We observed some performance degradation on s390x with dynamic
halt polling. Until we can provide a proper fix, let's enable
halt_poll_ns as default only for supported architectures.
Architectures are now free to set their own halt_poll_ns
default value.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This new statistic can help diagnosing VCPUs that, for any reason,
trigger bad behavior of halt_poll_ns autotuning.
For example, say halt_poll_ns = 480000, and wakeups are spaced exactly
like 479us, 481us, 479us, 481us. Then KVM always fails polling and wastes
10+20+40+80+160+320+480 = 1110 microseconds out of every
479+481+479+481+479+481+479 = 3359 microseconds. The VCPU then
is consuming about 30% more CPU than it would use without
polling. This would show as an abnormally high number of
attempted polling compared to the successful polls.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com<
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add guest exception handling for MIPS SIMD Architecture (MSA) floating
point exceptions and MSA disabled exceptions.
MSA floating point exceptions from the guest need passing to the guest
kernel, so for these a guest MSAFPE is emulated.
MSA disabled exceptions are normally handled by passing a reserved
instruction exception to the guest (because no guest MSA was supported),
but the hypervisor can now handle them if the guest has MSA by passing
an MSA disabled exception to the guest, or if the guest has MSA enabled
by transparently restoring the guest MSA context and enabling MSA and
the FPU.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Add base code for supporting the MIPS SIMD Architecture (MSA) in MIPS
KVM guests. MSA cannot yet be enabled in the guest, we're just laying
the groundwork.
As with the FPU, whether the guest's MSA context is loaded is stored in
another bit in the fpu_inuse vcpu member. This allows MSA to be disabled
when the guest disables it, but keeping the MSA context loaded so it
doesn't have to be reloaded if the guest re-enables it.
New assembly code is added for saving and restoring the MSA context,
restoring only the upper half of the MSA context (for if the FPU context
is already loaded) and for saving/clearing and restoring MSACSR (which
can itself cause an MSA FP exception depending on the value). The MSACSR
is restored before returning to the guest if MSA is already enabled, and
the existing FP exception die notifier is extended to catch the possible
MSA FP exception and step over the ctcmsa instruction.
The helper function kvm_own_msa() is added to enable MSA and restore
the MSA context if it isn't already loaded, which will be used in a
later patch when the guest attempts to use MSA for the first time and
triggers an MSA disabled exception.
The existing FPU helpers are extended to handle MSA. kvm_lose_fpu()
saves the full MSA context if it is loaded (which includes the FPU
context) and both kvm_lose_fpu() and kvm_drop_fpu() disable MSA.
kvm_own_fpu() also needs to lose any MSA context if FR=0, since there
would be a risk of getting reserved instruction exceptions if CU1 is
enabled and we later try and save the MSA context. We shouldn't usually
hit this case since it will be handled when emulating CU1 changes,
however there's nothing to stop the guest modifying the Status register
directly via the comm page, which will cause this case to get hit.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Add guest exception handling for floating point exceptions and
coprocessor 1 unusable exceptions.
Floating point exceptions from the guest need passing to the guest
kernel, so for these a guest FPE is emulated.
Also, coprocessor 1 unusable exceptions are normally passed straight
through to the guest (because no guest FPU was supported), but the
hypervisor can now handle them if the guest has its FPU enabled by
restoring the guest FPU context and enabling the FPU.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Add base code for supporting FPU in MIPS KVM guests. The FPU cannot yet
be enabled in the guest, we're just laying the groundwork.
Whether the guest's FPU context is loaded is stored in a bit in the
fpu_inuse vcpu member. This allows the FPU to be disabled when the guest
disables it, but keeping the FPU context loaded so it doesn't have to be
reloaded if the guest re-enables it.
An fpu_enabled vcpu member stores whether userland has enabled the FPU
capability (which will be wired up in a later patch).
New assembly code is added for saving and restoring the FPU context, and
for saving/clearing and restoring FCSR (which can itself cause an FP
exception depending on the value). The FCSR is restored before returning
to the guest if the FPU is already enabled, and a die notifier is
registered to catch the possible FP exception and step over the ctc1
instruction.
The helper function kvm_lose_fpu() is added to save FPU context and
disable the FPU, which is used when saving hardware state before a
context switch or KVM exit (the vcpu_get_regs() callback).
The helper function kvm_own_fpu() is added to enable the FPU and restore
the FPU context if it isn't already loaded, which will be used in a
later patch when the guest attempts to use the FPU for the first time
and triggers a co-processor unusable exception.
The helper function kvm_drop_fpu() is added to discard the FPU context
and disable the FPU, which will be used in a later patch when the FPU
state will become architecturally UNPREDICTABLE (change of FR mode) to
force a reload of [stale] context in the new FR mode.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Add a vcpu_get_regs() and vcpu_set_regs() callbacks for loading and
restoring context which may be in hardware registers. This may include
floating point and MIPS SIMD Architecture (MSA) state which may be
accessed directly by the guest (but restored lazily by the hypervisor),
and also dedicated guest registers as provided by the VZ ASE.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Add Config4 and Config5 co-processor 0 registers, and add capability to
write the Config1, Config3, Config4, and Config5 registers using the KVM
API.
Only supported bits can be written, to minimise the chances of the guest
being given a configuration from e.g. QEMU that is inconsistent with
that being emulated, and as such the handling is in trap_emul.c as it
may need to be different for VZ. Currently the only modification
permitted is to make Config4 and Config5 exist via the M bits, but other
bits will be added for FPU and MSA support in future patches.
Care should be taken by userland not to change bits without fully
handling the possible extra state that may then exist and which the
guest may begin to use and depend on.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Various semi-used definitions exist in kvm_host.h for the default guest
config registers. Remove them and use the appropriate values directly
when initialising the Config registers.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Clean up KVM_GET_ONE_REG / KVM_SET_ONE_REG register definitions for
MIPS, to prepare for adding a new group for FPU & MSA vector registers.
Definitions are added for common bits in each group of registers, e.g.
KVM_REG_MIPS_CP0 = KVM_REG_MIPS | 0x10000, for the coprocessor 0
registers.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Implement access to the guest Processor Identification CP0 register
using the KVM_GET_ONE_REG and KVM_SET_ONE_REG ioctls. This allows the
owning process to modify and read back the value that is exposed to the
guest in this register.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Trap instructions are used by Linux to implement BUG_ON(), however KVM
doesn't pass trap exceptions on to the guest if they occur in guest
kernel mode, instead triggering an internal error "Exception Code: 13,
not yet handled". The guest kernel then doesn't get a chance to print
the usual BUG message and stack trace.
Implement handling of the trap exception so that it gets passed to the
guest and the user is left with a more useful log message.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: linux-mips@linux-mips.org
Guest user mode can generate a guest MSA Disabled exception on an MSA
capable core by simply trying to execute an MSA instruction. Since this
exception is unknown to KVM it will be passed on to the guest kernel.
However guest Linux kernels prior to v3.15 do not set up an exception
handler for the MSA Disabled exception as they don't support any MSA
capable cores. This results in a guest OS panic.
Since an older processor ID may be being emulated, and MSA support is
not advertised to the guest, the correct behaviour is to generate a
Reserved Instruction exception in the guest kernel so it can send the
guest process an illegal instruction signal (SIGILL), as would happen
with a non-MSA-capable core.
Fix this as minimally as reasonably possible by preventing
kvm_mips_check_privilege() from relaying MSA Disabled exceptions from
guest user mode to the guest kernel, and handling the MSA Disabled
exception by emulating a Reserved Instruction exception in the guest,
via a new handle_msa_disabled() KVM callback.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # v3.15+
This patch introduces a new module parameter for the KVM module; when it
is present, KVM attempts a bit of polling on every HLT before scheduling
itself out via kvm_vcpu_block.
This parameter helps a lot for latency-bound workloads---in particular
I tested it with O_DSYNC writes with a battery-backed disk in the host.
In this case, writes are fast (because the data doesn't have to go all
the way to the platters) but they cannot be merged by either the host or
the guest. KVM's performance here is usually around 30% of bare metal,
or 50% if you use cache=directsync or cache=writethrough (these
parameters avoid that the guest sends pointless flush requests, and
at the same time they are not slow because of the battery-backed cache).
The bad performance happens because on every halt the host CPU decides
to halt itself too. When the interrupt comes, the vCPU thread is then
migrated to a new physical CPU, and in general the latency is horrible
because the vCPU thread has to be scheduled back in.
With this patch performance reaches 60-65% of bare metal and, more
important, 99% of what you get if you use idle=poll in the guest. This
means that the tunable gets rid of this particular bottleneck, and more
work can be done to improve performance in the kernel or QEMU.
Of course there is some price to pay; every time an otherwise idle vCPUs
is interrupted by an interrupt, it will poll unnecessarily and thus
impose a little load on the host. The above results were obtained with
a mostly random value of the parameter (500000), and the load was around
1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU.
The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll,
that can be used to tune the parameter. It counts how many HLT
instructions received an interrupt during the polling period; each
successful poll avoids that Linux schedules the VCPU thread out and back
in, and may also avoid a likely trip to C1 and back for the physical CPU.
While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second.
Of these halts, almost all are failed polls. During the benchmark,
instead, basically all halts end within the polling period, except a more
or less constant stream of 50 per second coming from vCPUs that are not
running the benchmark. The wasted time is thus very low. Things may
be slightly different for Windows VMs, which have a ~10 ms timer tick.
The effect is also visible on Marcelo's recently-introduced latency
test for the TSC deadline timer. Though of course a non-RT kernel has
awful latency bounds, the latency of the timer is around 8000-10000 clock
cycles compared to 20000-120000 without setting halt_poll_ns. For the TSC
deadline timer, thus, the effect is both a smaller average latency and
a smaller variance.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the beggining was on_each_cpu(), which required an unused argument to
kvm_arch_ops.hardware_{en,dis}able, but this was soon forgotten.
Remove unnecessary arguments that stem from this.
Signed-off-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using static inline is going to save few bytes and cycles.
For example on powerpc, the difference is 700 B after stripping.
(5 kB before)
This patch also deals with two overlooked empty functions:
kvm_arch_flush_shadow was not removed from arch/mips/kvm/mips.c
2df72e9bc KVM: split kvm_arch_flush_shadow
and kvm_arch_sched_in never made it into arch/ia64/kvm/kvm-ia64.c.
e790d9ef6 KVM: add kvm_arch_sched_in
Signed-off-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Opaque KVM structs are useful for prototypes in asm/kvm_host.h, to avoid
"'struct foo' declared inside parameter list" warnings (and consequent
breakage due to conflicting types).
Move them from individual files to a generic place in linux/kvm_types.h.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose the KVM guest CP0_Count frequency to userland via a new
KVM_REG_MIPS_COUNT_HZ register accessible with the KVM_{GET,SET}_ONE_REG
ioctls.
When the frequency is altered the bias is adjusted such that the guest
CP0_Count doesn't jump discontinuously or lose any timer interrupts.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: David Daney <david.daney@cavium.com>
Cc: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose two new virtual registers to userland via the
KVM_{GET,SET}_ONE_REG ioctls.
KVM_REG_MIPS_COUNT_CTL is for timer configuration fields and just
contains a master disable count bit. This can be used by userland to
freeze the timer in order to read a consistent state from the timer
count value and timer interrupt pending bit. This cannot be done with
the CP0_Cause.DC bit because the timer interrupt pending bit (TI) is
also in CP0_Cause so it would be impossible to stop the timer without
also risking a race with an hrtimer interrupt and having to explicitly
check whether an interrupt should have occurred.
When the timer is re-enabled it resumes without losing time, i.e. the
CP0_Count value jumps to what it would have been had the timer not been
disabled, which would also be impossible to do from userland with
CP0_Cause.DC. The timer interrupt also cannot be lost, i.e. if a timer
interrupt would have occurred had the timer not been disabled it is
queued when the timer is re-enabled.
This works by storing the nanosecond monotonic time when the master
disable is set, and using it for various operations instead of the
current monotonic time (e.g. when recalculating the bias when the
CP0_Count is set), until the master disable is cleared again, i.e. the
timer state is read/written as it would have been at that time. This
state is exposed to userland via the read-only KVM_REG_MIPS_COUNT_RESUME
virtual register so that userland can determine the exact time the
master disable took effect.
This should allow userland to atomically save the state of the timer,
and later restore it.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: David Daney <david.daney@cavium.com>
Cc: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously the emulation of the CPU timer was just enough to get a Linux
guest running but some shortcuts were taken:
- The guest timer interrupt was hard coded to always happen every 10 ms
rather than being timed to when CP0_Count would match CP0_Compare.
- The guest's CP0_Count register was based on the host's CP0_Count
register. This isn't very portable and fails on cores without a
CP_Count register implemented such as Ingenic XBurst. It also meant
that the guest's CP0_Cause.DC bit to disable the CP0_Count register
took no effect.
- The guest's CP0_Count register was emulated by just dividing the
host's CP0_Count register by 4. This resulted in continuity problems
when used as a clock source, since when the host CP0_Count overflows
from 0x7fffffff to 0x80000000, the guest CP0_Count transitions
discontinuously from 0x1fffffff to 0xe0000000.
Therefore rewrite & fix emulation of the guest timer based on the
monotonic kernel time (i.e. ktime_get()). Internally a 32-bit count_bias
value is added to the frequency scaled nanosecond monotonic time to get
the guest's CP0_Count. The frequency of the timer is initialised to
100MHz and cannot yet be changed, but a later patch will allow the
frequency to be configured via the KVM_{GET,SET}_ONE_REG ioctl
interface.
The timer can now be stopped via the CP0_Cause.DC bit (by the guest or
via the KVM_SET_ONE_REG ioctl interface), at which point the current
CP0_Count is stored and can be read directly. When it is restarted the
bias is recalculated such that the CP0_Count value is continuous.
Due to the nature of hrtimer interrupts any read of the guest's
CP0_Count register while it is running triggers a check for whether the
hrtimer has expired, so that the guest/userland cannot observe the
CP0_Count passing CP0_Compare without queuing a timer interrupt. This is
also taken advantage of when stopping the timer to ensure that a pending
timer interrupt is queued.
This replaces the implementation of:
- Guest read of CP0_Count
- Guest write of CP0_Count
- Guest write of CP0_Compare
- Guest write of CP0_Cause
- Guest read of HWR 2 (CC) with RDHWR
- Host read of CP0_Count via KVM_GET_ONE_REG ioctl interface
- Host write of CP0_Count via KVM_SET_ONE_REG ioctl interface
- Host write of CP0_Compare via KVM_SET_ONE_REG ioctl interface
- Host write of CP0_Cause via KVM_SET_ONE_REG ioctl interface
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hrtimer callback for guest timer timeouts sets the guest's
CP0_Cause.TI bit to indicate to the guest that a timer interrupt is
pending, however there is no mutual exclusion implemented to prevent
this occurring while the guest's CP0_Cause register is being
read-modify-written elsewhere.
When this occurs the setting of the CP0_Cause.TI bit is undone and the
guest misses the timer interrupt and doesn't reprogram the CP0_Compare
register for the next timeout. Currently another timer interrupt will be
triggered again in another 10ms anyway due to the way timers are
emulated, but after the MIPS timer emulation is fixed this would result
in Linux guest time standing still and the guest scheduler not being
invoked until the guest CP0_Count has looped around again, which at
100MHz takes just under 43 seconds.
Currently this is the only asynchronous modification of guest registers,
therefore it is fixed by adjusting the implementations of the
kvm_set_c0_guest_cause(), kvm_clear_c0_guest_cause(), and
kvm_change_c0_guest_cause() macros which are used for modifying the
guest CP0_Cause register to use ll/sc to ensure atomic modification.
This should work in both UP and SMP cases without requiring interrupts
to be disabled.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement KVM_{GET,SET}_ONE_REG ioctl based access to the guest CP0
UserLocal register. This is so that userland can save and restore its
value.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: David Daney <david.daney@cavium.com>
Cc: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement KVM_{GET,SET}_ONE_REG ioctl based access to the guest CP0
Count and Compare registers. These registers are special in that writing
to them has side effects (adjusting the time until the next timer
interrupt) and reading of Count depends on the time. Therefore add a
couple of callbacks so that different implementations (trap & emulate or
VZ) can implement them differently depending on what the hardware
provides.
The trap & emulate versions mostly duplicate what happens when a T&E
guest reads or writes these registers, so it inherits the same
limitations which can be fixed in later patches.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: David Daney <david.daney@cavium.com>
Cc: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the KVM_{GET,SET}_ONE_REG MIPS register id definitions out of
kvm_mips.c to kvm_host.h so that they can be shared between multiple
source files. This allows register access to be indirected depending on
the underlying implementation (trap & emulate or VZ).
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: David Daney <david.daney@cavium.com>
Cc: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MIPS KVM uses mips32_SyncICache to synchronise the icache with the
dcache after dynamically modifying guest instructions or writing guest
exception vector. However this uses rdhwr to get the SYNCI step, which
causes a reserved instruction exception on Ingenic XBurst cores.
It would seem to make more sense to use local_flush_icache_range()
instead which does the same thing but is more portable.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: kvm@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ability to read hardware registers from userland with the RDHWR
instruction should depend upon the corresponding bit of the HWREna
register being set, otherwise a reserved instruction exception should be
generated.
However KVM's current emulation ignores the guest's HWREna and always
emulates RDHWR instructions even if the guest OS has disallowed them.
Therefore rework the RDHWR emulation code to check for privilege or the
corresponding bit in the guest HWREna bit. Also remove the #if 0 case
for the UserLocal register. I presume it was there for debug purposes
but it seems unnecessary now that the guest can control whether it
causes a guest exception.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sanjay Lal <sanjayl@kymasys.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The whitespace in asm/kvm_host.h is quite inconsistent in places. Clean
up the whole file to use tabs more consistently.
When you use the --ignore-space-change argument to git diff this patch
only changes line wrapping in TLB_IS_GLOBAL and TLB_IS_VALID macros.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sanjay Lal <sanjayl@kymasys.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_mips_init_shadow_tlb() function is called from
kvm_arch_vcpu_init() and initialises entries 0 to
current_cpu_data.tlbsize-1 of the virtual cpu's shadow_tlb[64] array.
However newer cores with FTLBs can have a tlbsize > 64, for example the
ProAptiv I'm testing on has a total tlbsize of 576. This causes
kvm_mips_init_shadow_tlb() to overflow the shadow_tlb[64] array and
overwrite the comparecount_timer among other things, causing a lock up
when starting a KVM guest.
Aside from kvm_mips_init_shadow_tlb() which only initialises it, the
shadow_tlb[64] array is only actually used by the following functions:
- kvm_shadow_tlb_put() & kvm_shadow_tlb_load()
These are never called. The only call sites are #if 0'd out.
- kvm_mips_dump_shadow_tlbs()
This is never called.
It was originally added for trap & emulate, but turned out to be
unnecessary so it was disabled.
So instead of fixing the shadow_tlb initialisation code, lets just
remove the shadow_tlb[64] array and the above functions entirely. The
only functional change here is the removal of broken shadow_tlb
initialisation. The rest just deletes dead code.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: Gleb Natapov <gleb@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Sanjay Lal <sanjayl@kymasys.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: John Crispin <blogic@openwrt.org>
Patchwork: http://patchwork.linux-mips.org/patch/6384/
Now when the main kvm code relying on these defines has been moved to
the x86 specific part of the world, we can get rid of these.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Because not all 256 CP0 registers are ever implemented, we need a
different method of manipulating them. Use the
KVM_SET_ONE_REG/KVM_GET_ONE_REG mechanism.
Now unused code and definitions are removed.
Signed-off-by: David Daney <david.daney@cavium.com>
Acked-by: Sanjay Lal <sanjayl@kymasys.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit d532f3d267.
The original commit has several problems:
1) Doesn't work with 64-bit kernels.
2) Calls TLBMISS_HANDLER_SETUP() before the code is generated.
3) Calls TLBMISS_HANDLER_SETUP() twice in per_cpu_trap_init() when
only one call is needed.
[ralf@linux-mips.org: Also revert the bits of the ASID patch which were
hidden in the KVM merge.]
Signed-off-by: David Daney <david.daney@cavium.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Cc: "Steven J. Hill" <Steven.Hill@imgtec.com>
Cc: David Daney <david.daney@cavium.com>
Patchwork: https://patchwork.linux-mips.org/patch/5242/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>