btrfs_log_inode() finishes
mutex_unlock(inode->i_mutex)
btrfs_sync_file() finishes
btrfs_sync_log()
btrfs_wait_logged_extents()
--> Sees ordered extent X has the
bit BTRFS_ORDERED_LOGGED set in
its flags
--> X's refcount is untouched
btrfs_sync_log() finishes
btrfs_sync_file() finishes
btrfs_commit_transaction()
--> called by transaction kthread for e.g.
btrfs_wait_pending_ordered()
--> waits for ordered extent X to
complete
--> decrements ordered extent X's
refcount by 1 only, corresponding
to the increment done by the fsync
task ran by CPU 1
In the scenario of the above diagram, after the transaction commit,
the ordered extent will remain with a refcount of 1 forever, leaking
the ordered extent structure and preventing the i_count of its inode
from ever decreasing to 0, since the delayed iput is scheduled only
when the ordered extent's refcount drops to 0, preventing the inode
from ever being evicted by the VFS.
Fix this by using the flag BTRFS_ORDERED_LOGGED differently. Use it to
mean that an ordered extent is already being processed by an fsync call,
which will attach it to the current transaction, preventing it from being
collected by subsequent fsync operations against the same inode.
This race was introduced with the following change (added in 3.19 and
backported to stable 3.18 and 3.17):
Btrfs: make sure logged extents complete in the current transaction V3
commit 50d9aa99bd
I ran into this issue while running xfstests/generic/113 in a loop, which
failed about 1 out of 10 runs with the following warning in dmesg:
[ 2612.440038] WARNING: CPU: 4 PID: 22057 at fs/btrfs/disk-io.c:3558 free_fs_root+0x36/0x133 [btrfs]()
[ 2612.442810] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop processor parport_pc parport psmouse therma
l_sys i2c_piix4 serio_raw pcspkr evdev microcode button i2c_core ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom virtio_scsi ata_generic virtio_pci ata_piix virtio_ring libata virtio flo
ppy e1000 scsi_mod [last unloaded: btrfs]
[ 2612.452711] CPU: 4 PID: 22057 Comm: umount Tainted: G W 3.19.0-rc5-btrfs-next-4+ #1
[ 2612.454921] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 2612.457709] 0000000000000009 ffff8801342c3c78 ffffffff8142425e ffff88023ec8f2d8
[ 2612.459829] 0000000000000000 ffff8801342c3cb8 ffffffff81045308 ffff880046460000
[ 2612.461564] ffffffffa036da56 ffff88003d07b000 ffff880046460000 ffff880046460068
[ 2612.463163] Call Trace:
[ 2612.463719] [<ffffffff8142425e>] dump_stack+0x4c/0x65
[ 2612.464789] [<ffffffff81045308>] warn_slowpath_common+0xa1/0xbb
[ 2612.466026] [<ffffffffa036da56>] ? free_fs_root+0x36/0x133 [btrfs]
[ 2612.467247] [<ffffffff810453c5>] warn_slowpath_null+0x1a/0x1c
[ 2612.468416] [<ffffffffa036da56>] free_fs_root+0x36/0x133 [btrfs]
[ 2612.469625] [<ffffffffa036f2a7>] btrfs_drop_and_free_fs_root+0x93/0x9b [btrfs]
[ 2612.471251] [<ffffffffa036f353>] btrfs_free_fs_roots+0xa4/0xd6 [btrfs]
[ 2612.472536] [<ffffffff8142612e>] ? wait_for_completion+0x24/0x26
[ 2612.473742] [<ffffffffa0370bbc>] close_ctree+0x1f3/0x33c [btrfs]
[ 2612.475477] [<ffffffff81059d1d>] ? destroy_workqueue+0x148/0x1ba
[ 2612.476695] [<ffffffffa034e3da>] btrfs_put_super+0x19/0x1b [btrfs]
[ 2612.477911] [<ffffffff81153e53>] generic_shutdown_super+0x73/0xef
[ 2612.479106] [<ffffffff811540e2>] kill_anon_super+0x13/0x1e
[ 2612.480226] [<ffffffffa034e1e3>] btrfs_kill_super+0x17/0x23 [btrfs]
[ 2612.481471] [<ffffffff81154307>] deactivate_locked_super+0x3b/0x50
[ 2612.482686] [<ffffffff811547a7>] deactivate_super+0x3f/0x43
[ 2612.483791] [<ffffffff8116b3ed>] cleanup_mnt+0x59/0x78
[ 2612.484842] [<ffffffff8116b44c>] __cleanup_mnt+0x12/0x14
[ 2612.485900] [<ffffffff8105d019>] task_work_run+0x8f/0xbc
[ 2612.486960] [<ffffffff810028d8>] do_notify_resume+0x5a/0x6b
[ 2612.488083] [<ffffffff81236e5b>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 2612.489333] [<ffffffff8142a17f>] int_signal+0x12/0x17
[ 2612.490353] ---[ end trace 54a960a6bdcb8d93 ]---
[ 2612.557253] VFS: Busy inodes after unmount of sdb. Self-destruct in 5 seconds. Have a nice day...
Kmemleak confirmed the ordered extent leak (and btrfs inode specific
structures such as delayed nodes):
$ cat /sys/kernel/debug/kmemleak
unreferenced object 0xffff880154290db0 (size 576):
comm "btrfsck", pid 21980, jiffies 4295542503 (age 1273.412s)
hex dump (first 32 bytes):
01 40 00 00 01 00 00 00 b0 1d f1 4e 01 88 ff ff .@.........N....
00 00 00 00 00 00 00 00 c8 0d 29 54 01 88 ff ff ..........)T....
backtrace:
[<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a
[<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83
[<ffffffff8122fb26>] __radix_tree_create+0x109/0x190
[<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac
[<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs]
[<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs]
[<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs]
[<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
[<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs]
[<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed
[<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa
[<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b
[<ffffffff81429e92>] system_call_fastpath+0x12/0x17
[<ffffffffffffffff>] 0xffffffffffffffff
unreferenced object 0xffff88014ef11db0 (size 576):
comm "rm", pid 22009, jiffies 4295542593 (age 1273.052s)
hex dump (first 32 bytes):
02 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 c8 1d f1 4e 01 88 ff ff ...........N....
backtrace:
[<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a
[<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83
[<ffffffff8122fb26>] __radix_tree_create+0x109/0x190
[<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac
[<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs]
[<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs]
[<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs]
[<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
[<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs]
[<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed
[<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa
[<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b
[<ffffffff81429e92>] system_call_fastpath+0x12/0x17
[<ffffffffffffffff>] 0xffffffffffffffff
unreferenced object 0xffff8800336feda8 (size 584):
comm "aio-stress", pid 22031, jiffies 4295543006 (age 1271.400s)
hex dump (first 32 bytes):
00 40 3e 00 00 00 00 00 00 00 8f 42 00 00 00 00 .@>........B....
00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00 ................
backtrace:
[<ffffffff8114eb34>] create_object+0x172/0x29a
[<ffffffff8141d790>] kmemleak_alloc+0x25/0x41
[<ffffffff81141ae6>] kmemleak_alloc_recursive.constprop.52+0x16/0x18
[<ffffffff81145288>] kmem_cache_alloc+0xf7/0x198
[<ffffffffa0389243>] __btrfs_add_ordered_extent+0x43/0x309 [btrfs]
[<ffffffffa038968b>] btrfs_add_ordered_extent_dio+0x12/0x14 [btrfs]
[<ffffffffa03810e2>] btrfs_get_blocks_direct+0x3ef/0x571 [btrfs]
[<ffffffff81181349>] do_blockdev_direct_IO+0x62a/0xb47
[<ffffffff8118189a>] __blockdev_direct_IO+0x34/0x36
[<ffffffffa03776e5>] btrfs_direct_IO+0x16a/0x1e8 [btrfs]
[<ffffffff81100373>] generic_file_direct_write+0xb8/0x12d
[<ffffffffa038615c>] btrfs_file_write_iter+0x24b/0x42f [btrfs]
[<ffffffff8118bb0d>] aio_run_iocb+0x2b7/0x32e
[<ffffffff8118c99a>] do_io_submit+0x26e/0x2ff
[<ffffffff8118ca3b>] SyS_io_submit+0x10/0x12
[<ffffffff81429e92>] system_call_fastpath+0x12/0x17
CC: <stable@vger.kernel.org> # 3.19, 3.18 and 3.17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fix from Chris Mason:
"I'm still testing more fixes, but I wanted to get out the fix for the
btrfs raid5/6 memory corruption I mentioned in my merge window pull"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix allocation size calculations in alloc_btrfs_bio
Pull more vfs updates from Al Viro:
"Assorted stuff from this cycle. The big ones here are multilayer
overlayfs from Miklos and beginning of sorting ->d_inode accesses out
from David"
* 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (51 commits)
autofs4 copy_dev_ioctl(): keep the value of ->size we'd used for allocation
procfs: fix race between symlink removals and traversals
debugfs: leave freeing a symlink body until inode eviction
Documentation/filesystems/Locking: ->get_sb() is long gone
trylock_super(): replacement for grab_super_passive()
fanotify: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions
Cachefiles: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
SELinux: Use d_is_positive() rather than testing dentry->d_inode
Smack: Use d_is_positive() rather than testing dentry->d_inode
TOMOYO: Use d_is_dir() rather than d_inode and S_ISDIR()
Apparmor: Use d_is_positive/negative() rather than testing dentry->d_inode
Apparmor: mediated_filesystem() should use dentry->d_sb not inode->i_sb
VFS: Split DCACHE_FILE_TYPE into regular and special types
VFS: Add a fallthrough flag for marking virtual dentries
VFS: Add a whiteout dentry type
VFS: Introduce inode-getting helpers for layered/unioned fs environments
Infiniband: Fix potential NULL d_inode dereference
posix_acl: fix reference leaks in posix_acl_create
autofs4: Wrong format for printing dentry
...
Convert the following where appropriate:
(1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).
(2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).
(3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more
complicated than it appears as some calls should be converted to
d_can_lookup() instead. The difference is whether the directory in
question is a real dir with a ->lookup op or whether it's a fake dir with
a ->d_automount op.
In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).
Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer. In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.
However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.
There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was
intended for special directory entry types that don't have attached inodes.
The following perl+coccinelle script was used:
use strict;
my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
print "No matches\n";
exit(0);
}
my @cocci = (
'@@',
'expression E;',
'@@',
'',
'- S_ISLNK(E->d_inode->i_mode)',
'+ d_is_symlink(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISDIR(E->d_inode->i_mode)',
'+ d_is_dir(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISREG(E->d_inode->i_mode)',
'+ d_is_reg(E)' );
my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);
foreach my $file (@callers) {
chomp $file;
print "Processing ", $file, "\n";
system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
die "spatch failed";
}
[AV: overlayfs parts skipped]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Since commit 8e5cfb55d3 (Btrfs: Make raid_map array be inlined in
btrfs_bio structure), the raid map array is allocated along with the
btrfs bio in alloc_btrfs_bio. The calculation used to decide how much
we need to allocate was using the wrong parameter passed into the
allocation function.
The passed in real_stripes will be zero if a target replace operation
is not currently running. We want to use total_stripes instead.
Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: David Sterba <dsterba@suse.cz>
Tested-by: David Sterba <dsterba@suse.cz>
Pull btrfs updates from Chris Mason:
"This pull is mostly cleanups and fixes:
- The raid5/6 cleanups from Zhao Lei fixup some long standing warts
in the code and add improvements on top of the scrubbing support
from 3.19.
- Josef has round one of our ENOSPC fixes coming from large btrfs
clusters here at FB.
- Dave Sterba continues a long series of cleanups (thanks Dave), and
Filipe continues hammering on corner cases in fsync and others
This all was held up a little trying to track down a use-after-free in
btrfs raid5/6. It's not clear yet if this is just made easier to
trigger with this pull or if its a new bug from the raid5/6 cleanups.
Dave Sterba is the only one to trigger it so far, but he has a
consistent way to reproduce, so we'll get it nailed shortly"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (68 commits)
Btrfs: don't remove extents and xattrs when logging new names
Btrfs: fix fsync data loss after adding hard link to inode
Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group
Btrfs: account for large extents with enospc
Btrfs: don't set and clear delalloc for O_DIRECT writes
Btrfs: only adjust outstanding_extents when we do a short write
btrfs: Fix out-of-space bug
Btrfs: scrub, fix sleep in atomic context
Btrfs: fix scheduler warning when syncing log
Btrfs: Remove unnecessary placeholder in btrfs_err_code
btrfs: cleanup init for list in free-space-cache
btrfs: delete chunk allocation attemp when setting block group ro
btrfs: clear bio reference after submit_one_bio()
Btrfs: fix scrub race leading to use-after-free
Btrfs: add missing cleanup on sysfs init failure
Btrfs: fix race between transaction commit and empty block group removal
btrfs: add more checks to btrfs_read_sys_array
btrfs: cleanup, rename a few variables in btrfs_read_sys_array
btrfs: add checks for sys_chunk_array sizes
btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
...
Also, remove the two local variables create_uuid_tree
and check_uuid_tree; we can use the existence of
the uuid root and/or the RESCAN_UUID_TREE flag to
determine what action to take.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
close_ctree() has a local fs_info var for convienience;
use it consistently.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
The commit:
8dabb74 Btrfs: change core code of btrfs to support the
device replace operations
added the fs_info argument, but never used it -
just remove it again.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
This patch fixes mips compilation warning:
fs/btrfs/disk-io.c: In function 'btrfs_check_super_valid':
fs/btrfs/disk-io.c:3927:21: warning: format '%lu' expects argument
of type 'long unsigned int', but argument 3 has type 'unsigned int' [-Wformat]
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: David Sterba <dsterba@suse.cz>
for() is obviously better in these code block, and remove noused
init-value to reduce about 6 bytes binary size.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.cz>
There functions include unused chunk_tree argument from the begining,
it is time to remove them and clean up relative code to prepare value
of this argument in caller.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
int alloc_chunk is never used in this function, remove it.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
There are some op tables that can be easily made const, similarly the
sysfs feature and raid tables. This is motivated by PaX CONSTIFY plugin.
Signed-off-by: David Sterba <dsterba@suse.cz>
A new helper kvfree() in mm/utils.c will do this.
Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
This is the 3rd independent patch of a larger project to cleanup btrfs's
internal usage of btrfs_root. Many functions take btrfs_root only to
grab the fs_info struct.
By requiring a root these functions cause programmer overhead. That
these functions can accept any valid root is not obvious until
inspection.
This patch reduces the specificity of such functions to accept the
fs_info directly.
These patches can be applied independently and thus are not being
submitted as a patch series. There should be about 26 patches by the
project's completion. Each patch will cleanup between 1 and 34 functions
apiece. Each patch covers a single file's functions.
This patch affects the following function(s):
1) csum_tree_block
2) csum_dirty_buffer
3) check_tree_block_fsid
4) btrfs_find_tree_block
5) clean_tree_block
Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
This is the second independent patch of a larger project to cleanup
btrfs's internal usage of btrfs_root. Many functions take btrfs_root
only to grab the fs_info struct.
By requiring a root these functions cause programmer overhead. That
these functions can accept any valid root is not obvious until
inspection.
This patch reduces the specificity of such functions to accept the
fs_info directly.
These patches can be applied independently and thus are not being
submitted as a patch series. There should be about 26 patches by the
project's completion. Each patch will cleanup between 1 and 34 functions
apiece. Each patch covers a single file's functions.
This patch affects the following function(s):
1) btrfs_wq_run_delayed_node
Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
This patch is part of a larger project to cleanup btrfs's internal usage
of struct btrfs_root. Many functions take btrfs_root only to grab a
pointer to fs_info.
This causes programmers to ponder which root can be passed. Since only
the fs_info is read affected functions can accept any root, except this
is only obvious upon inspection.
This patch reduces the specificty of such functions to accept the
fs_info directly.
This patch does not address the two functions in ctree.c (insert_ptr,
and split_item) which only use root for BUG_ONs in ctree.c
This patch affects the following functions:
1) fixup_low_keys
2) btrfs_set_item_key_safe
Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
If we are recording in the tree log that an inode has new names (new hard
links were added), we would drop items, belonging to the inode, that we
shouldn't:
1) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
flags, we ended up dropping all the extent and xattr items that were
previously logged. This was done only in memory, since logging a new
name doesn't imply syncing the log;
2) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
flags, we ended up dropping all the xattr items that were previously
logged. Like the case before, this was done only in memory because
logging a new name doesn't imply syncing the log.
This led to some surprises in scenarios such as the following:
1) write some extents to an inode;
2) fsync the inode;
3) truncate the inode or delete/modify some of its xattrs
4) add a new hard link for that inode
5) fsync some other file, to force the log tree to be durably persisted
6) power failure happens
The next time the fs is mounted, the fsync log replay code is executed,
and the resulting file doesn't have the content it had when the last fsync
against it was performed, instead if has a content matching what it had
when the last transaction commit happened.
So change the behaviour such that when a new name is logged, only the inode
item and reference items are processed.
This is easy to reproduce with the test I just made for xfstests, whose
main body is:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test file with some data.
$XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Make sure the file is durably persisted.
sync
# Append some data to our file, to increase its size.
$XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Fsync the file, so from this point on if a crash/power failure happens, our
# new data is guaranteed to be there next time the fs is mounted.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Now shrink our file to 5000 bytes.
$XFS_IO_PROG -c "truncate 5000" $SCRATCH_MNT/foo
# Now do an expanding truncate to a size larger than what we had when we last
# fsync'ed our file. This is just to verify that after power failure and
# replaying the fsync log, our file matches what it was when we last fsync'ed
# it - 12Kb size, first 8Kb of data had a value of 0xaa and the last 4Kb of
# data had a value of 0xcc.
$XFS_IO_PROG -c "truncate 32K" $SCRATCH_MNT/foo
# Add one hard link to our file. This made btrfs drop all of our file's
# metadata from the fsync log, including the metadata relative to the
# extent we just wrote and fsync'ed. This change was made only to the fsync
# log in memory, so adding the hard link alone doesn't change the persisted
# fsync log. This happened because the previous truncates set the runtime
# flag BTRFS_INODE_NEEDS_FULL_SYNC in the btrfs inode structure.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link
# Now make sure the in memory fsync log is durably persisted.
# Creating and fsync'ing another file will do it.
# After this our persisted fsync log will no longer have metadata for our file
# foo that points to the extent we wrote and fsync'ed before.
touch $SCRATCH_MNT/bar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar
# As expected, before the crash/power failure, we should be able to see a file
# with a size of 32Kb, with its first 5000 bytes having the value 0xaa and all
# the remaining bytes with value 0x00.
echo "File content before:"
od -t x1 $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# After mounting the fs again, the fsync log was replayed.
# The expected result is to see a file with a size of 12Kb, with its first 8Kb
# of data having the value 0xaa and its last 4Kb of data having a value of 0xcc.
# The btrfs bug used to leave the file as it used te be as of the last
# transaction commit - that is, with a size of 8Kb with all bytes having a
# value of 0xaa.
echo "File content after:"
od -t x1 $SCRATCH_MNT/foo
The test case for xfstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have a scenario where after the fsync log replay we can lose file data
that had been previously fsync'ed if we added an hard link for our inode
and after that we sync'ed the fsync log (for example by fsync'ing some
other file or directory).
This is because when adding an hard link we updated the inode item in the
log tree with an i_size value of 0. At that point the new inode item was
in memory only and a subsequent fsync log replay would not make us lose
the file data. However if after adding the hard link we sync the log tree
to disk, by fsync'ing some other file or directory for example, we ended
up losing the file data after log replay, because the inode item in the
persisted log tree had an an i_size of zero.
This is easy to reproduce, and the following excerpt from my test for
xfstests shows this:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create one file with data and fsync it.
# This made the btrfs fsync log persist the data and the inode metadata with
# a correct inode->i_size (4096 bytes).
$XFS_IO_PROG -f -c "pwrite -S 0xaa -b 4K 0 4K" -c "fsync" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Now add one hard link to our file. This made the btrfs code update the fsync
# log, in memory only, with an inode metadata having a size of 0.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link
# Now force persistence of the fsync log to disk, for example, by fsyncing some
# other file.
touch $SCRATCH_MNT/bar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar
# Before a power loss or crash, we could read the 4Kb of data from our file as
# expected.
echo "File content before:"
od -t x1 $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# After the fsync log replay, because the fsync log had a value of 0 for our
# inode's i_size, we couldn't read anymore the 4Kb of data that we previously
# wrote and fsync'ed. The size of the file became 0 after the fsync log replay.
echo "File content after:"
od -t x1 $SCRATCH_MNT/foo
Another alternative test, that doesn't need to fsync an inode in the same
transaction it was created, is:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test file with some data.
$XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Make sure the file is durably persisted.
sync
# Append some data to our file, to increase its size.
$XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Fsync the file, so from this point on if a crash/power failure happens, our
# new data is guaranteed to be there next time the fs is mounted.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Add one hard link to our file. This made btrfs write into the in memory fsync
# log a special inode with generation 0 and an i_size of 0 too. Note that this
# didn't update the inode in the fsync log on disk.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link
# Now make sure the in memory fsync log is durably persisted.
# Creating and fsync'ing another file will do it.
touch $SCRATCH_MNT/bar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar
# As expected, before the crash/power failure, we should be able to read the
# 12Kb of file data.
echo "File content before:"
od -t x1 $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# After mounting the fs again, the fsync log was replayed.
# The btrfs fsync log replay code didn't update the i_size of the persisted
# inode because the inode item in the log had a special generation with a
# value of 0 (and it couldn't know the correct i_size, since that inode item
# had a 0 i_size too). This made the last 4Kb of file data inaccessible and
# effectively lost.
echo "File content after:"
od -t x1 $SCRATCH_MNT/foo
This isn't a new issue/regression. This problem has been around since the
log tree code was added in 2008:
Btrfs: Add a write ahead tree log to optimize synchronous operations
(commit e02119d5a7)
Test cases for xfstests follow soon.
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
On our gluster boxes we stream large tar balls of backups onto our fses. With
160gb of ram this means we get really large contiguous ranges of dirty data, but
the way our ENOSPC stuff works is that as long as it's contiguous we only hold
metadata reservation for one extent. The problem is we limit our extents to
128mb, so we'll end up with at least 800 extents so our enospc accounting is
quite a bit lower than what we need. To keep track of this make sure we
increase outstanding_extents for every multiple of the max extent size so we can
be sure to have enough reserved metadata space. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We do this to get the space accounting, but this is just needless churn on the
io_tree, so just drop setting/clearing delalloc and just drop the reserved data
space when we have a successfull allocation. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have this weird dance where we always inc outstanding_extents when we do a
O_DIRECT write, even if we allocate the entire range. To get around this we
also drop the metadata space if we successfully write. This is an unnecessary
dance, we only need to jack up outstanding_extents if we don't satisfy the
entire range request in get_blocks_direct, otherwise we are good using our
original reservation. So drop the unconditional inc and the drop of the
metadata space that we have for the unconditional inc. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs will report NO_SPACE when we create and remove files for several times,
and we can't write to filesystem until mount it again.
Steps to reproduce:
1: Create a single-dev btrfs fs with default option
2: Write a file into it to take up most fs space
3: Delete above file
4: Wait about 100s to let chunk removed
5: goto 2
Script is like following:
#!/bin/bash
# Recommend 1.2G space, too large disk will make test slow
DEV="/dev/sda16"
MNT="/mnt/tmp"
dev_size="$(lsblk -bn -o SIZE "$DEV")" || exit 2
file_size_m=$((dev_size * 75 / 100 / 1024 / 1024))
echo "Loop write ${file_size_m}M file on $((dev_size / 1024 / 1024))M dev"
for ((i = 0; i < 10; i++)); do umount "$MNT" 2>/dev/null; done
echo "mkfs $DEV"
mkfs.btrfs -f "$DEV" >/dev/null || exit 2
echo "mount $DEV $MNT"
mount "$DEV" "$MNT" || exit 2
for ((loop_i = 0; loop_i < 20; loop_i++)); do
echo
echo "loop $loop_i"
echo "dd file..."
cmd=(dd if=/dev/zero of="$MNT"/file0 bs=1M count="$file_size_m")
"${cmd[@]}" 2>/dev/null || {
# NO_SPACE error triggered
echo "dd failed: ${cmd[*]}"
exit 1
}
echo "rm file..."
rm -f "$MNT"/file0 || exit 2
for ((i = 0; i < 10; i++)); do
df "$MNT" | tail -1
sleep 10
done
done
Reason:
It is triggered by commit: 47ab2a6c68
which is used to remove empty block groups automatically, but the
reason is not in that patch. Code before works well because btrfs
don't need to create and delete chunks so many times with high
complexity.
Above bug is caused by many reason, any of them can trigger it.
Reason1:
When we remove some continuous chunks but leave other chunks after,
these disk space should be used by chunk-recreating, but in current
code, only first create will successed.
Fixed by Forrest Liu <forrestl@synology.com> in:
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Reason2:
contains_pending_extent() return wrong value in calculation.
Fixed by Forrest Liu <forrestl@synology.com> in:
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Reason3:
btrfs_check_data_free_space() try to commit transaction and retry
allocating chunk when the first allocating failed, but space_info->full
is set in first allocating, and prevent second allocating in retry.
Fixed in this patch by clear space_info->full in commit transaction.
Tested for severial times by above script.
Changelog v3->v4:
use light weight int instead of atomic_t to record have_remove_bgs in
transaction, suggested by:
Josef Bacik <jbacik@fb.com>
Changelog v2->v3:
v2 fixed the bug by adding more commit-transaction, but we
only need to reclaim space when we are really have no space for
new chunk, noticed by:
Filipe David Manana <fdmanana@gmail.com>
Actually, our code already have this type of commit-and-retry,
we only need to make it working with removed-bgs.
v3 fixed the bug with above way.
Changelog v1->v2:
v1 will introduce a new bug when delete and create chunk in same disk
space in same transaction, noticed by:
Filipe David Manana <fdmanana@gmail.com>
V2 fix this bug by commit transaction after remove block grops.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Suggested-by: Filipe David Manana <fdmanana@gmail.com>
Suggested-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
My previous patch "Btrfs: fix scrub race leading to use-after-free"
introduced the possibility to sleep in an atomic context, which happens
when the scrub_lock mutex is held at the time scrub_pending_bio_dec()
is called - this function can be called under an atomic context.
Chris ran into this in a debug kernel which gave the following trace:
[ 1928.950319] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:621
[ 1928.967334] in_atomic(): 1, irqs_disabled(): 0, pid: 149670, name: fsstress
[ 1928.981324] INFO: lockdep is turned off.
[ 1928.989244] CPU: 24 PID: 149670 Comm: fsstress Tainted: G W 3.19.0-rc7-mason+ #41
[ 1929.006418] Hardware name: ZTSYSTEMS Echo Ridge T4 /A9DRPF-10D, BIOS 1.07 05/10/2012
[ 1929.022207] ffffffff81a22cf8 ffff881076e03b78 ffffffff816b8dd9 ffff881076e03b78
[ 1929.037267] ffff880d8e828710 ffff881076e03ba8 ffffffff810856c4 ffff881076e03bc8
[ 1929.052315] 0000000000000000 000000000000026d ffffffff81a22cf8 ffff881076e03bd8
[ 1929.067381] Call Trace:
[ 1929.072344] <IRQ> [<ffffffff816b8dd9>] dump_stack+0x4f/0x6e
[ 1929.083968] [<ffffffff810856c4>] ___might_sleep+0x174/0x230
[ 1929.095352] [<ffffffff810857d2>] __might_sleep+0x52/0x90
[ 1929.106223] [<ffffffff816bb68f>] mutex_lock_nested+0x2f/0x3b0
[ 1929.117951] [<ffffffff810ab37d>] ? trace_hardirqs_on+0xd/0x10
[ 1929.129708] [<ffffffffa05dc838>] scrub_pending_bio_dec+0x38/0x70 [btrfs]
[ 1929.143370] [<ffffffffa05dd0e0>] scrub_parity_bio_endio+0x50/0x70 [btrfs]
[ 1929.157191] [<ffffffff812fa603>] bio_endio+0x53/0xa0
[ 1929.167382] [<ffffffffa05f96bc>] rbio_orig_end_io+0x7c/0xa0 [btrfs]
[ 1929.180161] [<ffffffffa05f97ba>] raid_write_parity_end_io+0x5a/0x80 [btrfs]
[ 1929.194318] [<ffffffff812fa603>] bio_endio+0x53/0xa0
[ 1929.204496] [<ffffffff8130401b>] blk_update_request+0x1eb/0x450
[ 1929.216569] [<ffffffff81096e58>] ? trigger_load_balance+0x78/0x500
[ 1929.229176] [<ffffffff8144c74d>] scsi_end_request+0x3d/0x1f0
[ 1929.240740] [<ffffffff8144ccac>] scsi_io_completion+0xac/0x5b0
[ 1929.252654] [<ffffffff81441c50>] scsi_finish_command+0xf0/0x150
[ 1929.264725] [<ffffffff8144d317>] scsi_softirq_done+0x147/0x170
[ 1929.276635] [<ffffffff8130ace6>] blk_done_softirq+0x86/0xa0
[ 1929.288014] [<ffffffff8105d92e>] __do_softirq+0xde/0x600
[ 1929.298885] [<ffffffff8105df6d>] irq_exit+0xbd/0xd0
(...)
Fix this by using a reference count on the scrub context structure
instead of locking the scrub_lock mutex.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull backing device changes from Jens Axboe:
"This contains a cleanup of how the backing device is handled, in
preparation for a rework of the life time rules. In this part, the
most important change is to split the unrelated nommu mmap flags from
it, but also removing a backing_dev_info pointer from the
address_space (and inode), and a cleanup of other various minor bits.
Christoph did all the work here, I just fixed an oops with pages that
have a swap backing. Arnd fixed a missing export, and Oleg killed the
lustre backing_dev_info from staging. Last patch was from Al,
unexporting parts that are now no longer needed outside"
* 'for-3.20/bdi' of git://git.kernel.dk/linux-block:
Make super_blocks and sb_lock static
mtd: export new mtd_mmap_capabilities
fs: make inode_to_bdi() handle NULL inode
staging/lustre/llite: get rid of backing_dev_info
fs: remove default_backing_dev_info
fs: don't reassign dirty inodes to default_backing_dev_info
nfs: don't call bdi_unregister
ceph: remove call to bdi_unregister
fs: remove mapping->backing_dev_info
fs: export inode_to_bdi and use it in favor of mapping->backing_dev_info
nilfs2: set up s_bdi like the generic mount_bdev code
block_dev: get bdev inode bdi directly from the block device
block_dev: only write bdev inode on close
fs: introduce f_op->mmap_capabilities for nommu mmap support
fs: kill BDI_CAP_SWAP_BACKED
fs: deduplicate noop_backing_dev_info
Helper account_page_redirty() fixes dirty pages counter for redirtied
pages. This patch puts it after dirtying and prevents temporary
underflows of dirtied pages counters on zone/bdi and current->nr_dirtied.
Signed-off-by: Konstantin Khebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull RCU updates from Ingo Molnar:
"The main RCU changes in this cycle are:
- Documentation updates.
- Miscellaneous fixes.
- Preemptible-RCU fixes, including fixing an old bug in the
interaction of RCU priority boosting and CPU hotplug.
- SRCU updates.
- RCU CPU stall-warning updates.
- RCU torture-test updates"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
rcu: Initialize tiny RCU stall-warning timeouts at boot
rcu: Fix RCU CPU stall detection in tiny implementation
rcu: Add GP-kthread-starvation checks to CPU stall warnings
rcu: Make cond_resched_rcu_qs() apply to normal RCU flavors
rcu: Optionally run grace-period kthreads at real-time priority
ksoftirqd: Use new cond_resched_rcu_qs() function
ksoftirqd: Enable IRQs and call cond_resched() before poking RCU
rcutorture: Add more diagnostics in rcu_barrier() test failure case
torture: Flag console.log file to prevent holdovers from earlier runs
torture: Add "-enable-kvm -soundhw pcspk" to qemu command line
rcutorture: Handle different mpstat versions
rcutorture: Check from beginning to end of grace period
rcu: Remove redundant rcu_batches_completed() declaration
rcutorture: Drop rcu_torture_completed() and friends
rcu: Provide rcu_batches_completed_sched() for TINY_RCU
rcutorture: Use unsigned for Reader Batch computations
rcutorture: Make build-output parsing correctly flag RCU's warnings
rcu: Make _batches_completed() functions return unsigned long
rcutorture: Issue warnings on close calls due to Reader Batch blows
documentation: Fix smp typo in memory-barriers.txt
...
Pull btrfs fix from Chris Mason:
"Forrest Liu tracked down a missing blk_finish_plug in the btrfs
logging code. This isn't a new bug, and it's hard to hit. But, it's
safe enough for inclusion now, and in my for-linus branch"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: add missing blk_finish_plug in btrfs_sync_log()
Add missing blk_finish_plug in btrfs_sync_log()
Signed-off-by: Forrest Liu <forrestl@synology.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
o removed an unecessary INIT_LIST_HEAD after LIST_HEAD
o merge a declare & INIT_LIST_HEAD pair into one LIST_HEAD
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Below test will fail currently:
mkfs.ext4 -F /dev/sda
btrfs-convert /dev/sda
mount /dev/sda /mnt
btrfs device add -f /dev/sdb /mnt
btrfs balance start -v -dconvert=raid1 -mconvert=raid1 /mnt
The reason is there are some block groups with usage 0, but the whole
disk hasn't free space to allocate new chunk, so we even can't set such
block group readonly. This patch deletes the chunk allocation when
setting block group ro. For META, we already have reserve. But for
SYSTEM, we don't have, so the check_system_chunk is still required.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Verify that the sys_array has enough bytes to read the next item.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
There's a pointer to buffer, integer offset and offset passed as
pointer, try to find matching names for them.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Verify that possible minimum and maximum size is set, validity of
contents is checked in btrfs_read_sys_array.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
I received a few crafted images from Jiri, all got through the recently
added superblock checks. The lower bounds checks for num_devices and
sector/node -sizes were missing and caused a crash during mount.
Tools for symbolic code execution were used to prepare the images
contents.
Reported-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This patch adds a new member to the 'struct btrfs_inode' structure to hold
the file creation time.
Signed-off-by: chandan <chandanrmail@gmail.com>
[refreshed, removed btrfs_inode_otime]
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fix from Chris Mason:
"We have one more fix for btrfs in my for-linus branch - this was a bug
in the new raid5/6 scrubbing support"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix raid56 scrub failed in xfstests btrfs/072
The xfstests btrfs/072 reports uncorrectable read errors in dmesg,
because scrub forgets to use commit_root for parity scrub routine
and scrub attempts to scrub those extents items whose contents are
not fully on disk.
To fix it, we just add the @search_commit_root flag back.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"We have a few fixes in my for-linus branch.
Qu Wenruo's batch fix a regression between some our merge window pull
and the inode_cache feature. The rest are smaller bugs"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: Don't call btrfs_start_transaction() on frozen fs to avoid deadlock.
btrfs: Fix the bug that fs_info->pending_changes is never cleared.
btrfs: fix state->private cast on 32 bit machines
Btrfs: fix race deleting block group from space_info->ro_bgs list
Btrfs: fix incorrect freeing in scrub_stripe
btrfs: sync ioctl, handle errors after transaction start
btrfs_alloc_tree_block() returns an extent buffer on which a blocked lock has
been taken. Hence assign the appropriate value to path->locks[level].
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Chris Mason <clm@fb.com>
There isn't any real use of following members of struct btrfs_root
so delete them.
struct kobject root_kobj;
struct completion kobj_unregister;
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
In function qgroup_excl_accounting(), we need to WARN when
qg->excl is less than what we want to free, same to child
and parents. But currently, for parent qgroup, the WARN_ON()
is located after freeing qg->excl. It will WARN out even we
free it normally.
This patch move this WARN_ON() before freeing qg->excl.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
"run_most" is not used anymore.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
refs is better than ref_count to record a struct's ref count.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Suggested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
So we can check raid56 with:
(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
instead of long:
(map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Corrent code use many kinds of "clever" way to determine operation
target's raid type, as:
raid_map != NULL
or
raid_map[MAX_NR] == RAID[56]_Q_STRIPE
To make code easy to maintenance, this patch put raid type into
bbio, and we can always get raid type from bbio with a "stupid"
way.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
scrub_setup_recheck_block() have many arguments but most of them
can be get from one of them, we can remove them to make code clean.
Some other cleanup for that function also included in this patch.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The code are similar, combine them to make code clean and easy to maintenance.
Some lost condition are also completed with benefit of this combination.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In corrent code, code of finding-right-mirror and writing-to-target
are mixed in logic, if we find a right mirror but failed in writing
to target, it will treat as "hadn't found right block", and fill the
target with sblock_bad.
Actually, "failed in writing to target" does not mean "source
block is wrong", this patch separate above two condition in logic,
and do some cleanup to make code clean.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Use break instead of useless loop should be more suitable in this
case.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
1: Remove no-need DEFINE_WAIT(wait)
2: Add likely() for BTRFS_FS_STATE_DEV_REPLACING condition
3: Use while loop instead of goto
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It is always 1 in this place, because !1 case was already jumped
out in previous code.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
if (sctx->is_dev_replace && !is_metadata && !have_csum) {
...
goto nodatasum_case;
}
...
nodatasum_case:
WARN_ON(sctx->is_dev_replace);
In above code, nodatasum_case marker should be moved after
WARN_ON().
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
1: ref_count is simple than current RBIO_HOLD_BBIO_MAP_BIT flag
to keep btrfs_bio's memory in raid56 recovery implement.
2: free function for bbio will make code clean and flexible, plus
forced data type checking in compile.
Changelog v1->v2:
Rename following by David Sterba's suggestion:
put_btrfs_bio() -> btrfs_put_bio()
get_btrfs_bio() -> btrfs_get_bio()
bbio->ref_count -> bbio->refs
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It can make code more simple and clear, we need not care about
free bbio and raid_map together.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It can avoid complex calculation of real stripes in sort,
moreover, we can clean up code of sorting tgtdev_map because it
will be in order initially.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We add the number of stripes on target devices into bbio->num_stripes
if we are under device replacement, and we just sort the raid_map of
those stripes that not on the target devices, so if when we need
real raid_map, we need skip the stripes on the target devices.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we have an inode with a large number of hard links, some of which may
be extrefs, turn a regular ref into an extref, fsync the inode and then
replay the fsync log (after a crash/reboot), we can endup with an fsync
log that makes the replay code always fail with -EOVERFLOW when processing
the inode's references.
This is easy to reproduce with the test case I made for xfstests. Its steps
are the following:
_scratch_mkfs "-O extref" >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create a test file with 3001 hard links. This number is large enough to
# make btrfs start using extrefs at some point even if the fs has the maximum
# possible leaf/node size (64Kb).
echo "hello world" > $SCRATCH_MNT/foo
for i in `seq 1 3000`; do
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i`
done
# Make sure all metadata and data are durably persisted.
sync
# Now remove one link, add a new one with a new name, add another new one with
# the same name as the one we just removed and fsync the inode.
rm -f $SCRATCH_MNT/foo_link_0001
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_0001
rm -f $SCRATCH_MNT/foo_link_0002
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3002
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3003
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Simulate a crash/power loss. This makes sure the next mount
# will see an fsync log and will replay that log.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Check that the number of hard links is correct, we are able to remove all
# the hard links and read the file's data. This is just to verify we don't
# get stale file handle errors (due to dangling directory index entries that
# point to inodes that no longer exist).
echo "Link count: $(stat --format=%h $SCRATCH_MNT/foo)"
[ -f $SCRATCH_MNT/foo ] || echo "Link foo is missing"
for ((i = 1; i <= 3003; i++)); do
name=foo_link_`printf "%04d" $i`
if [ $i -eq 2 ]; then
[ -f $SCRATCH_MNT/$name ] && echo "Link $name found"
else
[ -f $SCRATCH_MNT/$name ] || echo "Link $name is missing"
fi
done
rm -f $SCRATCH_MNT/foo_link_*
cat $SCRATCH_MNT/foo
rm -f $SCRATCH_MNT/foo
status=0
exit
The fix is simply to correct the overflow condition when overwriting a
reference item because it was wrong, trying to increase the item in the
fs/subvol tree by an impossible amount. Also ensure that we don't insert
one normal ref and one ext ref for the same dentry - this happened because
processing a dir index entry from the parent in the log happened when
the normal ref item was full, which made the logic insert an extref and
later when the normal ref had enough room, it would be inserted again
when processing the ref item from the child inode in the log.
This issue has been present since the introduction of the extrefs feature
(2012).
A test case for xfstests follows soon. This test only passes if the previous
patch titled "Btrfs: fix fsync when extend references are added to an inode"
is applied too.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we added an extended reference to an inode and fsync'ed it, the log
replay code would make our inode have an incorrect link count, which
was lower then the expected/correct count.
This resulted in stale directory index entries after deleting some of
the hard links, and any access to the dangling directory entries resulted
in -ESTALE errors because the entries pointed to inode items that don't
exist anymore.
This is easy to reproduce with the test case I made for xfstests, and
the bulk of that test is:
_scratch_mkfs "-O extref" >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create a test file with 3001 hard links. This number is large enough to
# make btrfs start using extrefs at some point even if the fs has the maximum
# possible leaf/node size (64Kb).
echo "hello world" > $SCRATCH_MNT/foo
for i in `seq 1 3000`; do
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i`
done
# Make sure all metadata and data are durably persisted.
sync
# Add one more link to the inode that ends up being a btrfs extref and fsync
# the inode.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Simulate a crash/power loss. This makes sure the next mount
# will see an fsync log and will replay that log.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Now after the fsync log replay btrfs left our inode with a wrong link count N,
# which was smaller than the correct link count M (N < M).
# So after removing N hard links, the remaining M - N directory entries were
# still visible to user space but it was impossible to do anything with them
# because they pointed to an inode that didn't exist anymore. This resulted in
# stale file handle errors (-ESTALE) when accessing those dentries for example.
#
# So remove all hard links except the first one and then attempt to read the
# file, to verify we don't get an -ESTALE error when accessing the inodel
#
# The btrfs fsck tool also detected the incorrect inode link count and it
# reported an error message like the following:
#
# root 5 inode 257 errors 2001, no inode item, link count wrong
# unresolved ref dir 256 index 2978 namelen 13 name foo_link_2976 filetype 1 errors 4, no inode ref
#
# The fstests framework automatically calls fsck after a test is run, so we
# don't need to call fsck explicitly here.
rm -f $SCRATCH_MNT/foo_link_*
cat $SCRATCH_MNT/foo
status=0
exit
So make sure an fsync always flushes the delayed inode item, so that the
fsync log contains it (needed in order to trigger the link count fixup
code) and fix the extref counting function, which always return -ENOENT
to its caller (and made it assume there were always 0 extrefs).
This issue has been present since the introduction of the extrefs feature
(2012).
A test case for xfstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we have an inode (file) with a link count greater than 1, remove
one of its hard links, fsync the inode, power fail/crash and then
replay the fsync log on the next mount, we end up getting the parent
directory's metadata inconsistent - its i_size still reflects the
deleted hard link and has dangling index entries (with no matching
inode reference entries). This prevents the directory from ever being
deletable, as its i_size can never decrease to BTRFS_EMPTY_DIR_SIZE
even if all of its children inodes are deleted, and the dangling index
entries can never be removed (as they point to an inode that does not
exist anymore).
This is easy to reproduce with the following excerpt from the test case
for xfstests that I just made:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create a test file with 2 hard links in the same directory.
mkdir -p $SCRATCH_MNT/a/b
echo "hello world" > $SCRATCH_MNT/a/b/foo
ln $SCRATCH_MNT/a/b/foo $SCRATCH_MNT/a/b/bar
# Make sure all metadata and data are durably persisted.
sync
# Now remove one of the hard links and fsync the inode.
rm -f $SCRATCH_MNT/a/b/bar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/a/b/foo
# Simulate a crash/power loss. This makes sure the next mount
# will see an fsync log and will replay that log.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Remove the last hard link of the file and attempt to remove its parent
# directory - this failed in btrfs because the fsync log and replay code
# didn't decrement the parent directory's i_size and left dangling directory
# index entries - this made the btrfs rmdir implementation always fail with
# the error -ENOTEMPTY.
#
# The dangling directory index entries were visible to user space, but it was
# impossible to do anything on them (unlink, open, read, write, stat, etc)
# because the inode they pointed to did not exist anymore.
#
# The parent directory's metadata inconsistency (stale index entries) was
# also detected by btrfs' fsck tool, which is run automatically by the fstests
# framework when the test finishes. The error message reported by fsck was:
#
# root 5 inode 259 errors 2001, no inode item, link count wrong
# unresolved ref dir 258 index 3 namelen 3 name bar filetype 1 errors 4, no inode ref
#
rm -f $SCRATCH_MNT/a/b/*
rmdir $SCRATCH_MNT/a/b
rmdir $SCRATCH_MNT/a
To fix this just make sure that after an unlink, if the inode is fsync'ed,
he parent inode is fully logged in the fsync log.
A test case for xfstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Very often our extent buffer's header generation doesn't match the current
transaction's id or it is also referenced by other trees (snapshots), so
we don't need the corresponding block group cache object. Therefore only
search for it if we are going to use it, so we avoid an unnecessary search
in the block groups rbtree (and acquiring and releasing its spinlock).
Freeing a tree block is performed when COWing or deleting a node/leaf,
which implies we are holding the node/leaf's parent node lock, therefore
reducing the amount of time spent when freeing a tree block helps reducing
the amount of time we are holding the parent node's lock.
For example, for a run of xfstests/generic/083, the block group cache
object was needed only 682 times for a total of 226691 calls to free
a tree block.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently there's a 4B hole in the structure between refs and state and there
are only 16 bits used so we can make it unsigned. This will get a better
packing and may save some stack space for local variables.
The size of extent_state gets reduced by 8B and there are usually a lot
of slab objects.
struct extent_state {
u64 start; /* 0 8 */
u64 end; /* 8 8 */
struct rb_node rb_node; /* 16 24 */
wait_queue_head_t wq; /* 40 24 */
/* --- cacheline 1 boundary (64 bytes) --- */
atomic_t refs; /* 64 4 */
/* XXX 4 bytes hole, try to pack */
long unsigned int state; /* 72 8 */
u64 private; /* 80 8 */
/* size: 88, cachelines: 2, members: 7 */
/* sum members: 84, holes: 1, sum holes: 4 */
/* last cacheline: 24 bytes */
};
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This has been confusing people for too long, the message is really just
informative.
CC: <stable@vger.kernel.org> # 3.10+
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The errors are worth noting and might get missed with INFO level.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
All error conditions from open_ctree shall be ERR. Warning would
suggest that something's wrong and we can continue.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Several messages that point to some internal problem, level INFO is
wrong here.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
We were incorrectly detecting when the target key didn't exist anymore
after releasing the path and re-searching the tree. This could make
us split or duplicate (btrfs_split_item() and btrfs_duplicate_item()
are its only callers at the moment) an item when we should not.
For the case of duplicating an item, we currently only duplicate
checksum items (csum tree) and file extent items (fs/subvol trees).
For the checksum items we end up overriding the item completely,
but for file extent items we update only some of their fields in
the copy (done in __btrfs_drop_extents), which means we can end up
having a logical corruption for some values.
Also for the case where we duplicate a file extent item it will make
us produce a leaf with a wrong key order, as btrfs_duplicate_item()
advances us to the next slot and then its caller sets a smaller key
on the new item at that slot (like in __btrfs_drop_extents() e.g.).
Alternatively if the tree search in setup_leaf_for_split() leaves
with path->slots[0] == btrfs_header_nritems(path->nodes[0]), we end
up accessing beyond the leaf's end (when we check if the item's size
has changed) and make our caller insert an item at the invalid slot
btrfs_header_nritems(path->nodes[0]) + 1, causing an invalid memory
access if the leaf is full or nearly full.
This issue has been present since the introduction of this function
in 2009:
Btrfs: Add btrfs_duplicate_item
commit ad48fd7546
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently any time we try to update the block groups on disk we will walk _all_
block groups and check for the ->dirty flag to see if it is set. This function
can get called several times during a commit. So if you have several terabytes
of data you will be a very sad panda as we will loop through _all_ of the block
groups several times, which makes the commit take a while which slows down the
rest of the file system operations.
This patch introduces a dirty list for the block groups that we get added to
when we dirty the block group for the first time. Then we simply update any
block groups that have been dirtied since the last time we called
btrfs_write_dirty_block_groups. This allows us to clean up how we write the
free space cache out so it is much cleaner. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I've been overloading root->dirty_list to keep track of dirty roots and which
roots need to have their commit roots switched at transaction commit time. This
could cause us to lose an update to the root which could corrupt the file
system. To fix this use a state bit to know if the root is dirty, and if it
isn't set we go ahead and move the root to the dirty list. This way if we
re-dirty the root after adding it to the switch_commit list we make sure to
update it. This also makes it so that the extent root is always the last root
on the dirty list to try and keep the amount of churn down at this point in the
commit. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull RCU updates from Paul E. McKenney:
- Documentation updates.
- Miscellaneous fixes.
- Preemptible-RCU fixes, including fixing an old bug in the
interaction of RCU priority boosting and CPU hotplug.
- SRCU updates.
- RCU CPU stall-warning updates.
- RCU torture-test updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 6b5fe46dfa (btrfs: do commit in sync_fs if there are pending
changes) will call btrfs_start_transaction() in sync_fs(), to handle
some operations needed to be done in next transaction.
However this can cause deadlock if the filesystem is frozen, with the
following sys_r+w output:
[ 143.255932] Call Trace:
[ 143.255936] [<ffffffff816c0e09>] schedule+0x29/0x70
[ 143.255939] [<ffffffff811cb7f3>] __sb_start_write+0xb3/0x100
[ 143.255971] [<ffffffffa040ec06>] start_transaction+0x2e6/0x5a0
[btrfs]
[ 143.255992] [<ffffffffa040f1eb>] btrfs_start_transaction+0x1b/0x20
[btrfs]
[ 143.256003] [<ffffffffa03dc0ba>] btrfs_sync_fs+0xca/0xd0 [btrfs]
[ 143.256007] [<ffffffff811f7be0>] sync_fs_one_sb+0x20/0x30
[ 143.256011] [<ffffffff811cbd01>] iterate_supers+0xe1/0xf0
[ 143.256014] [<ffffffff811f7d75>] sys_sync+0x55/0x90
[ 143.256017] [<ffffffff816c49d2>] system_call_fastpath+0x12/0x17
[ 143.256111] Call Trace:
[ 143.256114] [<ffffffff816c0e09>] schedule+0x29/0x70
[ 143.256119] [<ffffffff816c3405>] rwsem_down_write_failed+0x1c5/0x2d0
[ 143.256123] [<ffffffff8133f013>] call_rwsem_down_write_failed+0x13/0x20
[ 143.256131] [<ffffffff811caae8>] thaw_super+0x28/0xc0
[ 143.256135] [<ffffffff811db3e5>] do_vfs_ioctl+0x3f5/0x540
[ 143.256187] [<ffffffff811db5c1>] SyS_ioctl+0x91/0xb0
[ 143.256213] [<ffffffff816c49d2>] system_call_fastpath+0x12/0x17
The reason is like the following:
(Holding s_umount)
VFS sync_fs staff:
|- btrfs_sync_fs()
|- btrfs_start_transaction()
|- sb_start_intwrite()
(Waiting thaw_fs to unfreeze)
VFS thaw_fs staff:
thaw_fs()
(Waiting sync_fs to release
s_umount)
So deadlock happens.
This can be easily triggered by fstest/generic/068 with inode_cache
mount option.
The fix is to check if the fs is frozen, if the fs is frozen, just
return and waiting for the next transaction.
Cc: David Sterba <dsterba@suse.cz>
Reported-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[enhanced comment, changed to SB_FREEZE_WRITE]
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Fs_info->pending_changes is never cleared since the original code uses
cmpxchg(&fs_info->pending_changes, 0, 0), which will only clear it if
pending_changes is already 0.
This will cause a lot of problem when mount it with inode_cache mount
option.
If the btrfs is mounted as inode_cache, pending_changes will always be
1, even when the fs is frozen.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Now that default_backing_dev_info is not used for writeback purposes we can
git rid of it easily:
- instead of using it's name for tracing unregistered bdi we just use
"unknown"
- btrfs and ceph can just assign the default read ahead window themselves
like several other filesystems already do.
- we can assign noop_backing_dev_info as the default one in alloc_super.
All filesystems already either assigned their own or
noop_backing_dev_info.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that we never use the backing_dev_info pointer in struct address_space
we can simply remove it and save 4 to 8 bytes in every inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that we got rid of the bdi abuse on character devices we can always use
sb->s_bdi to get at the backing_dev_info for a file, except for the block
device special case. Export inode_to_bdi and replace uses of
mapping->backing_dev_info with it to prepare for the removal of
mapping->backing_dev_info.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Since "BDI: Provide backing device capability information [try #3]" the
backing_dev_info structure also provides flags for the kind of mmap
operation available in a nommu environment, which is entirely unrelated
to it's original purpose.
Introduce a new nommu-only file operation to provide this information to
the nommu mmap code instead. Splitting this from the backing_dev_info
structure allows to remove lots of backing_dev_info instance that aren't
otherwise needed, and entirely gets rid of the concept of providing a
backing_dev_info for a character device. It also removes the need for
the mtd_inodefs filesystem.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Suppress the following warning displayed on building 32bit (i686) kernel.
===============================================================================
...
CC [M] fs/btrfs/extent_io.o
fs/btrfs/extent_io.c: In function ‘btrfs_free_io_failure_record’:
fs/btrfs/extent_io.c:2193:13: warning: cast to pointer from integer of
different size [-Wint-to-pointer-cast]
failrec = (struct io_failure_record *)state->private;
...
===============================================================================
Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Reported-by: Chris Murphy <chris@colorremedies.com>
Signed-off-by: Chris Mason <clm@fb.com>
When removing a block group we were deleting it from its space_info's
ro_bgs list without the correct protection - the space info's spinlock.
Fix this by doing the list delete while holding the spinlock of the
corresponding space info, which is the correct lock for any operation
on that list.
This issue was introduced in the 3.19 kernel by the following change:
Btrfs: move read only block groups onto their own list V2
commit 633c0aad4c
I ran into a kernel crash while a task was running statfs, which iterates
the space_info->ro_bgs list while holding the space info's spinlock,
and another task was deleting it from the same list, without holding that
spinlock, as part of the block group remove operation (while running the
function btrfs_remove_block_group). This happened often when running the
stress test xfstests/generic/038 I recently made.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The address that should be freed is not 'ppath' but 'path'.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
The version merged to 3.19 did not handle errors from start_trancaction
and could pass an invalid pointer to commit_transaction.
Fixes: 6b5fe46dfa ("btrfs: do commit in sync_fs if there are pending changes")
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If the found_key is NULL, then btrfs_find_item becomes a verbose wrapper
for simple btrfs_search_slot.
After we've removed all such callers, passing a NULL key is not valid
anymore.
Signed-off-by: David Sterba <dsterba@suse.cz>
We can search and add the orphan item in one go,
btrfs_insert_orphan_item will find out if the item already exists.
Signed-off-by: David Sterba <dsterba@suse.cz>
If btrfs_find_item is called with NULL path it allocates one locally but
does not free it. Affected paths are inserting an orphan item for a file
and for a subvol root.
Move the path allocation to the callers.
CC: <stable@vger.kernel.org> # 3.14+
Fixes: 3f870c2899 ("btrfs: expand btrfs_find_item() to include find_orphan_item functionality")
Signed-off-by: David Sterba <dsterba@suse.cz>
Pull btrfs fixes from Chris Mason:
"None of these are huge, but my commit does fix a regression from 3.18
that could cause lost files during log replay.
This also adds Dave Sterba to the list of Btrfs maintainers. It
doesn't mean we're doing things differently, but Dave has really been
helping with the maintainer workload for years"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: don't delay inode ref updates during log replay
Btrfs: correctly get tree level in tree_backref_for_extent
Btrfs: call inode_dec_link_count() on mkdir error path
Btrfs: abort transaction if we don't find the block group
Btrfs, scrub: uninitialized variable in scrub_extent_for_parity()
Btrfs: add more maintainers
SRCU is not necessary to be compiled by default in all cases. For tinification
efforts not compiling SRCU unless necessary is desirable.
The current patch tries to make compiling SRCU optional by introducing a new
Kconfig option CONFIG_SRCU which is selected when any of the components making
use of SRCU are selected.
If we do not select CONFIG_SRCU, srcu.o will not be compiled at all.
text data bss dec hex filename
2007 0 0 2007 7d7 kernel/rcu/srcu.o
Size of arch/powerpc/boot/zImage changes from
text data bss dec hex filename
831552 64180 23944 919676 e087c arch/powerpc/boot/zImage : before
829504 64180 23952 917636 e0084 arch/powerpc/boot/zImage : after
so the savings are about ~2000 bytes.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
CC: Josh Triplett <josh@joshtriplett.org>
CC: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: resolve conflict due to removal of arch/ia64/kvm/Kconfig. ]
Commit 1d52c78afb (Btrfs: try not to ENOSPC on log replay) added a
check to skip delayed inode updates during log replay because it
confuses the enospc code. But the delayed processing will end up
ignoring delayed refs from log replay because the inode itself wasn't
put through the delayed code.
This can end up triggering a warning at commit time:
WARNING: CPU: 2 PID: 778 at fs/btrfs/delayed-inode.c:1410 btrfs_assert_delayed_root_empty+0x32/0x34()
Which is repeated for each commit because we never process the delayed
inode ref update.
The fix used here is to change btrfs_delayed_delete_inode_ref to return
an error if we're currently in log replay. The caller will do the ref
deletion immediately and everything will work properly.
Signed-off-by: Chris Mason <clm@fb.com>
cc: stable@vger.kernel.org # v3.18 and any stable series that picked 1d52c78afb
If we are using skinny metadata, the block's tree level is in the offset
of the key and not in a btrfs_tree_block_info structure following the
extent item (it doesn't exist). Therefore fix it.
Besides returning the correct level in the tree, this also prevents reading
past the leaf's end in the case where the extent item is the last item in
the leaf (eb) and it has only 1 inline reference - this is because
sizeof(struct btrfs_tree_block_info) is greater than
sizeof(struct btrfs_extent_inline_ref).
Got it while running a scrub which produced the following warning:
BTRFS: checksum error at logical 42123264 on dev /dev/sde, sector 15840: metadata node (level 24) in tree 5
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In btrfs_mkdir(), if it fails to create dir, we should
clean up existed items, setting inode's link properly
to make sure it could be cleaned up properly.
Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
We shouldn't BUG_ON() if there is corruption. I hit this while testing my block
group patch and the abort worked properly. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The only way that "ret" is set is when we call scrub_pages_for_parity()
so the skip to "if (ret) " test doesn't make sense and causes a static
checker warning.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull vfs pile #3 from Al Viro:
"Assorted fixes and patches from the last cycle"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
[regression] chunk lost from bd9b51
vfs: make mounts and mountstats honor root dir like mountinfo does
vfs: cleanup show_mountinfo
init: fix read-write root mount
unfuck binfmt_misc.c (broken by commit e6084d4)
vm_area_operations: kill ->migrate()
new helper: iter_is_iovec()
move_extent_per_page(): get rid of unused w_flags
lustre: get rid of playing with ->fs
btrfs: filp_open() returns ERR_PTR() on failure, not NULL...
Pull more btrfs updates from Chris Mason:
"This is part two of our merge window patches.
These are all from Filipe, and fix some really hard to find races that
can cause corruptions. Most of them involved block group removal
(balance) or discard"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: remove non-sense btrfs_error_discard_extent() function
Btrfs: fix fs corruption on transaction abort if device supports discard
Btrfs: always clear a block group node when removing it from the tree
Btrfs: ensure deletion from pinned_chunks list is protected
Pull btrfs update from Chris Mason:
"From a feature point of view, most of the code here comes from Miao
Xie and others at Fujitsu to implement scrubbing and replacing devices
on raid56. This has been in development for a while, and it's a big
improvement.
Filipe and Josef have a great assortment of fixes, many of which solve
problems corruptions either after a crash or in error conditions. I
still have a round two from Filipe for next week that solves
corruptions with discard and block group removal"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (62 commits)
Btrfs: make get_caching_control unconditionally return the ctl
Btrfs: fix unprotected deletion from pending_chunks list
Btrfs: fix fs mapping extent map leak
Btrfs: fix memory leak after block remove + trimming
Btrfs: make btrfs_abort_transaction consider existence of new block groups
Btrfs: fix race between writing free space cache and trimming
Btrfs: fix race between fs trimming and block group remove/allocation
Btrfs, replace: enable dev-replace for raid56
Btrfs: fix freeing used extents after removing empty block group
Btrfs: fix crash caused by block group removal
Btrfs: fix invalid block group rbtree access after bg is removed
Btrfs, raid56: fix use-after-free problem in the final device replace procedure on raid56
Btrfs, replace: write raid56 parity into the replace target device
Btrfs, replace: write dirty pages into the replace target device
Btrfs, raid56: support parity scrub on raid56
Btrfs, raid56: use a variant to record the operation type
Btrfs, scrub: repair the common data on RAID5/6 if it is corrupted
Btrfs, raid56: don't change bbio and raid_map
Btrfs: remove unnecessary code of stripe_index assignment in __btrfs_map_block
Btrfs: remove noused bbio_ret in __btrfs_map_block in condition
...
Make the extent buffer allocation interface consistent. Cloned eb will
set a valid fs_info. For dummy eb, we can drop the length parameter and
set it from fs_info.
The built-in sanity checks may pass a NULL fs_info that's queried for
nodesize, but we know it's 4096.
Signed-off-by: David Sterba <dsterba@suse.cz>
Finally it's clear that the requested blocksize is always equal to
nodesize, with one exception, the superblock.
Superblock has fixed size regardless of the metadata block size, but
uses the same helpers to initialize sys array/chunk tree and to work
with the chunk items. So it pretends to be an extent_buffer for a
moment, btrfs_read_sys_array is full of special cases, we're adding one
more.
Signed-off-by: David Sterba <dsterba@suse.cz>
Pull VFS changes from Al Viro:
"First pile out of several (there _definitely_ will be more). Stuff in
this one:
- unification of d_splice_alias()/d_materialize_unique()
- iov_iter rewrite
- killing a bunch of ->f_path.dentry users (and f_dentry macro).
Getting that completed will make life much simpler for
unionmount/overlayfs, since then we'll be able to limit the places
sensitive to file _dentry_ to reasonably few. Which allows to have
file_inode(file) pointing to inode in a covered layer, with dentry
pointing to (negative) dentry in union one.
Still not complete, but much closer now.
- crapectomy in lustre (dead code removal, mostly)
- "let's make seq_printf return nothing" preparations
- assorted cleanups and fixes
There _definitely_ will be more piles"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
copy_from_iter_nocache()
new helper: iov_iter_kvec()
csum_and_copy_..._iter()
iov_iter.c: handle ITER_KVEC directly
iov_iter.c: convert copy_to_iter() to iterate_and_advance
iov_iter.c: convert copy_from_iter() to iterate_and_advance
iov_iter.c: get rid of bvec_copy_page_{to,from}_iter()
iov_iter.c: convert iov_iter_zero() to iterate_and_advance
iov_iter.c: convert iov_iter_get_pages_alloc() to iterate_all_kinds
iov_iter.c: convert iov_iter_get_pages() to iterate_all_kinds
iov_iter.c: convert iov_iter_npages() to iterate_all_kinds
iov_iter.c: iterate_and_advance
iov_iter.c: macros for iterating over iov_iter
kill f_dentry macro
dcache: fix kmemcheck warning in switch_names
new helper: audit_file()
nfsd_vfs_write(): use file_inode()
ncpfs: use file_inode()
kill f_dentry uses
lockd: get rid of ->f_path.dentry->d_sb
...
It doesn't do anything special, it just calls btrfs_discard_extent(),
so just remove it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we abort a transaction we iterate over all the ranges marked as dirty
in fs_info->freed_extents[0] and fs_info->freed_extents[1], clear them
from those trees, add them back (unpin) to the free space caches and, if
the fs was mounted with "-o discard", perform a discard on those regions.
Also, after adding the regions to the free space caches, a fitrim ioctl call
can see those ranges in a block group's free space cache and perform a discard
on the ranges, so the same issue can happen without "-o discard" as well.
This causes corruption, affecting one or multiple btree nodes (in the worst
case leaving the fs unmountable) because some of those ranges (the ones in
the fs_info->pinned_extents tree) correspond to btree nodes/leafs that are
referred by the last committed super block - breaking the rule that anything
that was committed by a transaction is untouched until the next transaction
commits successfully.
I ran into this while running in a loop (for several hours) the fstest that
I recently submitted:
[PATCH] fstests: add btrfs test to stress chunk allocation/removal and fstrim
The corruption always happened when a transaction aborted and then fsck complained
like this:
_check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent
*** fsck.btrfs output ***
Check tree block failed, want=94945280, have=0
Check tree block failed, want=94945280, have=0
Check tree block failed, want=94945280, have=0
Check tree block failed, want=94945280, have=0
Check tree block failed, want=94945280, have=0
read block failed check_tree_block
Couldn't open file system
In this case 94945280 corresponded to the root of a tree.
Using frace what I observed was the following sequence of steps happened:
1) transaction N started, fs_info->pinned_extents pointed to
fs_info->freed_extents[0];
2) node/eb 94945280 is created;
3) eb is persisted to disk;
4) transaction N commit starts, fs_info->pinned_extents now points to
fs_info->freed_extents[1], and transaction N completes;
5) transaction N + 1 starts;
6) eb is COWed, and btrfs_free_tree_block() called for this eb;
7) eb range (94945280 to 94945280 + 16Kb) is added to
fs_info->pinned_extents (fs_info->freed_extents[1]);
8) Something goes wrong in transaction N + 1, like hitting ENOSPC
for example, and the transaction is aborted, turning the fs into
readonly mode. The stack trace I got for example:
[112065.253935] [<ffffffff8140c7b6>] dump_stack+0x4d/0x66
[112065.254271] [<ffffffff81042984>] warn_slowpath_common+0x7f/0x98
[112065.254567] [<ffffffffa0325990>] ? __btrfs_abort_transaction+0x50/0x10b [btrfs]
[112065.261674] [<ffffffff810429e5>] warn_slowpath_fmt+0x48/0x50
[112065.261922] [<ffffffffa032949e>] ? btrfs_free_path+0x26/0x29 [btrfs]
[112065.262211] [<ffffffffa0325990>] __btrfs_abort_transaction+0x50/0x10b [btrfs]
[112065.262545] [<ffffffffa036b1d6>] btrfs_remove_chunk+0x537/0x58b [btrfs]
[112065.262771] [<ffffffffa033840f>] btrfs_delete_unused_bgs+0x1de/0x21b [btrfs]
[112065.263105] [<ffffffffa0343106>] cleaner_kthread+0x100/0x12f [btrfs]
(...)
[112065.264493] ---[ end trace dd7903a975a31a08 ]---
[112065.264673] BTRFS: error (device sdc) in btrfs_remove_chunk:2625: errno=-28 No space left
[112065.264997] BTRFS info (device sdc): forced readonly
9) The clear kthread sees that the BTRFS_FS_STATE_ERROR bit is set in
fs_info->fs_state and calls btrfs_cleanup_transaction(), which in
turn calls btrfs_destroy_pinned_extent();
10) Then btrfs_destroy_pinned_extent() iterates over all the ranges
marked as dirty in fs_info->freed_extents[], and for each one
it calls discard, if the fs was mounted with "-o discard", and
adds the range to the free space cache of the respective block
group;
11) btrfs_trim_block_group(), invoked from the fitrim ioctl code path,
sees the free space entries and performs a discard;
12) After an umount and mount (or fsck), our eb's location on disk was full
of zeroes, and it should have been untouched, because it was marked as
dirty in the fs_info->pinned_extents tree, and therefore used by the
trees that the last committed superblock points to.
Fix this by not performing a discard and not adding the ranges to the free space
caches - it's useless from this point since the fs is now in readonly mode and
we won't write free space caches to disk anymore (otherwise we would leak space)
nor any new superblock. By not adding the ranges to the free space caches, it
prevents other code paths from allocating that space and write to it as well,
therefore being safer and simpler.
This isn't a new problem, as it's been present since 2011 (git commit
acce952b02).
Cc: stable@vger.kernel.org # any kernel released after 2011-01-06
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Always clear a block group's rbnode after removing it from the rbtree to
ensure that any tasks that might be holding a reference on the block group
don't end up accessing stale rbnode left and right child pointers through
next_block_group().
This is a leftover from the change titled:
"Btrfs: fix invalid block group rbtree access after bg is removed"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The call to remove_extent_mapping() actually deletes the extent map
from the list it's included in - fs_info->pinned_chunks - and that
list is protected by the chunk mutex. Therefore make that call
while holding the chunk mutex and remove the redundant list delete
call because it's a noop.
This fixes an overlook of the patch titled
"Btrfs: fix race between fs trimming and block group remove/allocation"
following the same obvervation from the patch titled
"Btrfs: fix unprotected deletion from pending_chunks list".
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This was written when we didn't do a caching control for the fast free space
cache loading. However we started doing that a long time ago, and there is
still a small window of time that we could be caching the block group the fast
way, so if there is a caching_ctl at all on the block group just return it, the
callers all wait properly for what they want. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
On block group remove if the corresponding extent map was on the
transaction->pending_chunks list, we were deleting the extent map
from that list, through remove_extent_mapping(), without any
synchronization with chunk allocation (which iterates that list
and adds new elements to it). Fix this by ensure that this is done
while the chunk mutex is held, since that's the mutex that protects
the list in the chunk allocation code path.
This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"
But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
On chunk allocation error (label "error_del_extent"), after adding the
extent map to the tree and to the pending chunks list, we would leave
decrementing the extent map's refcount by 2 instead of 3 (our allocation
+ tree reference + list reference).
Also, on chunk/block group removal, if the block group was on the list
pending_chunks we weren't decrementing the respective list reference.
Detected by 'rmmod btrfs':
[20770.105881] kmem_cache_destroy btrfs_extent_map: Slab cache still has objects
[20770.106127] CPU: 2 PID: 11093 Comm: rmmod Tainted: G W L 3.17.0-rc5-btrfs-next-1+ #1
[20770.106128] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[20770.106130] 0000000000000000 ffff8800ba867eb8 ffffffff813e7a13 ffff8800a2e11040
[20770.106132] ffff8800ba867ed0 ffffffff81105d0c 0000000000000000 ffff8800ba867ee0
[20770.106134] ffffffffa035d65e ffff8800ba867ef0 ffffffffa03b0654 ffff8800ba867f78
[20770.106136] Call Trace:
[20770.106142] [<ffffffff813e7a13>] dump_stack+0x45/0x56
[20770.106145] [<ffffffff81105d0c>] kmem_cache_destroy+0x4b/0x90
[20770.106164] [<ffffffffa035d65e>] extent_map_exit+0x1a/0x1c [btrfs]
[20770.106176] [<ffffffffa03b0654>] exit_btrfs_fs+0x27/0x9d3 [btrfs]
[20770.106179] [<ffffffff8109dc97>] SyS_delete_module+0x153/0x1c4
[20770.106182] [<ffffffff8121261b>] ? trace_hardirqs_on_thunk+0x3a/0x3c
[20770.106184] [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b
This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"
But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
There was a free space entry structure memeory leak if a block
group is remove while a free space entry is being trimmed, which
the following diagram explains:
CPU 1 CPU 2
btrfs_trim_block_group()
trim_no_bitmap()
remove free space entry from
block group cache's rbtree
do_trimming()
btrfs_remove_block_group()
btrfs_remove_free_space_cache()
add back free space entry to
block group's cache rbtree
btrfs_put_block_group()
(...)
btrfs_put_block_group()
kfree(bg->free_space_ctl)
kfree(bg)
The free space entry added after doing the discard of its respective
range ends up never being freed.
Detected after doing an "rmmod btrfs" after running the stress test
recently submitted for fstests:
[ 8234.642212] kmem_cache_destroy btrfs_free_space: Slab cache still has objects
[ 8234.642657] CPU: 1 PID: 32276 Comm: rmmod Tainted: G W L 3.17.0-rc5-btrfs-next-2+ #1
[ 8234.642660] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 8234.642664] 0000000000000000 ffff8801af1b3eb8 ffffffff8140c7b6 ffff8801dbedd0c0
[ 8234.642670] ffff8801af1b3ed0 ffffffff811149ce 0000000000000000 ffff8801af1b3ee0
[ 8234.642676] ffffffffa042dbe7 ffff8801af1b3ef0 ffffffffa0487422 ffff8801af1b3f78
[ 8234.642682] Call Trace:
[ 8234.642692] [<ffffffff8140c7b6>] dump_stack+0x4d/0x66
[ 8234.642699] [<ffffffff811149ce>] kmem_cache_destroy+0x4d/0x92
[ 8234.642731] [<ffffffffa042dbe7>] btrfs_destroy_cachep+0x63/0x76 [btrfs]
[ 8234.642757] [<ffffffffa0487422>] exit_btrfs_fs+0x9/0xbe7 [btrfs]
[ 8234.642762] [<ffffffff810a76a5>] SyS_delete_module+0x155/0x1c6
[ 8234.642768] [<ffffffff8122a7eb>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 8234.642773] [<ffffffff814122d2>] system_call_fastpath+0x16/0x1b
This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the transaction handle doesn't have used blocks but has created new block
groups make sure we turn the fs into readonly mode too. This is because the
new block groups didn't get all their metadata persisted into the chunk and
device trees, and therefore if a subsequent transaction starts, allocates
space from the new block groups, writes data or metadata into that space,
commits successfully and then after we unmount and mount the filesystem
again, the same space can be allocated again for a new block group,
resulting in file data or metadata corruption.
Example where we don't abort the transaction when we fail to finish the
chunk allocation (add items to the chunk and device trees) and later a
future transaction where the block group is removed fails because it can't
find the chunk item in the chunk tree:
[25230.404300] WARNING: CPU: 0 PID: 7721 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x50/0xfc [btrfs]()
[25230.404301] BTRFS: Transaction aborted (error -28)
[25230.404302] Modules linked in: btrfs dm_flakey nls_utf8 fuse xor raid6_pq ntfs vfat msdos fat xfs crc32c_generic libcrc32c ext3 jbd ext2 dm_mod nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse i2c_piix4 i2ccore parport_pc parport processor button pcspkr serio_raw thermal_sys evdev microcode ext4 crc16 jbd2 mbcache sr_mod cdrom ata_generic sg sd_mod crc_t10dif crct10dif_generic crct10dif_common virtio_scsi floppy e1000 ata_piix libata virtio_pci virtio_ring scsi_mod virtio [last unloaded: btrfs]
[25230.404325] CPU: 0 PID: 7721 Comm: xfs_io Not tainted 3.17.0-rc5-btrfs-next-1+ #1
[25230.404326] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[25230.404328] 0000000000000000 ffff88004581bb08 ffffffff813e7a13 ffff88004581bb50
[25230.404330] ffff88004581bb40 ffffffff810423aa ffffffffa049386a 00000000ffffffe4
[25230.404332] ffffffffa05214c0 000000000000240c ffff88010fc8f800 ffff88004581bba8
[25230.404334] Call Trace:
[25230.404338] [<ffffffff813e7a13>] dump_stack+0x45/0x56
[25230.404342] [<ffffffff810423aa>] warn_slowpath_common+0x7f/0x98
[25230.404351] [<ffffffffa049386a>] ? __btrfs_abort_transaction+0x50/0xfc [btrfs]
[25230.404353] [<ffffffff8104240b>] warn_slowpath_fmt+0x48/0x50
[25230.404362] [<ffffffffa049386a>] __btrfs_abort_transaction+0x50/0xfc [btrfs]
[25230.404374] [<ffffffffa04a8c43>] btrfs_create_pending_block_groups+0x10c/0x135 [btrfs]
[25230.404387] [<ffffffffa04b77fd>] __btrfs_end_transaction+0x7e/0x2de [btrfs]
[25230.404398] [<ffffffffa04b7a6d>] btrfs_end_transaction+0x10/0x12 [btrfs]
[25230.404408] [<ffffffffa04a3d64>] btrfs_check_data_free_space+0x111/0x1f0 [btrfs]
[25230.404421] [<ffffffffa04c53bd>] __btrfs_buffered_write+0x160/0x48d [btrfs]
[25230.404425] [<ffffffff811a9268>] ? cap_inode_need_killpriv+0x2d/0x37
[25230.404429] [<ffffffff810f6501>] ? get_page+0x1a/0x2b
[25230.404441] [<ffffffffa04c7c95>] btrfs_file_write_iter+0x321/0x42f [btrfs]
[25230.404443] [<ffffffff8110f5d9>] ? handle_mm_fault+0x7f3/0x846
[25230.404446] [<ffffffff813e98c5>] ? mutex_unlock+0x16/0x18
[25230.404449] [<ffffffff81138d68>] new_sync_write+0x7c/0xa0
[25230.404450] [<ffffffff81139401>] vfs_write+0xb0/0x112
[25230.404452] [<ffffffff81139c9d>] SyS_pwrite64+0x66/0x84
[25230.404454] [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b
[25230.404455] ---[ end trace 5aa5684fdf47ab38 ]---
[25230.404458] BTRFS warning (device sdc): btrfs_create_pending_block_groups:9228: Aborting unused transaction(No space left).
[25288.084814] BTRFS: error (device sdc) in btrfs_free_chunk:2509: errno=-2 No such entry (Failed lookup while freeing chunk.)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Trimming is completely transactionless, and the way it operates consists
of hiding free space entries from a block group, perform the trim/discard
and then make the free space entries visible again.
Therefore while a free space entry is being trimmed, we can have free space
cache writing running in parallel (as part of a transaction commit) which
will miss the free space entry. This means that an unmount (or crash/reboot)
after that transaction commit and mount again before another transaction
starts/commits after the discard finishes, we will have some free space
that won't be used again unless the free space cache is rebuilt. After the
unmount, fsck (btrfsck, btrfs check) reports the issue like the following
example:
*** fsck.btrfs output ***
checking extents
checking free space cache
There is no free space entry for 521764864-521781248
There is no free space entry for 521764864-1103101952
cache appears valid but isnt 29360128
Checking filesystem on /dev/sdc
UUID: b4789e27-4774-4626-98e9-ae8dfbfb0fb5
found 1235681286 bytes used err is -22
(...)
Another issue caused by this race is a crash while writing bitmap entries
to the cache, because while the cache writeout task accesses the bitmaps,
the trim task can be concurrently modifying the bitmap or worse might
be freeing the bitmap. The later case results in the following crash:
[55650.804460] general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC
[55650.804835] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop parport_pc parport i2c_piix4 psmouse evdev pcspkr microcode processor i2ccore serio_raw thermal_sys button ext4 crc16 jbd2 mbcache sg sd_mod crc_t10dif sr_mod cdrom crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata virtio_pci virtio_ring virtio scsi_mod e1000 [last unloaded: btrfs]
[55650.806169] CPU: 1 PID: 31002 Comm: btrfs-transacti Tainted: G W 3.17.0-rc5-btrfs-next-1+ #1
[55650.806493] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[55650.806867] task: ffff8800b12f6410 ti: ffff880071538000 task.ti: ffff880071538000
[55650.807166] RIP: 0010:[<ffffffffa037cf45>] [<ffffffffa037cf45>] write_bitmap_entries+0x65/0xbb [btrfs]
[55650.807514] RSP: 0018:ffff88007153bc30 EFLAGS: 00010246
[55650.807687] RAX: 000000005d1ec000 RBX: ffff8800a665df08 RCX: 0000000000000400
[55650.807885] RDX: ffff88005d1ec000 RSI: 6b6b6b6b6b6b6b6b RDI: ffff88005d1ec000
[55650.808017] RBP: ffff88007153bc58 R08: 00000000ddd51536 R09: 00000000000001e0
[55650.808017] R10: 0000000000000000 R11: 0000000000000037 R12: 6b6b6b6b6b6b6b6b
[55650.808017] R13: ffff88007153bca8 R14: 6b6b6b6b6b6b6b6b R15: ffff88007153bc98
[55650.808017] FS: 0000000000000000(0000) GS:ffff88023ec80000(0000) knlGS:0000000000000000
[55650.808017] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[55650.808017] CR2: 0000000002273b88 CR3: 00000000b18f6000 CR4: 00000000000006e0
[55650.808017] Stack:
[55650.808017] ffff88020e834e00 ffff880172d68db0 0000000000000000 ffff88019257c800
[55650.808017] ffff8801d42ea720 ffff88007153bd10 ffffffffa037d2fa ffff880224e99180
[55650.808017] ffff8801469a6188 ffff880224e99140 ffff880172d68c50 00000003000000b7
[55650.808017] Call Trace:
[55650.808017] [<ffffffffa037d2fa>] __btrfs_write_out_cache+0x1ea/0x37f [btrfs]
[55650.808017] [<ffffffffa037d959>] btrfs_write_out_cache+0xa1/0xd8 [btrfs]
[55650.808017] [<ffffffffa033936b>] btrfs_write_dirty_block_groups+0x4b5/0x505 [btrfs]
[55650.808017] [<ffffffffa03aa98e>] commit_cowonly_roots+0x15e/0x1f7 [btrfs]
[55650.808017] [<ffffffff813eb9c7>] ? _raw_spin_lock+0xe/0x10
[55650.808017] [<ffffffffa0346e46>] btrfs_commit_transaction+0x411/0x882 [btrfs]
[55650.808017] [<ffffffffa03432a4>] transaction_kthread+0xf2/0x1a4 [btrfs]
[55650.808017] [<ffffffffa03431b2>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[55650.808017] [<ffffffff8105966b>] kthread+0xb7/0xbf
[55650.808017] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[55650.808017] [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[55650.808017] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[55650.808017] Code: 4c 89 ef 8d 70 ff e8 d4 fc ff ff 41 8b 45 34 41 39 45 30 7d 5c 31 f6 4c 89 ef e8 80 f6 ff ff 49 8b 7d 00 4c 89 f6 b9 00 04 00 00 <f3> a5 4c 89 ef 41 8b 45 30 8d 70 ff e8 a3 fc ff ff 41 8b 45 34
[55650.808017] RIP [<ffffffffa037cf45>] write_bitmap_entries+0x65/0xbb [btrfs]
[55650.808017] RSP <ffff88007153bc30>
[55650.815725] ---[ end trace 1c032e96b149ff86 ]---
Fix this by serializing both tasks in such a way that cache writeout
doesn't wait for the trim/discard of free space entries to finish and
doesn't miss any free space entry.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Our fs trim operation, which is completely transactionless (doesn't start
or joins an existing transaction) consists of visiting all block groups
and then for each one to iterate its free space entries and perform a
discard operation against the space range represented by the free space
entries. However before performing a discard, the corresponding free space
entry is removed from the free space rbtree, and when the discard completes
it is added back to the free space rbtree.
If a block group remove operation happens while the discard is ongoing (or
before it starts and after a free space entry is hidden), we end up not
waiting for the discard to complete, remove the extent map that maps
logical address to physical addresses and the corresponding chunk metadata
from the the chunk and device trees. After that and before the discard
completes, the current running transaction can finish and a new one start,
allowing for new block groups that map to the same physical addresses to
be allocated and written to.
So fix this by keeping the extent map in memory until the discard completes
so that the same physical addresses aren't reused before it completes.
If the physical locations that are under a discard operation end up being
used for a new metadata block group for example, and dirty metadata extents
are written before the discard finishes (the VM might call writepages() of
our btree inode's i_mapping for example, or an fsync log commit happens) we
end up overwriting metadata with zeroes, which leads to errors from fsck
like the following:
checking extents
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
read block failed check_tree_block
owner ref check failed [833912832 16384]
Errors found in extent allocation tree or chunk allocation
checking free space cache
checking fs roots
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
read block failed check_tree_block
root 5 root dir 256 error
root 5 inode 260 errors 2001, no inode item, link count wrong
unresolved ref dir 256 index 0 namelen 8 name foobar_3 filetype 1 errors 6, no dir index, no inode ref
root 5 inode 262 errors 2001, no inode item, link count wrong
unresolved ref dir 256 index 0 namelen 8 name foobar_5 filetype 1 errors 6, no dir index, no inode ref
root 5 inode 263 errors 2001, no inode item, link count wrong
(...)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
There's a race between adding a block group to the list of the unused
block groups and removing an unused block group (cleaner kthread) that
leads to freeing extents that are in use or a crash during transaction
commmit. Basically the cleaner kthread, when executing
btrfs_delete_unused_bgs(), might catch the newly added block group to
the list fs_info->unused_bgs and clear the range representing the whole
group from fs_info->freed_extents[] before the task that added the block
group to the list (running update_block_group()) marked the last freed
extent as dirty in fs_info->freed_extents (pinned_extents).
That is:
CPU 1 CPU 2
btrfs_delete_unused_bgs()
update_block_group()
add block group to
fs_info->unused_bgs
got block group from the list
clear_extent_bits for the whole
block group range in freed_extents[]
set_extent_dirty for the
range covering the freed
extent in freed_extents[]
(fs_info->pinned_extents)
block group deleted, and a new block
group with the same logical address is
created
reserve space from the new block group
for new data or metadata - the reserved
space overlaps the range specified by
CPU 1 for set_extent_dirty()
commit transaction
find all ranges marked as dirty in
fs_info->pinned_extents, clear them
and add them to the free space cache
Alternatively, if CPU 2 doesn't create a new block group with the same
logical address, we get a crash/BUG_ON at transaction commit when unpining
extent ranges because we can't find a block group for the range marked as
dirty by CPU 1. Sample trace:
[ 2163.426462] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
[ 2163.426640] Modules linked in: btrfs xor raid6_pq dm_thin_pool dm_persistent_data dm_bio_prison dm_bufio crc32c_generic libcrc32c dm_mod nfsd auth_rpc
gss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse parport_pc parport i2c_piix4 processor thermal_sys i2ccore evdev button pcspkr microcode serio_raw ext4 crc16 jbd2 mbcache
sg sr_mod cdrom sd_mod crc_t10dif crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata e1000 scsi_mod virtio_pci virtio_ring virtio
[ 2163.428209] CPU: 0 PID: 11858 Comm: btrfs-transacti Tainted: G W 3.17.0-rc5-btrfs-next-1+ #1
[ 2163.428519] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 2163.428875] task: ffff88009f2c0650 ti: ffff8801356bc000 task.ti: ffff8801356bc000
[ 2163.429157] RIP: 0010:[<ffffffffa037728e>] [<ffffffffa037728e>] unpin_extent_range.isra.58+0x62/0x192 [btrfs]
[ 2163.429562] RSP: 0018:ffff8801356bfda8 EFLAGS: 00010246
[ 2163.429802] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 2163.429990] RDX: 0000000041bfffff RSI: 0000000001c00000 RDI: ffff880024307080
[ 2163.430042] RBP: ffff8801356bfde8 R08: 0000000000000068 R09: ffff88003734f118
[ 2163.430042] R10: ffff8801356bfcb8 R11: fffffffffffffb69 R12: ffff8800243070d0
[ 2163.430042] R13: 0000000083c04000 R14: ffff8800751b0f00 R15: ffff880024307000
[ 2163.430042] FS: 0000000000000000(0000) GS:ffff88013f400000(0000) knlGS:0000000000000000
[ 2163.430042] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 2163.430042] CR2: 00007ff10eb43fc0 CR3: 0000000004cb8000 CR4: 00000000000006f0
[ 2163.430042] Stack:
[ 2163.430042] ffff8800243070d0 0000000083c08000 0000000083c07fff ffff88012d6bc800
[ 2163.430042] ffff8800243070d0 ffff8800751b0f18 ffff8800751b0f00 0000000000000000
[ 2163.430042] ffff8801356bfe18 ffffffffa037a481 0000000083c04000 0000000083c07fff
[ 2163.430042] Call Trace:
[ 2163.430042] [<ffffffffa037a481>] btrfs_finish_extent_commit+0xac/0xbf [btrfs]
[ 2163.430042] [<ffffffffa038c06d>] btrfs_commit_transaction+0x6ee/0x882 [btrfs]
[ 2163.430042] [<ffffffffa03881f1>] transaction_kthread+0xf2/0x1a4 [btrfs]
[ 2163.430042] [<ffffffffa03880ff>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[ 2163.430042] [<ffffffff8105966b>] kthread+0xb7/0xbf
[ 2163.430042] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[ 2163.430042] [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[ 2163.430042] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
So fix this by making update_block_group() first set the range as dirty
in pinned_extents before adding the block group to the unused_bgs list.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we grab a block group, for example in btrfs_trim_fs(), we will be holding
a reference on it but the block group can be removed after we got it (via
btrfs_remove_block_group), which means it will no longer be part of the
rbtree.
However, btrfs_remove_block_group() was only calling rb_erase() which leaves
the block group's rb_node left and right child pointers with the same content
they had before calling rb_erase. This was dangerous because a call to
next_block_group() would access the node's left and right child pointers (via
rb_next), which can be no longer valid.
Fix this by clearing a block group's node after removing it from the tree,
and have next_block_group() do a tree search to get the next block group
instead of using rb_next() if our block group was removed.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The commit c404e0dc (Btrfs: fix use-after-free in the finishing
procedure of the device replace) fixed a use-after-free problem
which happened when removing the source device at the end of device
replace, but at that time, btrfs didn't support device replace
on raid56, so we didn't fix the problem on the raid56 profile.
Currently, we implemented device replace for raid56, so we need
kick that problem out before we enable that function for raid56.
The fix method is very simple, we just increase the bio per-cpu
counter before we submit a raid56 io, and decrease the counter
when the raid56 io ends.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
This function reused the code of parity scrub, and we just write
the right parity or corrected parity into the target device before
the parity scrub end.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.
Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
The implementation is:
- Read and check all the data with checksum in the same stripe.
All the data which has checksum is COW data, and we are sure
that it is not changed though we don't lock the stripe. because
the space of that data just can be reclaimed after the current
transction is committed, and then the fs can use it to store the
other data, but when doing scrub, we hold the current transaction,
that is that data can not be recovered, it is safe that read and check
it out of the stripe lock.
- Lock the stripe
- Read out all the data without checksum and parity
The data without checksum and the parity may be changed if we don't
lock the stripe, so we need read it in the stripe lock context.
- Check the parity
- Re-calculate the new parity and write back it if the old parity
is not right
- Unlock the stripe
If we can not read out the data or the data we read is corrupted,
we will try to repair it. If the repair fails. we will mark the
horizontal sub-stripe(pages on the same horizontal) as corrupted
sub-stripe, and we will skip the parity check and repair of that
horizontal sub-stripe.
And in order to skip the horizontal sub-stripe that has no data, we
introduce a bitmap. If there is some data on the horizontal sub-stripe,
we will the relative bit to 1, and when we check and repair the
parity, we will skip those horizontal sub-stripes that the relative
bits is 0.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
We will introduce new operation type later, if we still use integer
variant as bool variant to record the operation type, we would add new
variant and increase the size of raid bio structure. It is not good,
by this patch, we define different number for different operation,
and we can just use a variant to record the operation type.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
This patch implement the RAID5/6 common data repair function, the
implementation is similar to the scrub on the other RAID such as
RAID1, the differentia is that we don't read the data from the
mirror, we use the data repair function of RAID5/6.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Because we will reuse bbio and raid_map during the scrub later, it is
better that we don't change any variant of bbio and don't free it at
the end of IO request. So we introduced similar variants into the raid
bio, and don't access those bbio's variants any more.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
stripe_index's value was set again in latter line:
stripe_index = 0;
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
bbio_ret in this condition is always !NULL because previous code
already have a check-and-skip:
4908 if (!bbio_ret)
4909 goto out;
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Don Bailey noticed that our page zeroing for compression at end-io time
isn't complete. This reworks a patch from Linus to push the zeroing
into the zlib and lzo specific functions instead of trying to handle the
corners inside btrfs_decompress_buf2page
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reported-by: Don A. Bailey <donb@securitymouse.com>
cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If right after starting the snapshot creation ioctl we perform a write against a
file followed by a truncate, with both operations increasing the file's size, we
can get a snapshot tree that reflects a state of the source subvolume's tree where
the file truncation happened but the write operation didn't. This leaves a gap
between 2 file extent items of the inode, which makes btrfs' fsck complain about it.
For example, if we perform the following file operations:
$ mkfs.btrfs -f /dev/vdd
$ mount /dev/vdd /mnt
$ xfs_io -f \
-c "pwrite -S 0xaa -b 32K 0 32K" \
-c "fsync" \
-c "pwrite -S 0xbb -b 32770 16K 32770" \
-c "truncate 90123" \
/mnt/foobar
and the snapshot creation ioctl was just called before the second write, we often
can get the following inode items in the snapshot's btree:
item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160
inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0
item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20
inode ref index 282 namelen 10 name: foobar
item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53
extent data disk byte 1104855040 nr 32768
extent data offset 0 nr 32768 ram 32768
extent compression 0
item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53
extent data disk byte 0 nr 0
extent data offset 0 nr 40960 ram 40960
extent compression 0
There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[
for which there's no file extent item covering it. This is because the file write
and file truncate operations happened both right after the snapshot creation ioctl
called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the
ordered extent that matches the write and, in btrfs_setsize(), we were able to call
btrfs_cont_expand() before being able to commit the current transaction in the
snapshot creation ioctl. So this made it possibe to insert the hole file extent
item in the source subvolume (which represents the region added by the truncate)
right before the transaction commit from the snapshot creation ioctl.
Btrfs' fsck tool complains about such cases with a message like the following:
"root 331 inode 257 errors 100, file extent discount"
>From a user perspective, the expectation when a snapshot is created while those
file operations are being performed is that the snapshot will have a file that
either:
1) is empty
2) only the first write was captured
3) only the 2 writes were captured
4) both writes and the truncation were captured
But never capture a state where only the first write and the truncation were
captured (since the second write was performed before the truncation).
A test case for xfstests follows.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Move the logic from the snapshot creation ioctl into send. This avoids
doing the transaction commit if send isn't used, and ensures that if
a crash/reboot happens after the transaction commit that created the
snapshot and before the transaction commit that switched the commit
root, send will not get a commit root that differs from the main root
(that has orphan items).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Due to ignoring errors returned by clear_extent_bits (at the moment only
-ENOMEM is possible), we can end up freeing an extent that is actually in
use (i.e. return the extent to the free space cache).
The sequence of steps that lead to this:
1) Cleaner thread starts execution and calls btrfs_delete_unused_bgs(), with
the goal of freeing empty block groups;
2) btrfs_delete_unused_bgs() finds an empty block group, joins the current
transaction (or starts a new one if none is running) and attempts to
clear the EXTENT_DIRTY bit for the block group's range from freed_extents[0]
and freed_extents[1] (of which one corresponds to fs_info->pinned_extents);
3) Clearing the EXTENT_DIRTY bit (via clear_extent_bits()) fails with
-ENOMEM, but such error is ignored and btrfs_delete_unused_bgs() proceeds
to delete the block group and the respective chunk, while pinned_extents
remains with that bit set for the whole (or a part of the) range covered
by the block group;
4) Later while the transaction is still running, the chunk ends up being reused
for a new block group (maybe for different purpose, data or metadata), and
extents belonging to the new block group are allocated for file data or btree
nodes/leafs;
5) The current transaction is committed, meaning that we unpinned one or more
extents from the new block group (through btrfs_finish_extent_commit() and
unpin_extent_range()) which are now being used for new file data or new
metadata (through btrfs_finish_extent_commit() and unpin_extent_range()).
And unpinning means we returned the extents to the free space cache of the
new block group, which implies those extents can be used for future allocations
while they're still in use.
Alternatively, we can hit a BUG_ON() when doing a lookup for a block group's cache
object in unpin_extent_range() if a new block group didn't end up being allocated for
the same chunk (step 4 above).
Fix this by not freeing the block group and chunk if we fail to clear the dirty bit.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Fengguang's build monster reported warnings on some arches because we
don't have vmalloc.h included
Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: fengguang.wu@intel.com
The following lockdep warning is triggered during xfstests:
[ 1702.980872] =========================================================
[ 1702.981181] [ INFO: possible irq lock inversion dependency detected ]
[ 1702.981482] 3.18.0-rc1 #27 Not tainted
[ 1702.981781] ---------------------------------------------------------
[ 1702.982095] kswapd0/77 just changed the state of lock:
[ 1702.982415] (&delayed_node->mutex){+.+.-.}, at: [<ffffffffa03b0b51>] __btrfs_release_delayed_node+0x41/0x1f0 [btrfs]
[ 1702.982794] but this lock took another, RECLAIM_FS-unsafe lock in the past:
[ 1702.983160] (&fs_info->dev_replace.lock){+.+.+.}
and interrupts could create inverse lock ordering between them.
[ 1702.984675]
other info that might help us debug this:
[ 1702.985524] Chain exists of:
&delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock
[ 1702.986799] Possible interrupt unsafe locking scenario:
[ 1702.987681] CPU0 CPU1
[ 1702.988137] ---- ----
[ 1702.988598] lock(&fs_info->dev_replace.lock);
[ 1702.989069] local_irq_disable();
[ 1702.989534] lock(&delayed_node->mutex);
[ 1702.990038] lock(&found->groups_sem);
[ 1702.990494] <Interrupt>
[ 1702.990938] lock(&delayed_node->mutex);
[ 1702.991407]
*** DEADLOCK ***
It is because the btrfs_kobj_{add/rm}_device() will call memory
allocation with GFP_KERNEL,
which may flush fs page cache to free space, waiting for it self to do
the commit, causing the deadlock.
To solve the problem, move btrfs_kobj_{add/rm}_device() out of the
dev_replace lock range, also involing split the
btrfs_rm_dev_replace_srcdev() function into remove and free parts.
Now only btrfs_rm_dev_replace_remove_srcdev() is called in dev_replace
lock range, and kobj_{add/rm} and btrfs_rm_dev_replace_free_srcdev() are
called out of the lock range.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs deadlock fix from Chris Mason:
"This has a fix for a long standing deadlock that we've been trying to
nail down for a while. It ended up being a bad interaction with the
fair reader/writer locks and the order btrfs reacquires locks in the
btree"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix lockups from btrfs_clear_path_blocking
When doing a fsync with a fast path we have a time window where we can miss
the fact that writeback of some file data failed, and therefore we endup
returning success (0) from fsync when we should return an error.
The steps that lead to this are the following:
1) We start all ordered extents by calling filemap_fdatawrite_range();
2) We do some other work like locking the inode's i_mutex, start a transaction,
start a log transaction, etc;
3) We enter btrfs_log_inode(), acquire the inode's log_mutex and collect all the
ordered extents from inode's ordered tree into a list;
4) But by the time we do ordered extent collection, some ordered extents we started
at step 1) might have already completed with an error, and therefore we didn't
found them in the ordered tree and had no idea they finished with an error. This
makes our fsync return success (0) to userspace, but has no bad effects on the log
like for example insertion of file extent items into the log that point to unwritten
extents, because the invalid extent maps were removed before the ordered extent
completed (in inode.c:btrfs_finish_ordered_io).
So after collecting the ordered extents just check if the inode's i_mapping has any
error flags set (AS_EIO or AS_ENOSPC) and leave with an error if it does. Whenever
writeback fails for a page of an ordered extent, we call mapping_set_error (done in
extent_io.c:end_extent_writepage, called by extent_io.c:end_bio_extent_writepage)
that sets one of those error flags in the inode's i_mapping flags.
This change also has the side effect of fixing the issue where for fast fsyncs we
never checked/cleared the error flags from the inode's i_mapping flags, which means
that a full fsync performed after a fast fsync could get such errors that belonged
to the fast fsync - because the full fsync calls btrfs_wait_ordered_range() which
calls filemap_fdatawait_range(), and the later checks for and clears those flags,
while for fast fsyncs we never call filemap_fdatawait_range() or anything else
that checks for and clears the error flags from the inode's i_mapping.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Instead of collecting all ordered extents from the inode's ordered tree
and then wait for all of them to complete, just collect the ones that
overlap the fsync range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If an error happens during writeback of log btree extents, make sure the
error is returned to the caller (fsync), so that it takes proper action
(commit current transaction) instead of writing a superblock that points
to log btrees with all or some nodes that weren't durably persisted.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We use the modified list to keep track of which extents have been modified so we
know which ones are candidates for logging at fsync() time. Newly modified
extents are added to the list at modification time, around the same time the
ordered extent is created. We do this so that we don't have to wait for ordered
extents to complete before we know what we need to log. The problem is when
something like this happens
log extent 0-4k on inode 1
copy csum for 0-4k from ordered extent into log
sync log
commit transaction
log some other extent on inode 1
ordered extent for 0-4k completes and adds itself onto modified list again
log changed extents
see ordered extent for 0-4k has already been logged
at this point we assume the csum has been copied
sync log
crash
On replay we will see the extent 0-4k in the log, drop the original 0-4k extent
which is the same one that we are replaying which also drops the csum, and then
we won't find the csum in the log for that bytenr. This of course causes us to
have errors about not having csums for certain ranges of our inode. So remove
the modified list manipulation in unpin_extent_cache, any modified extents
should have been added well before now, and we don't want them re-logged. This
fixes my test that I could reliably reproduce this problem with. Thanks,
cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Liu Bo pointed out that my previous fix would lose the generation update in the
scenario I described. It is actually much worse than that, we could lose the
entire extent if we lose power right after the transaction commits. Consider
the following
write extent 0-4k
log extent in log tree
commit transaction
< power fail happens here
ordered extent completes
We would lose the 0-4k extent because it hasn't updated the actual fs tree, and
the transaction commit will reset the log so it isn't replayed. If we lose
power before the transaction commit we are save, otherwise we are not.
Fix this by keeping track of all extents we logged in this transaction. Then
when we go to commit the transaction make sure we wait for all of those ordered
extents to complete before proceeding. This will make sure that if we lose
power after the transaction commit we still have our data. This also fixes the
problem of the improperly updated extent generation. Thanks,
cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we have two fsync()'s race on different subvols one will do all of its work
to get into the log_tree, wait on it's outstanding IO, and then allow the
log_tree to finish it's commit. The problem is we were just free'ing that
subvols logged extents instead of waiting on them, so whoever lost the race
wouldn't really have their data on disk. Fix this by waiting properly instead
of freeing the logged extents. Thanks,
cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The sizes that are obtained from space infos are in raw units and have
to be adjusted according to the raid factor. This was missing for
f_bavail and df reported doubled size for raid1.
Reported-by: Martin Steigerwald <Martin@lichtvoll.de>
Fixes: ba7b6e62f4 ("btrfs: adjust statfs calculations according to raid profiles")
CC: stable@vger.kernel.org
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This can be reproduced by fstests: btrfs/070
The scenario is like the following:
replace worker thread defrag thread
--------------------- -------------
copy_nocow_pages_worker btrfs_defrag_file
copy_nocow_pages_for_inode ...
btrfs_writepages
|A| lock_extent_bits extent_write_cache_pages
|B| lock_page
__extent_writepage
... writepage_delalloc
find_lock_delalloc_range
|B| lock_extent_bits
find_or_create_page
pagecache_get_page
|A| lock_page
This leads to an ABBA pattern deadlock. To fix it,
o we just change it to an AABB pattern which means to @unlock_extent_bits()
before we @lock_page(), and in this way the @extent_read_full_page_nolock()
is no longer in an locked context, so change it back to @extent_read_full_page()
to regain protection.
o Since we @unlock_extent_bits() earlier, then before @write_page_nocow(),
the extent may not really point at the physical block we want, so we
have to check it before write.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Replacing a xattr consists of doing a lookup for its existing value, delete
the current value from the respective leaf, release the search path and then
finally insert the new value. This leaves a time window where readers (getxattr,
listxattrs) won't see any value for the xattr. Xattrs are used to store ACLs,
so this has security implications.
This change also fixes 2 other existing issues which were:
*) Deleting the old xattr value without verifying first if the new xattr will
fit in the existing leaf item (in case multiple xattrs are packed in the
same item due to name hash collision);
*) Returning -EEXIST when the flag XATTR_CREATE is given and the xattr doesn't
exist but we have have an existing item that packs muliple xattrs with
the same name hash as the input xattr. In this case we should return ENOSPC.
A test case for xfstests follows soon.
Thanks to Alexandre Oliva for reporting the non-atomicity of the xattr replace
implementation.
Reported-by: Alexandre Oliva <oliva@gnu.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We try to allocate an extent state structure before acquiring the extent
state tree's spinlock as we might need a new one later and therefore avoid
doing later an atomic allocation while holding the tree's spinlock. However
we returned -ENOMEM if that initial non-atomic allocation failed, which is
a bit excessive since we might end up not needing the pre-allocated extent
state at all - for the case where the tree doesn't have any extent states
that cover the input range and cover too any other range. Therefore don't
return -ENOMEM if that pre-allocation fails.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Our gluster boxes get several thousand statfs() calls per second, which begins
to suck hardcore with all of the lock contention on the chunk mutex and dev list
mutex. We don't really need to hold these things, if we have transient
weirdness with statfs() because of the chunk allocator we don't care, so remove
this locking.
We still need the dev_list lock if you mount with -o alloc_start however, which
is a good argument for nuking that thing from orbit, but that's a patch for
another day. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Our gluster boxes were spending lots of time in statfs because our fs'es are
huge. The problem is statfs loops through all of the block groups looking for
read only block groups, and when you have several terabytes worth of data that
ends up being a lot of block groups. Move the read only block groups onto a
read only list and only proces that list in
btrfs_account_ro_block_groups_free_space to reduce the amount of churn. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Copy&paste errors in some messages and add few more missing macro
accessors.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The xfstest btrfs/014 which tests the balance operation caused that the
check_int module complained that known blocks changed their physical
location. Since this is not an error in this case, only print such
message if the verbose mode was enabled.
Reported-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Tested-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
The xfstest btrfs/014 which tests the balance operation caused issues with
the check_int module. The attempt was made to use btrfs_map_block() to
find the physical location for a written block. However, this was not
at all needed since the location of the written block was known since
a hook to submit_bio() was the reason for entering the check_int module.
Additionally, after a block relocation it happened that btrfs_map_block()
failed causing misleading error messages afterwards.
This patch changes the check_int module to use the known information of
the physical location from the bio.
Reported-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Tested-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
We try to allocate an extent state before acquiring the tree's spinlock
just in case we end up needing to split an existing extent state into two.
If that allocation failed, we would return -ENOMEM.
However, our only single caller (transaction/log commit code), passes in
an extent state that was cached from a call to find_first_extent_bit() and
that has a very high chance to match exactly the input range (always true
for a transaction commit and very often, but not always, true for a log
commit) - in this case we end up not needing at all that initial extent
state used for an eventual split. Therefore just don't return -ENOMEM if
we can't allocate the temporary extent state, since we might not need it
at all, and if we end up needing one, we'll do it later anyway.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Right now the only caller of find_first_extent_bit() that is interested
in caching extent states (transaction or log commit), never gets an extent
state cached. This is because find_first_extent_bit() only caches states
that have at least one of the flags EXTENT_IOBITS or EXTENT_BOUNDARY, and
the transaction/log commit caller always passes a tree that doesn't have
ever extent states with any of those flags (they can only have one of the
following flags: EXTENT_DIRTY, EXTENT_NEW or EXTENT_NEED_WAIT).
This change together with the following one in the patch series (titled
"Btrfs: avoid returning -ENOMEM in convert_extent_bit() too early") will
help reduce significantly the chances of calls to convert_extent_bit()
fail with -ENOMEM when called from the transaction/log commit code.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When committing a transaction or a log, we look for btree extents that
need to be durably persisted by searching for ranges in a io tree that
have some bits set (EXTENT_DIRTY or EXTENT_NEW). We then attempt to clear
those bits and set the EXTENT_NEED_WAIT bit, with calls to the function
convert_extent_bit, and then start writeback for the extents.
That function however can return an error (at the moment only -ENOMEM
is possible, specially when it does GFP_ATOMIC allocation requests
through alloc_extent_state_atomic) - that means the ranges didn't got
the EXTENT_NEED_WAIT bit set (or at least not for the whole range),
which in turn means a call to btrfs_wait_marked_extents() won't find
those ranges for which we started writeback, causing a transaction
commit or a log commit to persist a new superblock without waiting
for the writeback of extents in that range to finish first.
Therefore if a crash happens after persisting the new superblock and
before writeback finishes, we have a superblock pointing to roots that
weren't fully persisted or roots that point to nodes or leafs that weren't
fully persisted, causing all sorts of unexpected/bad behaviour as we endup
reading garbage from disk or the content of some node/leaf from a past
generation that got cowed or deleted and is no longer valid (for this later
case we end up getting error messages like "parent transid verify failed on
X wanted Y found Z" when reading btree nodes/leafs from disk).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
device replace could fail due to another running scrub process or any
other errors btrfs_scrub_dev() may hit, but this failure doesn't get
returned to userspace.
The following steps could reproduce this issue
mkfs -t btrfs -f /dev/sdb1 /dev/sdb2
mount /dev/sdb1 /mnt/btrfs
while true; do btrfs scrub start -B /mnt/btrfs >/dev/null 2>&1; done &
btrfs replace start -Bf /dev/sdb2 /dev/sdb3 /mnt/btrfs
# if this replace succeeded, do the following and repeat until
# you see this log in dmesg
# BTRFS: btrfs_scrub_dev(/dev/sdb2, 2, /dev/sdb3) failed -115
#btrfs replace start -Bf /dev/sdb3 /dev/sdb2 /mnt/btrfs
# once you see the error log in dmesg, check return value of
# replace
echo $?
Introduce a new dev replace result
BTRFS_IOCTL_DEV_REPLACE_RESULT_SCRUB_INPROGRESS
to catch -EINPROGRESS explicitly and return other errors directly to
userspace.
Signed-off-by: Eryu Guan <guaneryu@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
size of @btrfsic_state needs more than 2M, it is very likely to
fail allocating memory using kzalloc(). see following mesage:
[91428.902148] Call Trace:
[<ffffffff816f6e0f>] dump_stack+0x4d/0x66
[<ffffffff811b1c7f>] warn_alloc_failed+0xff/0x170
[<ffffffff811b66e1>] __alloc_pages_nodemask+0x951/0xc30
[<ffffffff811fd9da>] alloc_pages_current+0x11a/0x1f0
[<ffffffff811b1e0b>] ? alloc_kmem_pages+0x3b/0xf0
[<ffffffff811b1e0b>] alloc_kmem_pages+0x3b/0xf0
[<ffffffff811d1018>] kmalloc_order+0x18/0x50
[<ffffffff811d1074>] kmalloc_order_trace+0x24/0x140
[<ffffffffa06c097b>] btrfsic_mount+0x8b/0xae0 [btrfs]
[<ffffffff810af555>] ? check_preempt_curr+0x85/0xa0
[<ffffffff810b2de3>] ? try_to_wake_up+0x103/0x430
[<ffffffffa063d200>] open_ctree+0x1bd0/0x2130 [btrfs]
[<ffffffffa060fdde>] btrfs_mount+0x62e/0x8b0 [btrfs]
[<ffffffff811fd9da>] ? alloc_pages_current+0x11a/0x1f0
[<ffffffff811b0a5e>] ? __get_free_pages+0xe/0x50
[<ffffffff81230429>] mount_fs+0x39/0x1b0
[<ffffffff812509fb>] vfs_kern_mount+0x6b/0x150
[<ffffffff812537fb>] do_mount+0x27b/0xc30
[<ffffffff811b0a5e>] ? __get_free_pages+0xe/0x50
[<ffffffff812544f6>] SyS_mount+0x96/0xf0
[<ffffffff81701970>] system_call_fastpath+0x16/0x1b
Since we are allocating memory for hash table array, so
it will be good if we could allocate continuous pages here.
Fix this problem by firstly trying kzalloc(), if we fail,
use vzalloc() instead.
Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
If cow_file_range_inline() failed, when called from compress_file_range(),
we were tagging the locked page for writeback, end its writeback and unlock it,
but not marking it with an error nor setting AS_EIO in inode's mapping flags.
This made it impossible for a caller of filemap_fdatawrite_range (writepages)
or filemap_fdatawait_range() to know that an error happened. And the return
value of compress_file_range() is useless because it's returned to a workqueue
task and not to the task calling filemap_fdatawrite_range (writepages).
This change applies on top of the previous patchset starting at the patch
titled:
"[1/5] Btrfs: set page and mapping error on compressed write failure"
Which changed extent_clear_unlock_delalloc() to use SetPageError and
mapping_set_error().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
To avoid duplicating this double filemap_fdatawrite_range() call for
inodes with async extents (compressed writes) so often.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
For compressed writes, after doing the first filemap_fdatawrite_range() we
don't get the pages tagged for writeback immediately. Instead we create
a workqueue task, which is run by other kthread, and keep the pages locked.
That other kthread compresses data, creates the respective ordered extent/s,
tags the pages for writeback and unlocks them. Therefore we need a second
call to filemap_fdatawrite_range() if we have compressed writes, as this
second call will wait for the pages to become unlocked, then see they became
tagged for writeback and finally wait for the writeback to finish.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Its return value is useless, its single caller ignores it and can't do
anything with it anyway, since it's a workqueue task and not the task
calling filemap_fdatawrite_range (writepages) nor filemap_fdatawait_range().
Failure is communicated to such functions via start and end of writeback
with the respective pages tagged with an error and AS_EIO flag set in the
inode's imapping.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sdb
# mount -t btrfs /dev/sdb /mnt -o compress=lzo
# dd if=/dev/zero of=/mnt/data bs=$((33*4096)) count=1
after previous steps, inode will be detected as bad compression ratio,
and NOCOMPRESS flag will be set for that inode.
Reason is that compress have a max limit pages every time(128K), if a
132k write in, it will be splitted into two write(128k+4k), this bug
is a leftover for commit 68bb462d42a(Btrfs: don't compress for a small write)
Fix this problem by checking every time before compression, if it is a
small write(<=blocksize), we bail out and fall into nocompression directly.
Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Our compressed bio write end callback was essentially ignoring the error
parameter. When a write error happens, it must pass a value of 0 to the
inode's write_page_end_io_hook callback, SetPageError on the respective
pages and set AS_EIO in the inode's mapping flags, so that a call to
filemap_fdatawait_range() / filemap_fdatawait() can find out that errors
happened (we surely don't want silent failures on fsync for example).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Its return value is completely ignored by its single caller and it's
useless anyway, since errors are indicated through SetPageError and
the bit AS_EIO set in the flags of the inode's mapping. The caller
can't do anything with the value, as it's invoked from a workqueue
task and not by the task calling filemap_fdatawrite_range (which calls
the writepages address space callback, which in turn calls the inode's
fill_delalloc callback).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we had an error when processing one of the async extents from our list,
we were not processing the remaining async extents, meaning we would leak
those async_extent structs, never release the pages with the compressed
data and never unlock and clear the dirty flag from the inode's pages (those
that correspond to the uncompressed content).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:submit_compressed_extents(), if we fail before calling
btrfs_submit_compressed_write(), or when that function fails, we
were freeing the async_extent structure without releasing its pages
and freeing the pages array.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:submit_compressed_extents(), before calling btrfs_submit_compressed_write()
we start writeback for all pages, clear their dirty flag, unlock them, etc, but if
btrfs_submit_compressed_write() fails (at the moment it can only fail with -ENOMEM),
we never end the writeback on the pages, so any filemap_fdatawait_range() call will
hang forever. We were also not calling the writepage end io hook, which means the
corresponding ordered extent will never complete and all its waiters will block
forever, such as a full fsync (via btrfs_wait_ordered_range()).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>