Move the call to nested_vmx_exit_reflected() from vmx_handle_exit() into
nested_vmx_reflect_vmexit() and change the semantics of the return value
for nested_vmx_reflect_vmexit() to indicate whether or not the exit was
reflected into L1. nested_vmx_exit_reflected() and
nested_vmx_reflect_vmexit() are intrinsically tied together, calling one
without simultaneously calling the other makes little sense.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200415175519.14230-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The macros VM_STAT and VCPU_STAT are redundantly implemented in multiple
files, each used by a different architecure to initialize the debugfs
entries for statistics. Since they all have the same purpose, they can be
unified in a single common definition in include/linux/kvm_host.h
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20200414155625.20559-1-eesposit@redhat.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The placement of kvm_create_vcpu_debugfs is more or less irrelevant, since
it cannot fail and userspace should not care about the debugfs entries until
it knows the vcpu has been created. Moving it after the last failure
point removes the need to remove the directory when unwinding the creation.
Reviewed-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20200331224222.393439-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use do_machine_check instead of INT $12 to pass MCE to the host,
the same approach VMX uses.
On a related note, there is no reason to limit the use of do_machine_check
to 64 bit targets, as is currently done for VMX. MCE handling works
for both target families.
The patch is only compile tested, for both, 64 and 32 bit targets,
someone should test the passing of the exception by injecting
some MCEs into the guest.
For future non-RFC patch, kvm_machine_check should be moved to some
appropriate header file.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Message-Id: <20200411153627.3474710-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename @cr3 to @pgd in vmx_load_mmu_pgd() to reflect that it will be
loaded into vmcs.EPT_POINTER and not vmcs.GUEST_CR3 when EPT is enabled.
Similarly, load guest_cr3 with @pgd if and only if EPT is disabled.
This fixes one of the last, if not _the_ last, cases in KVM where a
variable that is not strictly a cr3 value uses "cr3" instead of "pgd".
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-38-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename functions and variables in kvm_mmu_new_cr3() and related code to
replace "cr3" with "pgd", i.e. continue the work started by commit
727a7e27cf ("KVM: x86: rename set_cr3 callback and related flags to
load_mmu_pgd"). kvm_mmu_new_cr3() and company are not always loading a
new CR3, e.g. when nested EPT is enabled "cr3" is actually an EPTP.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-37-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add logic to handle_invept() to free only those roots that match the
target EPT context when emulating a single-context INVEPT.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-36-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally skip the TLB flush triggered when reusing a root for a
nested transition as nested_vmx_transition_tlb_flush() ensures the TLB
is flushed when needed, regardless of whether the MMU can reuse a cached
root (or the last root).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-35-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the MMU sync when reusing a cached root if EPT is enabled or L1
enabled VPID for L2.
If EPT is enabled, guest-physical mappings aren't flushed even if VPID
is disabled, i.e. L1 can't expect stale TLB entries to be flushed if it
has enabled EPT and L0 isn't shadowing PTEs (for L1 or L2) if L1 has
EPT disabled.
If VPID is enabled (and EPT is disabled), then L1 can't expect stale TLB
entries to be flushed (for itself or L2).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-34-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a module param, flush_on_reuse, to override skip_tlb_flush and
skip_mmu_sync when performing a so called "fast cr3 switch", i.e. when
reusing a cached root. The primary motiviation for the control is to
provide a fallback mechanism in the event that TLB flushing and/or MMU
sync bugs are exposed/introduced by upcoming changes to stop
unconditionally flushing on nested VMX transitions.
Suggested-by: Jim Mattson <jmattson@google.com>
Suggested-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-33-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a separate "skip" override for MMU sync, a future change to avoid
TLB flushes on nested VMX transitions may need to sync the MMU even if
the TLB flush is unnecessary.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-32-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle the side effects of a fast CR3 (PGD) switch up a level in
__kvm_mmu_new_cr3(), which is the only caller of fast_cr3_switch().
This consolidates handling all side effects in __kvm_mmu_new_cr3()
(where freeing the current root when KVM can't do a fast switch is
already handled), and ameliorates the pain of adding a second boolean in
a future patch to provide a separate "skip" override for the MMU sync.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-31-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't reload the APIC access page if its control is disabled, e.g. if
the guest is running with x2APIC (likely) or with the local APIC
disabled (unlikely), to avoid unnecessary TLB flushes and VMWRITEs.
Unconditionally reload the APIC access page and flush the TLB when
the guest's virtual APIC transitions to "xAPIC enabled", as any
changes to the APIC access page's mapping will not be recorded while
the guest's virtual APIC is disabled.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-30-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the retrieval of the HPA associated with L1's APIC access page into
VMX code to avoid unnecessarily calling gfn_to_page(), e.g. when the
vCPU is in guest mode (L2). Alternatively, the optimization logic in
VMX could be mirrored into the common x86 code, but that will get ugly
fast when further optimizations are introduced.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-29-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer reloading L1's APIC page by logging the need for a reload and
processing it during nested VM-Exit instead of unconditionally reloading
the APIC page on nested VM-Exit. This eliminates a TLB flush on the
majority of VM-Exits as the APIC page rarely needs to be reloaded.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-28-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush only the current context, as opposed to all contexts, when
requesting a TLB flush to handle the scenario where a L1 does not expect
a TLB flush, but one is required because L1 and L2 shared an ASID. This
occurs if EPT is disabled (no per-EPTP tag), VPID is enabled (hardware
doesn't flush unconditionally) and vmcs02 does not have its own VPID due
to exhaustion of available VPIDs.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-27-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush only the current ASID/context when requesting a TLB flush due to a
change in the current vCPU's MMU to avoid blasting away TLB entries
associated with other ASIDs/contexts, e.g. entries cached for L1 when
a change in L2's MMU requires a flush.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-26-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add KVM_REQ_TLB_FLUSH_CURRENT to allow optimized TLB flushing of VMX's
EPTP/VPID contexts[*] from the KVM MMU and/or in a deferred manner, e.g.
to flush L2's context during nested VM-Enter.
Convert KVM_REQ_TLB_FLUSH to KVM_REQ_TLB_FLUSH_CURRENT in flows where
the flush is directly associated with vCPU-scoped instruction emulation,
i.e. MOV CR3 and INVPCID.
Add a comment in vmx_vcpu_load_vmcs() above its KVM_REQ_TLB_FLUSH to
make it clear that it deliberately requests a flush of all contexts.
Service any pending flush request on nested VM-Exit as it's possible a
nested VM-Exit could occur after requesting a flush for L2. Add the
same logic for nested VM-Enter even though it's _extremely_ unlikely
for flush to be pending on nested VM-Enter, but theoretically possible
(in the future) due to RSM (SMM) emulation.
[*] Intel also has an Address Space Identifier (ASID) concept, e.g.
EPTP+VPID+PCID == ASID, it's just not documented in the SDM because
the rules of invalidation are different based on which piece of the
ASID is being changed, i.e. whether the EPTP, VPID, or PCID context
must be invalidated.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-25-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper to determine whether or not a full TLB flush needs to be
performed on nested VM-Enter/VM-Exit, as the logic is identical for both
flows and needs a fairly beefy comment to boot. This also provides a
common point to make future adjustments to the logic.
Handle vpid12 changes the new helper as well even though it is specific
to VM-Enter. The vpid12 logic is an extension of the flushing logic,
and it's worth the extra bool parameter to provide a single location for
the flushing logic.
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-24-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename ->tlb_flush() to ->tlb_flush_all() in preparation for adding a
new hook to flush only the current ASID/context.
Opportunstically replace the comment in vmx_flush_tlb() that explains
why it flushes all EPTP/VPID contexts with a comment explaining why it
unconditionally uses INVEPT when EPT is enabled. I.e. rely on the "all"
part of the name to clarify why it does global INVEPT/INVVPID.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-23-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a comment in svm_flush_tlb() to document why it flushes only the
current ASID, even when it is invoked when flushing remote TLBs.
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-22-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper to flush TLB entries only for the current EPTP/VPID context
and use it for the existing direct invocations of vmx_flush_tlb(). TLB
flushes that are specific to the current vCPU state do not need to flush
other contexts.
Note, both converted call sites happen to be related to the APIC access
page, this is purely coincidental.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-21-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move nested_get_vpid02() to vmx/nested.h so that a future patch can
reference it from vmx.c to implement context-specific TLB flushing.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-20-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vmx_flush_tlb() to vmx.c and make it non-inline static now that all
its callers live in vmx.c.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-19-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use svm_flush_tlb() directly for kvm_x86_ops->tlb_flush_guest() now that
the @invalidate_gpa param to ->tlb_flush() is gone, i.e. the wrapper for
->tlb_flush_guest() is no longer necessary.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-18-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop @invalidate_gpa from ->tlb_flush() and kvm_vcpu_flush_tlb() now
that all callers pass %true for said param, or ignore the param (SVM has
an internal call to svm_flush_tlb() in svm_flush_tlb_guest that somewhat
arbitrarily passes %false).
Remove __vmx_flush_tlb() as it is no longer used.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-17-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor vmx_flush_tlb_gva() to remove a superfluous local variable and
clean up its comment, which is oddly located below the code it is
commenting.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-16-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V PV TLB flush mechanism does TLB flush on behalf of the guest
so doing tlb_flush_all() is an overkill, switch to using tlb_flush_guest()
(just like KVM PV TLB flush mechanism) instead. Introduce
KVM_REQ_HV_TLB_FLUSH to support the change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a dedicated hook to handle flushing TLB entries on behalf of the
guest, i.e. for a paravirtualized TLB flush, and use it directly instead
of bouncing through kvm_vcpu_flush_tlb().
For VMX, change the effective implementation implementation to never do
INVEPT and flush only the current context, i.e. to always flush via
INVVPID(SINGLE_CONTEXT). The INVEPT performed by __vmx_flush_tlb() when
@invalidate_gpa=false and enable_vpid=0 is unnecessary, as it will only
flush guest-physical mappings; linear and combined mappings are flushed
by VM-Enter when VPID is disabled, and changes in the guest pages tables
do not affect guest-physical mappings.
When EPT and VPID are enabled, doing INVVPID is not required (by Intel's
architecture) to invalidate guest-physical mappings, i.e. TLB entries
that cache guest-physical mappings can live across INVVPID as the
mappings are associated with an EPTP, not a VPID. The intent of
@invalidate_gpa is to inform vmx_flush_tlb() that it must "invalidate
gpa mappings", i.e. do INVEPT and not simply INVVPID. Other than nested
VPID handling, which now calls vpid_sync_context() directly, the only
scenario where KVM can safely do INVVPID instead of INVEPT (when EPT is
enabled) is if KVM is flushing TLB entries from the guest's perspective,
i.e. is only required to invalidate linear mappings.
For SVM, flushing TLB entries from the guest's perspective can be done
by flushing the current ASID, as changes to the guest's page tables are
associated only with the current ASID.
Adding a dedicated ->tlb_flush_guest() paves the way toward removing
@invalidate_gpa, which is a potentially dangerous control flag as its
meaning is not exactly crystal clear, even for those who are familiar
with the subtleties of what mappings Intel CPUs are/aren't allowed to
keep across various invalidation scenarios.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-15-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vpid_sync_vcpu_addr() to emulate the "individual address" variant of
INVVPID now that said function handles the fallback case of the (host)
CPU not supporting "individual address".
Note, the "vpid == 0" checks in the vpid_sync_*() helpers aren't
actually redundant with the "!operand.vpid" check in handle_invvpid(),
as the vpid passed to vpid_sync_vcpu_addr() is a KVM (host) controlled
value, i.e. vpid02 can be zero even if operand.vpid is non-zero.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-14-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the INVVPID capabilities checks from vpid_sync_vcpu_single() and
vpid_sync_vcpu_global() now that all callers ensure the INVVPID variant
is supported. Note, in some cases the guarantee is provided in concert
with hardware_setup(), which enables VPID if and only if at least of
invvpid_single() or invvpid_global() is supported.
Drop the WARN_ON_ONCE() from vmx_flush_tlb() as vpid_sync_vcpu_single()
will trigger a WARN() on INVVPID failure, i.e. if SINGLE_CONTEXT isn't
supported.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-13-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Directly invoke vpid_sync_context() to do a global INVVPID when the
individual address variant is not supported instead of deferring such
behavior to the caller. This allows for additional consolidation of
code as the logic is basically identical to the emulation of the
individual address variant in handle_invvpid().
No functional change intended.
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-12-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vpid_sync_vcpu_addr() below vpid_sync_context() so that it can be
refactored in a future patch to call vpid_sync_context() directly when
the "individual address" INVVPID variant isn't supported.
No functional change intended.
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vpid_sync_context() directly for flows that run if and only if
enable_vpid=1, or more specifically, nested VMX flows that are gated by
vmx->nested.msrs.secondary_ctls_high.SECONDARY_EXEC_ENABLE_VPID being
set, which is allowed if and only if enable_vpid=1. Because these flows
call __vmx_flush_tlb() with @invalidate_gpa=false, the if-statement that
decides between INVEPT and INVVPID will always go down the INVVPID path,
i.e. call vpid_sync_context() because
"enable_ept && (invalidate_gpa || !enable_vpid)" always evaluates false.
This helps pave the way toward removing @invalidate_gpa and @vpid from
__vmx_flush_tlb() and its callers.
Opportunstically drop unnecessary brackets in handle_invvpid() around an
affected __vmx_flush_tlb()->vpid_sync_context() conversion.
No functional change intended.
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the global INVVPID in the unlikely scenario that vpid==0 and the
SINGLE_CONTEXT variant of INVVPID is unsupported. If vpid==0, there's
no need to INVVPID as it's impossible to do VM-Enter with VPID enabled
and vmcs.VPID==0, i.e. there can't be any TLB entries for the vCPU with
vpid==0. The fact that the SINGLE_CONTEXT variant isn't supported is
irrelevant.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-9-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When injecting a page fault or EPT violation/misconfiguration, KVM is
not syncing any shadow PTEs associated with the faulting address,
including those in previous MMUs that are associated with L1's current
EPTP (in a nested EPT scenario), nor is it flushing any hardware TLB
entries. All this is done by kvm_mmu_invalidate_gva.
Page faults that are either !PRESENT or RSVD are exempt from the flushing,
as the CPU is not allowed to cache such translations.
Signed-off-by: Junaid Shahid <junaids@google.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reconstruct the kvm_mmu to be used for page fault injection, we
can simply use fault->nested_page_fault. This matches how
fault->nested_page_fault is assigned in the first place by
FNAME(walk_addr_generic).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Wrap the combination of mmu->invlpg and kvm_x86_ops->tlb_flush_gva
into a new function. This function also lets us specify the host PGD to
invalidate and also the MMU, both of which will be useful in fixing and
simplifying kvm_inject_emulated_page_fault.
A nested guest's MMU however has g_context->invlpg == NULL. Instead of
setting it to nonpaging_invlpg, make kvm_mmu_invalidate_gva the only
entry point to mmu->invlpg and make a NULL invlpg pointer equivalent
to nonpaging_invlpg, saving a retpoline.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Export the page fault propagation helper so that VMX can use it to
correctly emulate TLB invalidation on page faults in an upcoming patch.
In the (hopefully) not-too-distant future, SGX virtualization will also
want access to the helper for injecting page faults to the correct level
(L1 vs. L2) when emulating ENCLS instructions.
Rename the function to kvm_inject_emulated_page_fault() to clarify that
it is (a) injecting a fault and (b) only for page faults. WARN if it's
invoked with an exception other than PF_VECTOR.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-6-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Free all roots when emulating INVVPID for L1 and EPT is disabled, as
outstanding changes to the page tables managed by L1 need to be
recognized. Because L1 and L2 share an MMU when EPT is disabled, and
because VPID is not tracked by the MMU role, all roots in the current
MMU (root_mmu) need to be freed, otherwise a future nested VM-Enter or
VM-Exit could do a fast CR3 switch (without a flush/sync) and consume
stale SPTEs.
Fixes: 5c614b3583 ("KVM: nVMX: nested VPID emulation")
Signed-off-by: Junaid Shahid <junaids@google.com>
[sean: ported to upstream KVM, reworded the comment and changelog]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-5-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Free all L2 (guest_mmu) roots when emulating INVEPT for L1. Outstanding
changes to the EPT tables managed by L1 need to be recognized, and
relying on KVM to always flush L2's EPTP context on nested VM-Enter is
dangerous.
Similar to handle_invpcid(), rely on kvm_mmu_free_roots() to do a remote
TLB flush if necessary, e.g. if L1 has never entered L2 then there is
nothing to be done.
Nuking all L2 roots is overkill for the single-context variant, but it's
the safe and easy bet. A more precise zap mechanism will be added in
the future. Add a TODO to call out that KVM only needs to invalidate
affected contexts.
Fixes: 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu")
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-4-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signal VM-Fail for the single-context variant of INVEPT if the specified
EPTP is invalid. Per the INEVPT pseudocode in Intel's SDM, it's subject
to the standard EPT checks:
If VM entry with the "enable EPT" VM execution control set to 1 would
fail due to the EPTP value then VMfail(Invalid operand to INVEPT/INVVPID);
Fixes: bfd0a56b90 ("nEPT: Nested INVEPT")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-3-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush all EPTP/VPID contexts if a TLB flush _may_ have been triggered by
a remote or deferred TLB flush, i.e. by KVM_REQ_TLB_FLUSH. Remote TLB
flushes require all contexts to be invalidated, not just the active
contexts, e.g. all mappings in all contexts for a given HVA need to be
invalidated on a mmu_notifier invalidation. Similarly, the instigator
of the deferred TLB flush may be expecting all contexts to be flushed,
e.g. vmx_vcpu_load_vmcs().
Without nested VMX, flushing only the current EPTP/VPID context isn't
problematic because KVM uses a constant VPID for each vCPU, and
mmu_alloc_direct_roots() all but guarantees KVM will use a single EPTP
for L1. In the rare case where a different EPTP is created or reused,
KVM (currently) unconditionally flushes the new EPTP context prior to
entering the guest.
With nested VMX, KVM conditionally uses a different VPID for L2, and
unconditionally uses a different EPTP for L2. Because KVM doesn't
_intentionally_ guarantee L2's EPTP/VPID context is flushed on nested
VM-Enter, it'd be possible for a malicious L1 to attack the host and/or
different VMs by exploiting the lack of flushing for L2.
1) Launch nested guest from malicious L1.
2) Nested VM-Enter to L2.
3) Access target GPA 'g'. CPU inserts TLB entry tagged with L2's ASID
mapping 'g' to host PFN 'x'.
2) Nested VM-Exit to L1.
3) L1 triggers kernel same-page merging (ksm) by duplicating/zeroing
the page for PFN 'x'.
4) Host kernel merges PFN 'x' with PFN 'y', i.e. unmaps PFN 'x' and
remaps the page to PFN 'y'. mmu_notifier sends invalidate command,
KVM flushes TLB only for L1's ASID.
4) Host kernel reallocates PFN 'x' to some other task/guest.
5) Nested VM-Enter to L2. KVM does not invalidate L2's EPTP or VPID.
6) L2 accesses GPA 'g' and gains read/write access to PFN 'x' via its
stale TLB entry.
However, current KVM unconditionally flushes L1's EPTP/VPID context on
nested VM-Exit. But, that behavior is mostly unintentional, KVM doesn't
go out of its way to flush EPTP/VPID on nested VM-Enter/VM-Exit, rather
a TLB flush is guaranteed to occur prior to re-entering L1 due to
__kvm_mmu_new_cr3() always being called with skip_tlb_flush=false. On
nested VM-Enter, this happens via kvm_init_shadow_ept_mmu() (nested EPT
enabled) or in nested_vmx_load_cr3() (nested EPT disabled). On nested
VM-Exit it occurs via nested_vmx_load_cr3().
This also fixes a bug where a deferred TLB flush in the context of L2,
with EPT disabled, would flush L1's VPID instead of L2's VPID, as
vmx_flush_tlb() flushes L1's VPID regardless of is_guest_mode().
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Junaid Shahid <junaids@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: John Haxby <john.haxby@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Fixes: efebf0aaec ("KVM: nVMX: Do not flush TLB on L1<->L2 transitions if L1 uses VPID and EPT")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch introduces test_add_max_memory_regions(), which checks
that a VM can have added memory slots up to the limit defined in
KVM_CAP_NR_MEMSLOTS. Then attempt to add one more slot to
verify it fails as expected.
Signed-off-by: Wainer dos Santos Moschetta <wainersm@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200410231707.7128-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make set_memory_region_test available on all architectures by wrapping
the bits that are x86-specific in ifdefs. A future testcase
to create the maximum number of memslots will be architecture
agnostic.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200410231707.7128-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a testcase for running a guest with no memslots to the memory region
test. The expected result on x86_64 is that the guest will trigger an
internal KVM error due to the initial code fetch encountering a
non-existent memslot and resulting in an emulation failure.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200410231707.7128-9-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduces the vm_get_fd() function in kvm_util which returns
the VM file descriptor.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Wainer dos Santos Moschetta <wainersm@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200410231707.7128-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a testcase for deleting memslots while the guest is running.
Like the "move" testcase, this is x86_64-only as it relies on MMIO
happening when a non-existent memslot is encountered.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200410231707.7128-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use sem_post() and sem_timedwait() to synchronize test stages between
the vCPU thread and the main thread instead of using usleep() to wait
for the vCPU thread and hoping for the best.
Opportunistically refactor the code to make it suck less in general,
and to prepare for adding more testcases.
Suggested-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200410231707.7128-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add variants of GUEST_ASSERT to pass values back to the host, e.g. to
help debug/understand a failure when the the cause of the assert isn't
necessarily binary.
It'd probably be possible to auto-calculate the number of arguments and
just have a single GUEST_ASSERT, but there are a limited number of
variants and silently eating arguments could lead to subtle code bugs.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200410231707.7128-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>