In commit fb5a515704 "Remove platforms/wsp and associated pieces" we
removed the last user of CPU_FTRS_A2, so we should remove it too.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We potentially clear CPU_FTR_HVMODE at runtime in __init_hvmode_206(),
so we must make sure it's not set in CPU_FTRS_ALWAYS.
This doesn't hurt us in practice at the moment, because we don't support
compiling only for CPUs that support CPU_FTR_HVMODE.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We have been a bit slack about updating the CPU_FTRS_POSSIBLE and
CPU_FTRS_ALWAYS masks. When we added POWER8, and also POWER8E we forgot
to update the ALWAYS mask. And when we added POWER8_DD1 we forgot to
update both the POSSIBLE and ALWAYS masks.
Luckily this hasn't caused any actual bugs AFAICS. Failing to update the
ALWAYS mask just forgoes a potential optimisation opportunity. Failing
to update the POSSIBLE mask for POWER8_DD1 is also OK because it only
removes a bit rather than adding any.
Regardless they should all be in both masks so as to avoid any future
bugs when the set of ALWAYS/POSSIBLE bits changes, or the masks
themselves change.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Michael Neuling <mikey@neuling.org>
Acked-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Scott writes:
Highlights include e6500 hardware threading support, an e6500 TLB erratum
workaround, corenet error reporting, support for a new board, and some
minor fixes.
The general idea is that each core will release all of its
threads into the secondary thread startup code, which will
eventually wait in the secondary core holding area, for the
appropriate bit in the PACA to be set. The kick_cpu function
pointer will set that bit in the PACA, and thus "release"
the core/thread to boot. We also need to do a few things that
U-Boot normally does for CPUs (like enable branch prediction).
Signed-off-by: Andy Fleming <afleming@freescale.com>
[scottwood@freescale.com: various changes, including only enabling
threads if Linux wants to kick them]
Signed-off-by: Scott Wood <scottwood@freescale.com>
We have a strange #define in cputable.h called CLASSIC_PPC.
Although it is defined for 32 & 64bit, it's only used for 32bit and
it's basically a duplicate of CONFIG_PPC_BOOK3S_32, so let's use
the latter.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Although the name CONFIG_POWER4 suggests that it controls support for
power4 cpus, this symbol is actually misnamed.
It is a historical wart from the powermac code, which used to support
building a 32-bit kernel for power4. CONFIG_POWER4 was used in that
context to guard code that was 64-bit only.
In the powermac code we can just use CONFIG_PPC64 instead, and in other
places it is a synonym for CONFIG_PPC_BOOK3S_64.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Now that we have dropped power3 support we can remove CONFIG_POWER3. The
usage in pgtable_32.c was already dead code as CONFIG_POWER3 was not
selectable on PPC32.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We now only support cpus that use an SLB, so we don't need an MMU
feature to indicate that.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We inadvertently broke power3 support back in 3.4 with commit
f5339277eb "powerpc: Remove FW_FEATURE ISERIES from arch code".
No one noticed until at least 3.9.
By then we'd also broken it with the optimised memcpy, copy_to/from_user
and clear_user routines. We don't want to add any more complexity to
those just to support ancient cpus, so it seems like it's a good time to
drop support for power3 and earlier.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
These processors do not currently support doorbell IPIs, so remove them
from the feature list if we are at DD 1.xx for the 0x004d part.
This fixes a regression caused by d4e58e5928 (powerpc/powernv: Enable
POWER8 doorbell IPIs). With that patch the kernel would hang at boot
when calling smp_call_function_many, as the doorbell would not be
received by the target CPUs:
.smp_call_function_many+0x2bc/0x3c0 (unreliable)
.on_each_cpu_mask+0x30/0x100
.cpuidle_register_driver+0x158/0x1a0
.cpuidle_register+0x2c/0x110
.powernv_processor_idle_init+0x23c/0x2c0
.do_one_initcall+0xd4/0x260
.kernel_init_freeable+0x25c/0x33c
.kernel_init+0x1c/0x120
.ret_from_kernel_thread+0x58/0x7c
Fixes: d4e58e5928 (powerpc/powernv: Enable POWER8 doorbell IPIs)
Signed-off-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some power8 revisions have a hardware bug where we can lose a
Performance Monitor (PMU) exception under certain circumstances.
We will be adding a workaround for this case, see the next commit for
details. The observed behaviour is that writing PMAO doesn't cause an
exception as we would expect, hence the name of the feature.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch introduces flush_tlb operation in cpu_spec structure. This will
help us to invoke appropriate CPU-side flush tlb routine. This patch
adds the foundation to invoke CPU specific flush routine for respective
architectures. Currently this patch introduce flush_tlb for p7 and p8.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds the early machine check function pointer in cputable for
CPU specific early machine check handling. The early machine handle routine
will be called in real mode to handle SLB and TLB errors. We can not reuse
the existing machine_check hook because it is always invoked in kernel
virtual mode and we would already be in trouble if we get SLB or TLB errors.
This patch just sets up a mechanism to invoke CPU specific handler. The
subsequent patches will populate the function pointer.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Erratum A-006598 says that 64-bit mftb is not atomic -- it's subject
to a similar race condition as doing mftbu/mftbl on 32-bit. The lower
half of timebase is updated before the upper half; thus, we can share
the workaround for a similar bug on Cell. This workaround involves
looping if the lower half of timebase is zero, thus avoiding the need
for a scratch register (other than CR0). This workaround must be
avoided when the timebase is frozen, such as during the timebase sync
code.
This deals with kernel and vdso accesses, but other userspace accesses
will of course need to be fixed elsewhere.
Signed-off-by: Scott Wood <scottwood@freescale.com>
When introducing support for DABRX in 4474ef0, we broke older 32-bit CPUs
that don't have that register.
Some CPUs have a DABR but not DABRX. Configuration are:
- No 32bit CPUs have DABRX but some have DABR.
- POWER4+ and below have the DABR but no DABRX.
- 970 and POWER5 and above have DABR and DABRX.
- POWER8 has DAWR, hence no DABRX.
This introduces CPU_FTR_DABRX and sets it on appropriate CPUs. We use
the top 64 bits for CPU FTR bits since only 64 bit CPUs have this.
Processors that don't have the DABRX will still work as they will fall
back to software filtering these breakpoints via perf_exclude_event().
Signed-off-by: Michael Neuling <mikey@neuling.org>
Reported-by: "Gorelik, Jacob (335F)" <jacob.gorelik@jpl.nasa.gov>
cc: stable@vger.kernel.org (v3.9 only)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Also, make HTM's presence dependent on the .config option.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We are getting low on cpu feature bits. So rather than add a separate bit for
every new Power8 feature, add a bit for arch 2.07 server catagory and use that
instead.
Hijack the value we had for BCTAR, but swap the value with CFAR so that all the
ARCH defines are together.
Note we don't touch CPU_FTR_TM, because it is conditionally enabled if
the kernel is built with TM support.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
From Kumar Gala:
<<
Add support for T4 and B4 SoC families from Freescale, e6500 altivec
support, some various board fixes and other minor cleanups.
>>
We are currently out of free bits in AT_HWCAP. With POWER8, we have
several hardware features that we need to advertise.
Tested on POWER and x86.
Signed-off-by: Michael Neuling <michael@neuling.org>
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The e6500 core adds support for AltiVec on a Book-E class processor.
Connect up all the various exception handling code and build config
mechanisms to allow user spaces apps to utilize AltiVec.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds support for enabling and context switching the Target
Address Register in Power8. The TAR is a new special purpose register
that can be used for computed branches with the bctar[l] (branch
conditional to TAR) instruction in the same manner as the count and link
registers.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
.. and add it to POWER8 cpu features.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This frees up 7 bits for crazy new CPU features.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
These are 32 bit, so no need to have a bunch of wasted 0s.
The 0s saved here can be put to better use elsewhere, like at the end of my pay
check.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[PATCH 2/6] powerpc: Enable PPR save/restore
SMT thread status register (PPR) is used to set thread priority. This patch
enables PPR save/restore feature (CPU_FTR_HAS_PPR) on POWER7 and POWER8 systems.
Signed-off-by: Haren Myneni <haren@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch actually hooks up doorbell interrupts on POWER8:
- Select the PPC_DOORBELL Kconfig option from PPC_PSERIES
- Add the doorbell CPU feature bit to POWER8
- We define a new pSeries_cause_ipi_mux() function that issues a
doorbell interrupt if the recipient is another thread within the same
core as the sender. If the recipient is in a different core it falls
back to using XICS to deliver the IPI as before.
- During pSeries_smp_probe() at boot, we check if doorbell interrupts
are supported. If they are we set the cause_ipi function pointer to
the above mentioned function, otherwise we leave it as whichever XICS
cause_ipi function was determined by xics_smp_probe().
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
e6500 support (commit 10241842fb,
"powerpc: Add initial e6500 cpu support" and the introduction of
CPU_FTR_EMB_HV (commit 73196cd364,
"KVM: PPC: e500mc support") collided during merge, leaving e6500's CPU
table entry missing CPU_FTR_EMB_HV.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add processor support for e500mc, using hardware virtualization support
(GS-mode).
Current issues include:
- No support for external proxy (coreint) interrupt mode in the guest.
Includes work by Ashish Kalra <Ashish.Kalra@freescale.com>,
Varun Sethi <Varun.Sethi@freescale.com>, and
Liu Yu <yu.liu@freescale.com>.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Split e500 (v1/v2) and e500mc/e5500 to allow optimization of feature
checks that differ between the two.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently 32-bit only cares about this for choice of exception
vector, which is done in core-specific code. However, KVM will
want to distinguish as well.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Implement a POWER7 optimised copy_to_user/copy_from_user using VMX.
For large aligned copies this new loop is over 10% faster, and for
large unaligned copies it is over 200% faster.
If we take a fault we fall back to the old version, this keeps
things relatively simple and easy to verify.
On POWER7 unaligned stores rarely slow down - they only flush when
a store crosses a 4KB page boundary. Furthermore this flush is
handled completely in hardware and should be 20-30 cycles.
Unaligned loads on the other hand flush much more often - whenever
crossing a 128 byte cache line, or a 32 byte sector if either sector
is an L1 miss.
Considering this information we really want to get the loads aligned
and not worry about the alignment of the stores. Microbenchmarks
confirm that this approach is much faster than the current unaligned
copy loop that uses shifts and rotates to ensure both loads and
stores are aligned.
We also want to try and do the stores in cacheline aligned, cacheline
sized chunks. If the store queue is unable to merge an entire
cacheline of stores then the L2 cache will have to do a
read/modify/write. Even worse, we will serialise this with the stores
in the next iteration of the copy loop since both iterations hit
the same cacheline.
Based on this, the new loop does the following things:
1 - 127 bytes
Get the source 8 byte aligned and use 8 byte loads and stores. Pretty
boring and similar to how the current loop works.
128 - 4095 bytes
Get the source 8 byte aligned and use 8 byte loads and stores,
1 cacheline at a time. We aren't doing the stores in cacheline
aligned chunks so we will potentially serialise once per cacheline.
Even so it is much better than the loop we have today.
4096 - bytes
If both source and destination have the same alignment get them both
16 byte aligned, then get the destination cacheline aligned. Do
cacheline sized loads and stores using VMX.
If source and destination do not have the same alignment, we get the
destination cacheline aligned, and use permute to do aligned loads.
In both cases the VMX loop should be optimal - we always do aligned
loads and stores and are always doing stores in cacheline aligned,
cacheline sized chunks.
To be able to use VMX we must be careful about interrupts and
sleeping. We don't use the VMX loop when in an interrupt (which should
be rare anyway) and we wrap the VMX loop in disable/enable_pagefault
and fall back to the existing copy_tofrom_user loop if we do need to
sleep.
The VMX breakpoint of 4096 bytes was chosen using this microbenchmark:
http://ozlabs.org/~anton/junkcode/copy_to_user.c
Since we are using VMX and there is a cost to saving and restoring
the user VMX state there are two broad cases we need to benchmark:
- Best case - userspace never uses VMX
- Worst case - userspace always uses VMX
In reality a userspace process will sit somewhere between these two
extremes. Since we need to test both aligned and unaligned copies we
end up with 4 combinations. The point at which the VMX loop begins to
win is:
0% VMX
aligned 2048 bytes
unaligned 2048 bytes
100% VMX
aligned 16384 bytes
unaligned 8192 bytes
Considering this is a microbenchmark, the data is hot in cache and
the VMX loop has better store queue merging properties we set the
breakpoint to 4096 bytes, a little below the unaligned breakpoints.
Some future optimisations we can look at:
- Looking at the perf data, a significant part of the cost when a
task is always using VMX is the extra exception we take to restore
the VMX state. As such we should do something similar to the x86
optimisation that restores FPU state for heavy users. ie:
/*
* If the task has used fpu the last 5 timeslices, just do a full
* restore of the math state immediately to avoid the trap; the
* chances of needing FPU soon are obviously high now
*/
preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
and
/*
* fpu_counter contains the number of consecutive context switches
* that the FPU is used. If this is over a threshold, the lazy fpu
* saving becomes unlazy to save the trap. This is an unsigned char
* so that after 256 times the counter wraps and the behavior turns
* lazy again; this to deal with bursty apps that only use FPU for
* a short time
*/
- We could create a paca bit to mirror the VMX enabled MSR bit and check
that first, avoiding multiple calls to calling enable_kernel_altivec.
That should help with iovec based system calls like readv.
- We could have two VMX breakpoints, one for when we know the user VMX
state is loaded into the registers and one when it isn't. This could
be a second bit in the paca so we can calculate the break points quickly.
- One suggestion from Ben was to save and restore the VSX registers
we use inline instead of using enable_kernel_altivec.
[BenH: Fixed a problem with preempt and fixed build without CONFIG_ALTIVEC]
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
ICSWX is also used by the A2 processor to access coprocessors,
although not all "chips" that contain A2s have coprocessors.
Signed-off-by: Jimi Xenidis <jimix@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to
indicate that we have a usable hypervisor mode, and another to indicate
that the processor conforms to PowerISA version 2.06. We also add
another bit to indicate that the processor conforms to ISA version 2.01
and set that for PPC970 and derivatives.
Some PPC970 chips (specifically those in Apple machines) have a
hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode
is not useful in the sense that there is no way to run any code in
supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1
bits in HID4 are always 0, and we use that as a way of detecting that
hypervisor mode is not useful.
Where we have a feature section in assembly code around code that
only applies on POWER7 in hypervisor mode, we use a construct like
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
The definition of END_FTR_SECTION_IFSET is such that the code will
be enabled (not overwritten with nops) only if all bits in the
provided mask are set.
Note that the CPU feature check in __tlbie() only needs to check the
ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called
if we are running bare-metal, i.e. in hypervisor mode.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Recent 64-bit server processors (POWER6 and POWER7) have a "Come-From
Address Register" (CFAR), that records the address of the most recent
branch or rfid (return from interrupt) instruction for debugging purposes.
This saves the value of the CFAR in the exception entry code and stores
it in the exception frame. We also make xmon print the CFAR value in
its register dump code.
Rather than extend the pt_regs struct at this time, we steal the orig_gpr3
field, which is only used for system calls, and use it for the CFAR value
for all exceptions/interrupts other than system calls. This means we
don't save the CFAR on system calls, which is not a great problem since
system calls tend not to happen unexpectedly, and also avoids adding the
overhead of reading the CFAR to the system call entry path.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Icswx is a PowerPC instruction to send data to a co-processor. On Book-S
processors the LPAR_ID and process ID (PID) of the owning process are
registered in the window context of the co-processor at initialization
time. When the icswx instruction is executed the L2 generates a cop-reg
transaction on PowerBus. The transaction has no address and the
processor does not perform an MMU access to authenticate the transaction.
The co-processor compares the LPAR_ID and the PID included in the
transaction and the LPAR_ID and PID held in the window context to
determine if the process is authorized to generate the transaction.
The OS needs to assign a 16-bit PID for the process. This cop-PID needs
to be updated during context switch. The cop-PID needs to be destroyed
when the context is destroyed.
Signed-off-by: Sonny Rao <sonnyrao@linux.vnet.ibm.com>
Signed-off-by: Tseng-Hui (Frank) Lin <thlin@linux.vnet.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some of the 64bit PPC CPU features are MMU-related, so this patch moves
them to MMU_FTR_ bits. All cpu_has_feature()-style tests are moved to
mmu_has_feature(), and seven feature bits are freed as a result.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Add the cputable entry, regs and setup & restore entries for
the PowerPC A2 core.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This bit indicates that we are operating in hypervisor mode on a CPU
compliant to architecture 2.06 or later (currently server only).
We set it on POWER7 and have a boot-time CPU setup function that
clears it if MSR:HV isn't set (booting under a hypervisor).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
e500mc does not support the HID0/MSR mechanism that is used by e500_idle
(and there are also issues with waking on certain types of interrupts).
Further, even if napping is never actually enabled, just having
CPU_FTR_CAN_NAP will cause machine_init() to overwrite the board's supplied
ppc_md.power_save().
We drop CPU_FTR_MAYBE_CAN_DOZE becuase we should use 'wait' instead on
e500mc.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The CPU_FTRS_POSSIBLE and CPU_FTRS_ALWAYS defines did not encompass
e5500 CPU features when built for 64-bit. This causes issues with
cpu_has_feature() as it utilizes the POSSIBLE & ALWAYS defines as part
of its check.
Create a unique CPU_FTRS_E5500 (as its different from CPU_FTRS_E500MC),
created a new group for 64-bit Book3e based CPUs and add CPU_FTRS_E5500
to that group.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The DD2 core still has some unstability. Define CPU_FTR_476_DD2 to
enable workarounds in later patches.
This is based on an earlier, unreleased patch for DD1 by Ben Herrenschmidt.
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
POWER5 added popcntb, and POWER7 added popcntw and popcntd. As a first step
this patch does all the work out of line, but it would be nice to implement
them as inlines with an out of line fallback.
The performance issue with hweight was noticed when disabling SMT on a large
(192 thread) POWER7 box. The patch improves that testcase by about 8%.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>