The default kvm gmap notifier doesn't have to handle shadow gmaps.
So let's just directly exit in case we get notified about one.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's not fault in everything in read-write but limit it to read-only
where possible.
When restricting access rights, we already have the required protection
level in our hands. When reading from guest 2 storage (gmap_read_table),
it is obviously PROT_READ. When shadowing a pte, the required protection
level is given via the guest 2 provided pte.
Based on an initial patch by Martin Schwidefsky.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
It will be very helpful to have a mechanism to check without any locks
if a given gmap shadow is still valid and matches the given properties.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For nested virtualization, we want to know if we are handling a protection
exception, because these can directly be forwarded to the guest without
additional checks.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have no known user of real-space designation and only support it to
be architecture compliant.
Gmap shadows with real-space designation are never unshadowed
automatically, as there is nothing to protect for the top level table.
So let's simply limit the number of such shadows to one by removing
existing ones on creation of another one.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can easily support real-space designation just like EDAT1 and EDAT2.
So guest2 can provide for guest3 an asce with the real-space control being
set.
We simply have to allocate the biggest page table possible and fake all
levels.
There is no protection to consider. If we exceed guest memory, vsie code
will inject an addressing exception (via program intercept). In the future,
we could limit the fake table level to the gmap page table.
As the top level page table can never go away, such gmap shadows will never
get unshadowed, we'll have to come up with another way to limit the number
of kept gmap shadows.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Just like we already do with ste protection, let's take rte protection
into account. This way, the host pte doesn't have to be mapped writable.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the guest is enabled for EDAT2, we can easily create shadows for
guest2 -> guest3 provided tables that make use of EDAT2.
If guest2 references a 2GB page, this memory looks consecutive for guest2,
but it does not have to be so for us. Therefore we have to create fake
segment and page tables.
This works just like EDAT1 support, so page tables are removed when the
parent table (r3t table entry) is changed.
We don't hve to care about:
- ACCF-Validity Control in RTTE
- Access-Control Bits in RTTE
- Fetch-Protection Bit in RTTE
- Common-Region Bit in RTTE
Just like for EDAT1, all bits might be dropped and there is no guaranteed
that they are active.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the guest is enabled for EDAT1, we can easily create shadows for
guest2 -> guest3 provided tables that make use of EDAT1.
If guest2 references a 1MB page, this memory looks consecutive for guest2,
but it might not be so for us. Therefore we have to create fake page tables.
We can easily add that to our existing infrastructure. The invalidation
mechanism will make sure that fake page tables are removed when the parent
table (sgt table entry) is changed.
As EDAT1 also introduced protection on all page table levels, we have to
also shadow these correctly.
We don't have to care about:
- ACCF-Validity Control in STE
- Access-Control Bits in STE
- Fetch-Protection Bit in STE
- Common-Segment Bit in STE
As all bits might be dropped and there is no guaranteed that they are
active ("unpredictable whether the CPU uses these bits", "may be used").
Without using EDAT1 in the shadow ourselfes (STE-format control == 0),
simply shadowing these bits would not be enough. They would be ignored.
Please note that we are using the "fake" flag to make this look consistent
with further changes (EDAT2, real-space designation support) and don't let
the shadow functions handle fc=1 stes.
In the future, with huge pages in the host, gmap_shadow_pgt() could simply
try to map a huge host page if "fake" is set to one and indicate via return
value that no lower fake tables / shadow ptes are required.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
In preparation for EDAT1/EDAT2 support for gmap shadows, we have to store
the requested edat level in the gmap shadow.
The edat level used during shadow translation is a property of the gmap
shadow. Depending on that level, the gmap shadow will look differently for
the same guest tables. We have to store it internally in order to support
it later.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If a guest ste is read-only, it doesn't make sense to force the ptes in as
writable in the host. If the source page is read-only in the host, it won't
have to be made writable. Please note that if the source page is not
available, it will still be faulted in writable. This can be changed
internally later on.
If ste protection is removed, underlying shadow tables are also removed,
therefore this change does not affect the guest.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's take the ipte_lock while working on guest 2 provided page table, just
like the other gaccess functions.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As gmap shadows contains correct protection permissions, protection
exceptons can directly be forwarded to guest 3. If we would encounter
a protection exception while faulting, the next guest 3 run will
automatically handle that for us.
Keep the dat_protection logic in place, as it will be helpful later.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Instead of doing it in the caller, let's just take the mmap_sem
in kvm_s390_shadow_fault(). By taking it as read, we allow parallel
faulting on shadow page tables, gmap shadow code is prepared for that.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Before any thread is allowed to use a gmap_shadow, it has to be fully
initialized. However, for invalidation to work properly, we have to
register the new gmap_shadow before we protect the parent gmap table.
Because locking is tricky, and we have to avoid duplicate gmaps, let's
introduce an initialized field, that signalizes other threads if that
gmap_shadow can already be used or if they have to retry.
Let's properly return errors using ERR_PTR() instead of simply returning
NULL, so a caller can properly react on the error.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have to unlock sg->guest_table_lock in order to call
gmap_protect_rmap(). If we sleep just before that call, another VCPU
might pick up that shadowed page table (while it is not protected yet)
and use it.
In order to avoid these races, we have to introduce a third state -
"origin set but still invalid" for an entry. This way, we can avoid
another thread already using the entry before the table is fully protected.
As soon as everything is set up, we can clear the invalid bit - if we
had no race with the unshadowing code.
Suggested-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We really want to avoid manually handling protection for nested
virtualization. By shadowing pages with the protection the guest asked us
for, the SIE can handle most protection-related actions for us (e.g.
special handling for MVPG) and we can directly forward protection
exceptions to the guest.
PTEs will now always be shadowed with the correct _PAGE_PROTECT flag.
Unshadowing will take care of any guest changes to the parent PTE and
any host changes to the host PTE. If the host PTE doesn't have the
fitting access rights or is not available, we have to fix it up.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For now, the tlb of shadow gmap is only flushed when the parent is removed,
not when it is removed upfront. Therefore other shadow gmaps can reuse the
tables without the tlb getting flushed.
Fix this by simply flushing the tlb
1. Before the shadow tables are removed (analogouos to other unshadow functions)
2. When the gmap is freed and therefore the top level pages are freed.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch introduces function kvm_s390_shadow_fault() used to resolve a
fault on a shadow gmap. This function will do validity checking and
build up the shadow page table hierarchy in order to fault in the
requested page into the shadow page table structure.
If an exception occurs while shadowing, guest 2 has to be notified about
it using either an exception or a program interrupt intercept. If
concurrent unshadowing occurres, this function will simply return with
-EAGAIN and the caller has to retry.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For a nested KVM guest the outer KVM host needs to create shadow
page tables for the nested guest. This patch adds the basic support
to the guest address space (gmap) code.
For each guest address space the inner KVM host creates, the first
outer KVM host needs to create shadow page tables. The address space
is identified by the ASCE loaded into the control register 1 at the
time the inner SIE instruction for the second nested KVM guest is
executed. The outer KVM host creates the shadow tables starting with
the table identified by the ASCE on a on-demand basis. The outer KVM
host will get repeated faults for all the shadow tables needed to
run the second KVM guest.
While a shadow page table for the second KVM guest is active the access
to the origin region, segment and page tables needs to be restricted
for the first KVM guest. For region and segment and page tables the first
KVM guest may read the memory, but write attempt has to lead to an
unshadow. This is done using the page invalid and read-only bits in the
page table of the first KVM guest. If the first guest re-accesses one of
the origin pages of a shadow, it gets a fault and the affected parts of
the shadow page table hierarchy needs to be removed again.
PGSTE tables don't have to be shadowed, as all interpretation assist can't
deal with the invalid bits in the shadow pte being set differently than
the original ones provided by the first KVM guest.
Many bug fixes and improvements by David Hildenbrand.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's use a reference counter mechanism to control the lifetime of
gmap structures. This will be needed for further changes related to
gmap shadows.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The current gmap pte notifier forces a pte into to a read-write state.
If the pte is invalidated the gmap notifier is called to inform KVM
that the mapping will go away.
Extend this approach to allow read-write, read-only and no-access
as possible target states and call the pte notifier for any change
to the pte.
This mechanism is used to temporarily set specific access rights for
a pte without doing the heavy work of a true mprotect call.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The gmap notifier list and the gmap list in the mm_struct change rarely.
Use RCU to optimize the reader of these lists.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Pass an address range to the page table invalidation notifier
for KVM. This allows to notify changes that affect a larger
virtual memory area, e.g. for 1MB pages.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Hook the VMX preemption timer to the "hv timer" functionality added
by the previous patch. This includes: checking if the feature is
supported, if the feature is broken on the CPU, the hooks to
setup/clean the VMX preemption timer, arming the timer on vmentry
and handling the vmexit.
A module parameter states if the VMX preemption timer should be
utilized.
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
[Move hv_deadline_tsc to struct vcpu_vmx, use -1 as the "unset" value.
Put all VMX bits here. Enable it by default #yolo. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare to switch from preemption timer to hrtimer in the
vmx_pre/post_block. Current functions are only for posted interrupt,
rename them accordingly.
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMX preemption timer can be used to virtualize the TSC deadline timer.
The VMX preemption timer is armed when the vCPU is running, and a VMExit
will happen if the virtual TSC deadline timer expires.
When the vCPU thread is blocked because of HLT, KVM will switch to use
an hrtimer, and then go back to the VMX preemption timer when the vCPU
thread is unblocked.
This solution avoids the complex OS's hrtimer system, and the host
timer interrupt handling cost, replacing them with a little math
(for guest->host TSC and host TSC->preemption timer conversion)
and a cheaper VMexit. This benefits latency for isolated pCPUs.
[A word about performance... Yunhong reported a 30% reduction in average
latency from cyclictest. I made a similar test with tscdeadline_latency
from kvm-unit-tests, and measured
- ~20 clock cycles loss (out of ~3200, so less than 1% but still
statistically significant) in the worst case where the test halts
just after programming the TSC deadline timer
- ~800 clock cycles gain (25% reduction in latency) in the best case
where the test busy waits.
I removed the VMX bits from Yunhong's patch, to concentrate them in the
next patch - Paolo]
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function to start the tsc deadline timer virtualization will be used
also by the pre_block hook when we use the preemption timer; change it
to a separate function. No logic changes.
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new created_vcpus field avoids possible races between enabling
capabilities and creating VCPUs.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new created_vcpus field makes it possible to avoid the race between
irqchip and VCPU creation in a much nicer way; just check under kvm->lock
whether a VCPU has already been created.
We can then remove KVM_APIC_ARCHITECTURE too, because at this point the
symbol is only governing the default definition of kvm_vcpu_compatible.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The race between creating the irqchip and the first VCPU is
currently fixed by checking the presence of an irqchip before
updating kvm->online_vcpus, and undoing the whole VCPU creation
if someone created the irqchip in the meanwhile.
Instead, introduce a new field in struct kvm that will count VCPUs
under a mutex, without the atomic access and memory ordering that we
need elsewhere to protect the vcpus array. This also plugs the race
and is more easily applicable in all similar circumstances.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert MIPS KVM guest register state initialisation to use the standard
<asm/mipsregs.h> register field definitions for Config registers, and
drop the custom definitions in kvm_host.h which it was using before.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialise the guest's CP0_Config register with a few more bits of
information from the host. The BE bit should be set on big endian
machines, the VI bit should be set on machines with a virtually tagged
instruction cache, and the reported architecture revision should match
that of the host (since we won't support emulating pre-r6 instruction
encodings on r6 or vice versa).
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Config.VI bit specifies that the instruction cache is virtually
tagged, which is checked in c-r4k.c's probe_pcache(). Add a proper
definition for it in mipsregs.h and make use of it.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM TLB mappings for the guest were being created with a cache coherency
attribute (CCA) of 3, which is cached incoherent. Create them instead
with the default host CCA, which should be the correct one for coherency
on SMP systems.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The comm page which is mapped into the guest kernel address space at
0x0 has the unfortunate side effect of allowing guest kernel NULL
pointer dereferences to succeed. The only constraint on this address is
that it must be within 32KiB of 0x0, so that single lw/sw instructions
(which have 16-bit signed offset fields) can be used to access it, using
the zero register as a base.
So lets move the comm page as high as possible within that constraint so
that 0x0 can be left unmapped, at least for page sizes < 32KiB.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow up to 6 KVM guest KScratch registers to be enabled and accessed
via the KVM guest register API and from the guest itself (the fallback
reading and writing of commpage registers is sufficient for KScratch
registers to work as expected).
User mode can expose the registers by setting the appropriate bits of
the guest Config4.KScrExist field. KScratch registers that aren't usable
won't be writeable via the KVM Ioctl API.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Actually provide the VCPU number when emulating the RDHWR CPUNum
register, so that it will match the CPUNum field of CP0_EBase register,
rather than always returning 0.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ULRI bit in Config3 specifies whether the UserLocal register is
implemented, but it is assumed to always be set. Now that the Config
registers can be modified by userland, allow Config3.ULRI to be cleared
and check ULRI before allowing the corresponding bit to be set in
HWREna.
In fact any HWREna bits corresponding to unimplemented RDHWR registers
should read as zero and be ignored on write, so we actually prevent
other unimplemented bits being set too.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM modifies CP0_HWREna during guest execution so it can trap and
emulate RDHWR instructions, however it always restores the hardcoded
value 0x2000000F. This assumes the presence of the UserLocal register,
and the absence of any implementation dependent or future HW registers.
Fix by exporting the value that traps.c write into CP0_HWREna, and
loading from there instead of hard coding.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No preprocessor definitions are used in the handling of the registers
accessible with the RDHWR instruction, nor the corresponding bits in the
CP0 HWREna register.
Add definitions for both the register numbers (MIPS_HWR_*) and HWREna
bits (MIPS_HWRENA_*) in asm/mipsregs.h and make use of them in the
initialisation of HWREna and emulation of the RDHWR instruction.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make KVM_GET_REG_LIST list FPU & MSA registers. Specifically we list all
32 vector registers when MSA can be enabled, 32 single-precision FP
registers when FPU can be enabled, and either 16 or 32 double-precision
FP registers when FPU can be enabled depending on whether FR mode is
supported (which provides 32 doubles instead of 16 even doubles).
Note, these registers may still be inaccessible depending on the current
FP mode of the guest.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We need to use kvm_mips_guest_can_have_fpu() when deciding which
registers to list with KVM_GET_REG_LIST, however it causes warnings with
preemption since it uses cpu_has_fpu. KVM is only really supported on
CPUs which have symmetric FPUs, so switch to raw_cpu_has_fpu to avoid
the warning.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the implementation of KVM_GET_REG_LIST more dynamic so that only
the subset of registers actually available can be exposed to user mode.
This is important for VZ where some of the guest register state may not
be possible to prevent the guest from accessing, therefore the user
process may need to be aware of the state even if it doesn't understand
what the state is for.
This also allows different MIPS KVM implementations to provide different
registers to one another, by way of new num_regs(vcpu) and
copy_reg_indices(vcpu, indices) callback functions, currently just
stubbed for trap & emulate.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass all unrecognised register IDs through to the set_one_reg() and
get_one_reg() callbacks, not just select ones. This allows
implementation specific registers to be more easily added without having
to modify arch/mips/kvm/mips.c.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert various MIPS KVM guest instruction emulation functions to decode
instructions (and encode translations) using the union mips_instruction
and related enumerations in asm/inst.h rather than #defines and
hardcoded values.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The code in kvm_mips_dyntrans.c to write a translated guest instruction
to guest memory depending on the segment is duplicated between each of
the functions. Additionally the cache op translation functions assume
the instruction is in the KSEG0/1 segment rather than KSEG2/3, which is
generally true but isn't guaranteed.
Factor that code into a new kvm_mips_trans_replace() which handles both
KSEG0/1 and KSEG2/3.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The MIPS KVM dynamic translation is meant to translate "MFC0 rt, ErrCtl"
instructions into "ADD rt, zero, zero" to zero the destination register,
however the rt register number was copied into rt of the ADD instruction
encoding, which is the 2nd source operand. This results in "ADD zero,
zero, rt" which is a no-op, so only the first execution of each such
MFC0 from ErrCtl will actually read 0.
Fix the shift to put the rt from the MFC0 encoding into the rd field of
the ADD.
Fixes: 50c8308538 ("KVM/MIPS32: Binary patching of select privileged instructions.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Four bigger things:
1. The implementation of the STHYI opcode in the kernel. This is used
in libraries like qclib [1] to provide enough information for a
capacity and usage based software licence pricing. The STHYI content
is defined by the related z/VM documentation [2]. Its data can be
composed by accessing several other interfaces provided by LPAR or
the machine. This information is partially sensitive or root-only
so the kernel does the necessary filtering.
2. Preparation for nested virtualization (VSIE). KVM should query the
proper sclp interfaces for the availability of some features before
using it. In the past we have been sloppy and simply assumed that
several features are available. With this we should be able to handle
most cases of a missing feature.
3. CPU model interfaces extended by some additional features that are
not covered by a facility bit in STFLE. For example all the crypto
instructions of the coprocessor provide a query function. As reality
tends to be more complex (e.g. export regulations might block some
algorithms) we have to provide additional interfaces to query or
set these non-stfle features.
4. Several fixes and changes detected and fixed when doing 1-3.
All features change base s390 code. All relevant patches have an ACK
from the s390 or component maintainers.
The next pull request for 4.8 (part2) will contain the implementation
of VSIE.
[1] http://www.ibm.com/developerworks/linux/linux390/qclib.html
[2] https://www.ibm.com/support/knowledgecenter/SSB27U_6.3.0/com.ibm.zvm.v630.hcpb4/hcpb4sth.htm
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJXX+A6AAoJEBF7vIC1phx8SBoQAIkFTMxoGvY9lFkkreUXIyeX
XL0grybhsaKd4tT80FlobTl2ejpo/feRl5RfD5Oi75UCR4oMuk3Eb8bIyQjcKJvS
7sYFz+zP9TZ5S/rxvc3EanXpcNnfowKDuLUyOTaq0Hq8XQHaSwzYGGbtPgTdMDAp
DyhwNhYK8cPvmBS3KHX70ZOMfl9J4s0xvgs42BRJyyDGYrJOZcN1NLsG2l1dAb0L
au/Svb05PxhgQvqoUId3VSrmRKLm9tSk5DJdIRcmj1+4Mlhfw14LTV+wGuTLTgSZ
GOyEdum2E/b4QABWca7sxmgqo+Wo5voOW+WKOGLMiN2sK+JwvSnu4qmiRG/qgFCJ
EQDZer+OEQTu+YgZzjm/r5wbIkV/gqUenjjepk5iWrxK6EB7CmlQuZyyEKm3wO7i
LrEDqRU7SY+PuUu+Ov6/PHxmMy5DJuK+AedRe8uzuDSmYpSekYFLD44gctkPe56q
uq4Fhx3g3EIkPMcHnAae92vHLp/INCHCGoPb4Xh6CnaP4Xm+RntCv2hWxw30rHgc
IIYVy4fSyJuTeHpFcNgeBrbcx4jwvkfJ9kxezM864DA9hBBfcS3ZZDhLM5PPEaLr
usu7Gt6nHeFtwvXxZn/Y+SsYWCWpmbt6An/m+lqf05aAqyndhbwJ8Kftz3OAxKDw
b7o59x2wvV9dfakAHxNx
=fdBQ
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
KVM: s390: Features and fixes for 4.8 part1
Four bigger things:
1. The implementation of the STHYI opcode in the kernel. This is used
in libraries like qclib [1] to provide enough information for a
capacity and usage based software licence pricing. The STHYI content
is defined by the related z/VM documentation [2]. Its data can be
composed by accessing several other interfaces provided by LPAR or
the machine. This information is partially sensitive or root-only
so the kernel does the necessary filtering.
2. Preparation for nested virtualization (VSIE). KVM should query the
proper sclp interfaces for the availability of some features before
using it. In the past we have been sloppy and simply assumed that
several features are available. With this we should be able to handle
most cases of a missing feature.
3. CPU model interfaces extended by some additional features that are
not covered by a facility bit in STFLE. For example all the crypto
instructions of the coprocessor provide a query function. As reality
tends to be more complex (e.g. export regulations might block some
algorithms) we have to provide additional interfaces to query or
set these non-stfle features.
4. Several fixes and changes detected and fixed when doing 1-3.
All features change base s390 code. All relevant patches have an ACK
from the s390 or component maintainers.
The next pull request for 4.8 (part2) will contain the implementation
of VSIE.
[1] http://www.ibm.com/developerworks/linux/linux390/qclib.html
[2] https://www.ibm.com/support/knowledgecenter/SSB27U_6.3.0/com.ibm.zvm.v630.hcpb4/hcpb4sth.htm