We ended up with an ugly conflict between fixes and next in ftrace.h
involving multiple nested ifdefs, and the automatic resolution is
wrong. So merge fixes into next so we can fix it up.
APC virtual machines arent used on POWER-9 chips and are already
disabled in on-chip CAPP. They also need to be disabled on the PSL via
'PSL Data Send Control Register' by setting bit(47). This forces the
PSL to send commands to CAPP with queue.id == 0.
Fixes: 5632874311 ("cxl: Add support for POWER9 DD2")
Cc: stable@vger.kernel.org # v4.15+
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Alastair D'Silva <alastair@d-silva.org>
Reviewed-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Failure to synchronize the tunneled operations does not prevent
the initialization of the cxl card. This patch reports the tunneled
operations status via /sys.
Signed-off-by: Philippe Bergheaud <felix@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Skiboot used to set the default Tunnel BAR register value when capi
mode was enabled. This approach was ok for the cxl driver, but
prevented other drivers from choosing different values.
Skiboot versions > 5.11 will not set the default value any longer.
This patch modifies the cxl driver to set/reset the Tunnel BAR
register when entering/exiting the cxl mode, with
pnv_pci_set_tunnel_bar().
That should work with old skiboot (since we are re-writing the value
already set) and new skiboot.
mpe: The tunnel support was only merged into Linux recently, in commit
d6a90bb83b ("powerpc/powernv: Enable tunneled operations")
(v4.17-rc1), so with new skiboot kernels between that commit and this
will not work correctly.
Fixes: d6a90bb83b ("powerpc/powernv: Enable tunneled operations")
Signed-off-by: Philippe Bergheaud <felix@linux.ibm.com>
Reviewed-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The PSL Timebase register is updated by the PSL to maintain the
timebase.
On P9, the Timebase value is only provided by the CAPP as received the
last time a timebase request was performed.
The timebase requests are initiated through the adapter configuration
or application registers.
The specific sysfs entry "/sys/class/cxl/cardxx/psl_timebase_synced"
is now dynamically updated according the content of the PSL Timebase
register.
Fixes: f24be42aab ("cxl: Add psl9 specific code")
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Configure the P9 XSL_DSNCTL register with PHB indications found
in the device tree, or else use legacy hard-coded values.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PSL9D doesn't have a data-cache that needs to be flushed before
resetting the card. However when cxl tries to flush data-cache on such
a card, it times-out as PSL_Control register never indicates flush
operation complete due to missing data-cache. This is usually
indicated in the kernel logs with this message:
"WARNING: cache flush timed out"
To fix this the patch checks PSL_Debug register CDC-Field(BIT:27)
which indicates the absence of a data-cache and sets a flag
'no_data_cache' in 'struct cxl_native' to indicate this. When
cxl_data_cache_flush() is called it checks the flag and if set bails
out early without requesting a data-cache flush operation to the PSL.
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
For PSL9 the contents of PSL_TB_CTLSTAT register have changed in PSL9
and all of the register is now readonly. Hence we don't need an sl_ops
implementation for 'write_timebase_ctrl' for to populate this register
for PSL9.
Hence this patch removes function write_timebase_ctrl_psl9() and its
references from the code.
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We enable the NORST bit by default for debug afu images to prevent
reset of AFU trace-data on a PCI link drop. For production AFU images
this bit is always ignored and PSL gets reconfigured anyways thereby
resetting the trace data. So setting this bit for non-debug images
doesn't have any impact.
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Reviewed-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The cxl driver currently declares in its table of supported PCI
devices the class "Processing accelerators". Therefore it may be
called to probe for opencapi devices, which generates errors, as the
config space of a cxl device is not compatible with opencapi.
So remove support for the generic class, as we now have (at least) two
drivers for devices of the same class. Most cxl devices are FPGAs with
a PSL which will show a known device ID of 0x477. Other devices are
really supported by the cxlflash driver and are already listed in the
table. So removing the class is expected to go unnoticed.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
During an eeh a kernel-oops is reported if no vPHB is allocated to the
AFU. This happens as during AFU init, an error in creation of vPHB is
a non-fatal error. Hence afu->phb should always be checked for NULL
before iterating over it for the virtual AFU pci devices.
This patch fixes the kenel-oops by adding a NULL pointer check for
afu->phb before it is dereferenced.
Fixes: 9e8df8a219 ("cxl: EEH support")
Cc: stable@vger.kernel.org # v4.3+
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Presently the PSL9 specific cxl_stop_trace_psl9() only stops the RX0
traces on the CXL adapter when a PSL error irq is triggered. The patch
updates the function to stop all the traces arrays and move them to
the FIN state. The implementation issues the mmio to TRACECFG register
to stop the trace array iff it already not in FIN state. This prevents
the issue of trace data being reset in case of multiple stop mmio
issued for a single trace array.
Also the patch does some refactoring of existing cxl_stop_trace_psl9()
and cxl_stop_trace_psl8() functions by moving them to 'pci.c' from
'debugfs.c' file and marking them as static.
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
For PSL9 currently we aren't dumping the PSL FIR register when a
PSL error interrupt is triggered. Contents of this register are useful
in debugging AFU issues.
This patch fixes issue by adding a new service_layer_ops callback
cxl_native_err_irq_dump_regs_psl9() to dump the PSL_FIR registers on a
PSL error interrupt thereby bringing the behavior in line with PSL on
POWER-8. Also the existing service_layer_ops callback
for PSL8 has been renamed to cxl_native_err_irq_dump_regs_psl8().
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The PSL initialization sequence has been updated to DD2.
This patch adapts to the changes, retaining compatibility with DD1.
The patch includes some changes to DD1 fix-ups as well.
Tests performed on some of the old/new hardware.
The function is_page_fault(), for POWER9, lists the Translation Checkout
Responses where the page fault will be handled by copro_handle_mm_fault().
This list is too restrictive and not necessary.
This patches removes this restriction and all page faults, whatever the
reason, will be handled. In this case, the interruption is always
acknowledged.
The following features will be added soon:
- phb reset when switching to capi mode.
- cxllib update to support new functions.
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
GFP_TEMPORARY was introduced by commit e12ba74d8f ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE. It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation. As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag. How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.
The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory. So
this is rather misleading and hard to evaluate for any benefits.
I have checked some random users and none of them has added the flag
with a specific justification. I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring. This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.
I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse. Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL. Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.
I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.
This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic. It
seems to be a heuristic without any measured advantage for most (if not
all) its current users. The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers. So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.
[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch exports a in-kernel 'library' API which can be called by
other drivers to help interacting with an IBM XSL on a POWER9 system.
The XSL (Translation Service Layer) is a stripped down version of the
PSL (Power Service Layer) used in some cards such as the Mellanox CX5.
Like the PSL, it implements the CAIA architecture, but has a number
of differences, mostly in it's implementation dependent registers.
The XSL also uses a special DMA cxl mode, which uses a slightly
different init sequence for the CAPP and PHB.
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
A previous set of patches "cxl: Add support for Coherent Accelerator
Interface Architecture 2.0" has introduced a new support for the CAPI
cards. These patches have been tested on Simulation environment and
quite a bit of them have been tested on real hardware.
This patch brings new fixes after a series of tests carried out on new
equipment:
- Add POWER9 definition.
- Re-enable any masked interrupts when the AFU is not activated
after resetting the AFU.
- Remove the api cxl_is_psl8/9 which is no longer useful.
- Do not dump CAPI1 registers.
- Rewrite cxl_is_page_fault() function.
- Do not register slb callack on P9.
Fixes: f24be42aab ("cxl: Add psl9 specific code")
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we use a 128TB
virtual address space, but a process can request access to the full 512TB by
passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator Interface
Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and runtime.
- Several small fixes and cleanups to the kprobes code, as well as support for
KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts, correctly treating
them as NMIs, giving them a dedicated stack and using a new hypervisor call
to trigger them, all of which should aid debugging and robustness.
Many fixes and other minor enhancements.
Thanks to:
Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan,
Aneesh Kumar K.V, Anshuman Khandual, Anton Blanchard, Balbir Singh, Ben
Hutchings, Benjamin Herrenschmidt, Bhupesh Sharma, Chris Packham, Christian
Zigotzky, Christophe Leroy, Christophe Lombard, Daniel Axtens, David Gibson,
Gautham R. Shenoy, Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli,
Hamish Martin, Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan,
Mahesh J Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell Currey, Sukadev
Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C. Harding, Tyrel Datwyler,
Uma Krishnan, Vaibhav Jain, Vipin K Parashar, Yang Shi.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDHUMAAoJEFHr6jzI4aWAT7oQALkE2Nj3gjcn1z0SkFhq/1iO
Py9Elmqm4E+L6NKYtBY5dS8xVAJ088ffzERyqJ1FY1LHkB8tn8bWRcMQmbjAFzTI
V4TAzDNI890BN/F4ptrYRwNFxRBHAvZ4NDunTzagwYnwmTzW9PYHmOi4pvWTo3Tw
KFUQ0joLSEgHzyfXxYB3fyj41u8N0FZvhfazdNSqia2Y5Vwwv/ION5jKplDM+09Y
EtVEXFvaKAS1sjbM/d/Jo5rblHfR0D9/lYV10+jjyIokjzslIpyTbnj3izeYoM5V
I4h99372zfsEjBGPPXyM3khL3zizGMSDYRmJHQSaKxjtecS9SPywPTZ8ufO/aSzV
Ngq6nlND+f1zep29VQ0cxd3Jh40skWOXzxJaFjfDT25xa6FbfsWP2NCtk8PGylZ7
EyqTuCWkMgIP02KlX3oHvEB2LRRPCDmRU2zECecRGNJrIQwYC2xjoiVi7Q8Qe8rY
gr7Ib5Jj/a+uiTcCIy37+5nXq2s14/JBOKqxuYZIxeuZFvKYuRUipbKWO05WDOAz
m/pSzeC3J8AAoYiqR0gcSOuJTOnJpGhs7zrQFqnEISbXIwLW+ICumzOmTAiBqOEY
Rt8uW2gYkPwKLrE05445RfVUoERaAjaE06eRMOWS6slnngHmmnRJbf3PcoALiJkT
ediqGEj0/N1HMB31V5tS
=vSF3
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we
use a 128TB virtual address space, but a process can request access
to the full 512TB by passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator
Interface Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and
runtime.
- Several small fixes and cleanups to the kprobes code, as well as
support for KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts,
correctly treating them as NMIs, giving them a dedicated stack and
using a new hypervisor call to trigger them, all of which should
aid debugging and robustness.
- Many fixes and other minor enhancements.
Thanks to: Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple,
Andrew Donnellan, Aneesh Kumar K.V, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Ben Hutchings, Benjamin Herrenschmidt,
Bhupesh Sharma, Chris Packham, Christian Zigotzky, Christophe Leroy,
Christophe Lombard, Daniel Axtens, David Gibson, Gautham R. Shenoy,
Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli, Hamish Martin,
Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan, Mahesh J
Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell
Currey, Sukadev Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C.
Harding, Tyrel Datwyler, Uma Krishnan, Vaibhav Jain, Vipin K Parashar,
Yang Shi"
* tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (214 commits)
powerpc/64s: Power9 has no LPCR[VRMASD] field so don't set it
powerpc/powernv: Fix TCE kill on NVLink2
powerpc/mm/radix: Drop support for CPUs without lockless tlbie
powerpc/book3s/mce: Move add_taint() later in virtual mode
powerpc/sysfs: Move #ifdef CONFIG_HOTPLUG_CPU out of the function body
powerpc/smp: Document irq enable/disable after migrating IRQs
powerpc/mpc52xx: Don't select user-visible RTAS_PROC
powerpc/powernv: Document cxl dependency on special case in pnv_eeh_reset()
powerpc/eeh: Clean up and document event handling functions
powerpc/eeh: Avoid use after free in eeh_handle_special_event()
cxl: Mask slice error interrupts after first occurrence
cxl: Route eeh events to all drivers in cxl_pci_error_detected()
cxl: Force context lock during EEH flow
powerpc/64: Allow CONFIG_RELOCATABLE if COMPILE_TEST
powerpc/xmon: Teach xmon oops about radix vectors
powerpc/mm/hash: Fix off-by-one in comment about kernel contexts ids
powerpc/pseries: Enable VFIO
powerpc/powernv: Fix iommu table size calculation hook for small tables
powerpc/powernv: Check kzalloc() return value in pnv_pci_table_alloc
powerpc: Add arch/powerpc/tools directory
...
Fix a boundary condition where in some cases an eeh event that results
in card reset isn't passed on to a driver attached to the virtual PCI
device associated with a slice. This will happen in case when a slice
attached device driver returns a value other than
PCI_ERS_RESULT_NEED_RESET from the eeh error_detected() callback. This
would result in an early return from cxl_pci_error_detected() and
other drivers attached to other AFUs on the card wont be notified.
The patch fixes this by making sure that all slice attached
device-drivers are notified and the return values from
error_detected() callback are aggregated in a scheme where request for
'disconnect' trumps all and 'none' trumps 'need_reset'.
Fixes: 9e8df8a219 ("cxl: EEH support")
Cc: stable@vger.kernel.org # v4.3+
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
During an eeh event when the cxl card is fenced and card sysfs attr
perst_reloads_same_image is set following warning message is seen in the
kernel logs:
Adapter context unlocked with 0 active contexts
------------[ cut here ]------------
WARNING: CPU: 12 PID: 627 at
../drivers/misc/cxl/main.c:325 cxl_adapter_context_unlock+0x60/0x80 [cxl]
Even though this warning is harmless, it clutters the kernel log
during an eeh event. This warning is triggered as the EEH callback
cxl_pci_error_detected doesn't obtain a context-lock before forcibly
detaching all active context and when context-lock is released during
call to cxl_configure_adapter from cxl_pci_slot_reset, a warning in
cxl_adapter_context_unlock is triggered.
To fix this warning, we acquire the adapter context-lock via
cxl_adapter_context_lock() in the eeh callback
cxl_pci_error_detected() once all the virtual AFU PHBs are notified
and their contexts detached. The context-lock is released in
cxl_pci_slot_reset() after the adapter is successfully reconfigured
and before the we call the slot_reset callback on slice attached
device-drivers.
Fixes: 70b565bbdb ("cxl: Prevent adapter reset if an active context exists")
Cc: stable@vger.kernel.org # v4.9+
Reported-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Tested-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add support for future IBM Coherent Accelerator (CXL) devices
with an IDs of 0x0623 and 0x0628.
Signed-off-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The new Coherent Accelerator Interface Architecture, level 2, for the
IBM POWER9 brings new content and features:
- POWER9 Service Layer
- Registers
- Radix mode
- Process element entry
- Dedicated-Shared Process Programming Model
- Translation Fault Handling
- CAPP
- Memory Context ID
If a valid mm_struct is found the memory context id is used for each
transaction associated with the process handle. The PSL uses the
context ID to find the corresponding process element.
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
[mpe: Fixup comment formatting, unsplit long strings]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Point out the specific Coherent Accelerator Interface Architecture,
level 1, registers.
Code and functions specific to PSL8 (CAIA1) must be framed.
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
[mpe: Don't split long strings, it makes them hard to grep for]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rename a few functions, changing the '_psl' suffix to '_psl8', to make
clear that the implementation is psl8 specific.
Those functions will have an equivalent implementation for the psl9 in
a later patch.
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The service layer API (in cxl.h) lists some low-level functions whose
implementation is different on PSL8, PSL9 and XSL:
- Init implementation for the adapter and the afu.
- Invalidate TLB/SLB.
- Attach process for dedicated/directed models.
- Handle psl interrupts.
- Debug registers for the adapter and the afu.
- Traces.
Each environment implements its own functions, and the common code uses
them through function pointers, defined in cxl_service_layer_ops.
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This bit is used to cause a flash image load for programmable
CAIA-compliant implementation. If this bit is set to ‘0’, a power
cycle of the adapter is required to load a programmable CAIA-com-
pliant implementation from flash.
This field will be used by the following patches.
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Fix a boundary condition where in some cases an eeh event with state ==
pci_channel_io_perm_failure wont be passed on to a driver attached to
the virtual PCI device associated with a slice. This will happen in case
the slice just before (n-1) doesn't have any vPHB bus associated with
it, that results in an early return from cxl_pci_error_detected()
callback.
With state == pci_channel_io_perm_failure, the adapter will be removed
irrespective of the return value of cxl_vphb_error_detected(). So we now
always return PCI_ERS_RESULT_DISCONNECTED for this case i.e even if
the AFU isn't using a vPHB (currently returns PCI_ERS_RESULT_NONE).
Fixes: e4f5fc001a6("cxl: Do not create vPHB if there are no AFU configuration records")
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 14a3ae34bf ("cxl: Prevent read/write to AFU config space while AFU
not configured") introduced a rwsem to fix an invalid memory access that
occurred when someone attempts to access the config space of an AFU on a
vPHB whilst the AFU is deconfigured, such as during EEH recovery.
It turns out that it's possible to run into a nested locking issue when EEH
recovery fails and a full device hotplug is required.
cxl_pci_error_detected() deconfigures the AFU, taking a writer lock on
configured_rwsem. When EEH recovery fails, the EEH code calls
pci_hp_remove_devices() to remove the device, which in turn calls
cxl_remove() -> cxl_pci_remove_afu() -> pci_deconfigure_afu(), which tries
to grab the writer lock that's already held.
Standard rwsem semantics don't express what we really want to do here and
don't allow for nested locking. Fix this by replacing the rwsem with an
atomic_t which we can control more finely. Allow the AFU to be locked
multiple times so long as there are no readers.
Fixes: 14a3ae34bf ("cxl: Prevent read/write to AFU config space while AFU not configured")
Cc: stable@vger.kernel.org # v4.9+
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
During EEH recovery, we deconfigure all AFUs whilst leaving the
corresponding vPHB and virtual PCI device in place.
If something attempts to interact with the AFU's PCI config space (e.g.
running lspci) after the AFU has been deconfigured and before it's
reconfigured, cxl_pcie_{read,write}_config() will read invalid values from
the deconfigured struct cxl_afu and proceed to Oops when they try to
dereference pointers that have been set to NULL during deconfiguration.
Add a rwsem to struct cxl_afu so we can prevent interaction with config
space while the AFU is deconfigured.
Reported-by: Pradipta Ghosh <pradghos@in.ibm.com>
Suggested-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org # v4.9+
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This change adds a force psl data cache flush during device shutdown
callback. This should reduce a possibility of psl holding a dirty
cache line while the CAPP is being reinitialized, which may result in
a UE [load/store] machine check error.
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
'cxl_dev_context_init()' returns an error pointer in case of error, not
NULL. So test it with IS_ERR.
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch prevents resetting the cxl adapter via sysfs in presence of
one or more active cxl_context on it. This protects against an
unrecoverable error caused by PSL owning a dirty cache line even after
reset and host tries to touch the same cache line. In case a force reset
of the card is required irrespective of any active contexts, the int
value -1 can be stored in the 'reset' sysfs attribute of the card.
The patch introduces a new atomic_t member named contexts_num inside
struct cxl that holds the number of active context attached to the card
, which is checked against '0' before proceeding with the reset. To
prevent against a race condition where a context is activated just after
reset check is performed, the contexts_num is atomically set to '-1'
after reset-check to indicate that no more contexts can be activated on
the card anymore.
Before activating a context we atomically test if contexts_num is
non-negative and if so, increment its value by one. In case the value of
contexts_num is negative then it indicates that the card is about to be
reset and context activation is error-ed out at that point.
Fixes: 62fa19d4b4 ("cxl: Add ability to reset the card")
Cc: stable@vger.kernel.org # v4.0+
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If the capi link is going down while the PSL owns a dirty cache line,
any access from the host for that data could lead to an Uncorrectable
Error.
So when resetting the capi adapter through sysfs, make sure the PSL
cache is flushed. It won't help if there are any active Process
Elements on the card, as the cache would likely get new dirty cache
lines immediately, but if resetting an idle adapter, it should avoid
any bad surprises from data left over from terminated Process Elements.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When set_sl_ops() is called, the adapter data structure is not fully
initialized yet. Therefore the device name is not showing up in the
trace. Fix is simply to get the device name from the pci_dev
structure.
Fixes: 6d382616ac ("cxl: Abstract the differences between the PSL and XSL")
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Switch the setting of psl_fir_cntl from debug to production
environment recommended value. It mostly affects the PSL behavior when
an error is raised in psl_fir1/2.
Tested with cxlflash.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit f67a6722d6 ("cxl: Workaround PE=0 hardware limitation in
Mellanox CX4") added a "min_pe" field to struct cxl_service_layer_ops,
to allow us to work around a Mellanox CX-4 hardware limitation.
When allocating the PE number in cxl_context_init(), we read from
ctx->afu->adapter->native->sl_ops->min_pe to get the minimum PE number.
Unsurprisingly, in a PowerVM guest ctx->afu->adapter->native is NULL,
and guests don't have a cxl_service_layer_ops struct anywhere.
Move min_pe from struct cxl_service_layer_ops to struct cxl so it's
accessible in both native and PowerVM environments. For the Mellanox
CX-4, set the min_pe value in set_sl_ops().
Fixes: f67a6722d6 ("cxl: Workaround PE=0 hardware limitation in Mellanox CX4")
Reported-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a new API, cxl_check_and_switch_mode() to allow for switching of
bi-modal CAPI cards, such as the Mellanox CX-4 network card.
When a driver requests to switch a card to CAPI mode, use PCI hotplug
infrastructure to remove all PCI devices underneath the slot. We then write
an updated mode control register to the CAPI VSEC, hot reset the card, and
reprobe the card.
As the card may present a different set of PCI devices after the mode
switch, use the infrastructure provided by the pnv_php driver and the OPAL
PCI slot management facilities to ensure that:
* the old devices are removed from both the OPAL and Linux device trees
* the new devices are probed by OPAL and added to the OPAL device tree
* the new devices are added to the Linux device tree and probed through
the regular PCI device probe path
As such, introduce a new option, CONFIG_CXL_BIMODAL, with a dependency on
the pnv_php driver.
Refactor existing code that touches the mode control register in the
regular single mode case into a new function, setup_cxl_protocol_area().
Co-authored-by: Ian Munsie <imunsie@au1.ibm.com>
Cc: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The CX4 card cannot cope with a context with PE=0 due to a hardware
limitation, resulting in:
[ 34.166577] command failed, status limits exceeded(0x8), syndrome 0x5a7939
[ 34.166580] mlx5_core 0000:01:00.1: Failed allocating uar, aborting
Since the kernel API allocates a default context very early during
device init that will almost certainly get Process Element ID 0 there is
no easy way for us to extend the API to allow the Mellanox to inform us
of this limitation ahead of time.
Instead, work around the issue by extending the XSL structure to include
a minimum PE to allocate. Although the bug is not in the XSL, it is the
easiest place to work around this limitation given that the CX4 is
currently the only card that uses an XSL.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This hooks up support for using the kernel API with a real PHB. After
the AFU initialisation has completed it calls into the PHB code to pass
it the AFU that will be used by other peer physical functions on the
adapter.
The cxl_pci_to_afu API is extended to work with peer PCI devices,
retrieving the peer AFU from the PHB. This API may also now return an
error if it is called on a PCI device that is not associated with either
a cxl vPHB or a peer PCI device to an AFU, and this error is propagated
down.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The vPHB model of the cxl kernel API is a hierarchy where the AFU is
represented by the vPHB, and it's AFU configuration records are exposed
as functions under that vPHB. If there are no AFU configuration records
we will create a vPHB with nothing under it, which is a waste of
resources and will opt us into EEH handling despite not having anything
special to handle.
This also does not make sense for cards using the peer model of the cxl
kernel API, where the other functions of the device are exposed via
additional peer physical functions rather than AFU configuration
records. This model will also not work with the existing EEH handling in
the cxl driver, as that is designed around the vPHB model.
Skip creating the vPHB for AFUs without any AFU configuration records,
and opt out of EEH handling for them.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Devices that use CAPP DMA mode (such as the Mellanox CX4) require bus
master to be enabled in order for the CAPI traffic to flow. This should
be harmless to enable for other cxl devices, so unconditionally enable
it in the adapter init flow.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This extends the check that the adapter is in a CAPI capable slot so
that it may be called by external users in the kernel API. This will be
used by the upcoming Mellanox CX4 support, which needs to know ahead of
time if the card can be switched to cxl mode so that it can leave it in
PCI mode if it is not.
This API takes a parameter to check if CAPP DMA mode is supported, which
it currently only allows on P8NVL systems, since that mode currently has
issues accessing memory < 4GB on P8, and we cannot realistically avoid
that.
This API does not currently check if a CAPP unit is available (i.e. not
already assigned to another PHB) on P8. Doing so would be racy since it
is assigned on a first come first serve basis, and so long as CAPP DMA
mode is not supported on P8 we don't need this, since the only
anticipated user of this API requires CAPP DMA mode.
Cc: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
One should not attempt to switch a PHB into CAPI mode if there is
a switch between the PHB and the adapter. This patch modifies the
cxl driver to ignore CAPI adapters misplaced in switched slots.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The AFU disable operation has a bug where it will not clear the enable
bit and therefore will have no effect. To date this has likely been
masked by fact that we perform an AFU reset before the disable, which
also has the effect of clearing the enable bit, making the following
disable operation effectively a noop on most hardware. This patch
modifies the afu_control function to take a parameter to clear from the
AFU control register so that the disable operation can clear the
appropriate bit.
This bug was uncovered on the Mellanox CX4, which uses an XSL rather
than a PSL. On the XSL the reset operation will not complete while the
AFU is enabled, meaning the enable bit was still set at the start of the
disable and as a result this bug was hit and the disable also timed out.
Because of this difference in behaviour between the PSL and XSL, this
patch now makes the reset dependent on the card using a PSL to avoid
waiting for a timeout on the XSL. It is entirely possible that we may be
able to drop the reset altogether if it turns out we only ever needed it
due to this bug - however I am not willing to drop it without further
regression testing and have added comments to the code explaining the
background.
This also fixes a small issue where the AFU_Cntl register was read
outside of the lock that protects it.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If the AFU descriptor of an AFU directed AFU indicates that it supports
0 maximum processes, we will accept that value and attempt to use it.
The SPA will still be allocated (with 2 pages due to another minor bug
and room for 958 processes), and when a context is allocated we will
pass the value of 0 to idr_alloc as the maximum. However, idr_alloc will
treat that as meaning no maximum and will allocate a context number and
we return a valid context.
Conceivably, this could lead to a buffer overflow of the SPA if more
than 958 contexts were allocated, however this is mitigated by the fact
that there are no known AFUs in the wild with a bogus AFU descriptor
like this, and that only the root user is allowed to flash an AFU image
to a card.
Add a check when validating the AFU descriptor to reject any with 0
maximum processes.
We do still allow a dedicated process only AFU to indicate that it
supports 0 contexts even though that is forbidden in the architecture,
as in that case we ignore the value and use 1 instead. This is just on
the off-chance that such a dedicated process AFU may exist (not that I
am aware of any), since their developers are less likely to have cared
about this value at all.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds support for using CAPP DMA mode, which is required for XSL
based cards such as the Mellanox CX4 to function.
This is currently an RFC as it depends on the corresponding support to
be merged into skiboot first, which was submitted here:
http://patchwork.ozlabs.org/patch/625582/
In the event that the skiboot on the system does not have the above
support, it will indicate as such in the kernel log and abort the init
process.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The XSL (Translation Service Layer) is a stripped down version of the
PSL (Power Service Layer) used in some cards such as the Mellanox CX4.
Like the PSL, it implements the CAIA architecture, but has a number of
differences, mostly in it's implementation dependent registers. This
adds an ops structure to abstract these differences to bring initial
support for XSL CAPI devices.
The XSL does not implement the optional architected SERR register,
however while it treats it as a reserved register and should work with
no special treatment, attempting to access it will cause the XSL_FEC
(First Error Capture) register to be filled out, preventing it from
capturing any subsequent errors. Therefore, this patch also prevents the
kernel from trying to set up the SERR register so that the FEC register
may still be useful, and to save one interrupt.
The XSL also uses a special DMA cxl mode, which uses a slightly
different init sequence for the CAPP and PHB. The kernel support for
this will be in a future patch once the corresponding support has been
merged into skiboot.
Co-authored-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PSL designers recommend a larger value for the mmio hang pulse, 256 us
instead of 1 us. The CAIA architecture states that it needs to be
smaller than 1/2 of the RTOS timeout set in the PHB for outbound
non-posted transactions, which is still (easily) the case here.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Tested-by: Frank Haverkamp <haver@linux.vnet.ibm.com>
Tested-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Failure to synchronize the PSL timebase currently prevents the
initialization of the cxl card, thus rendering the card useless. This
is too extreme for a feature which is rarely used, if at all. No
hardware AFUs or software is currently using PSL timebase.
This patch still tries to synchronize the PSL timebase when the card
is initialized, but ignores the error if it can't. Instead, it reports
a status via /sys.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The POWER8NVL chip has two CAPI ports. Configure the PSL to route
data to the port corresponding to the CAPP unit.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>