* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement reclaim from groups over their soft limit
Permit reclaim from memory cgroups on contention (via the direct reclaim
path).
memory cgroup soft limit reclaim finds the group that exceeds its soft
limit by the largest number of pages and reclaims pages from it and then
reinserts the cgroup into its correct place in the rbtree.
Add additional checks to mem_cgroup_hierarchical_reclaim() to detect long
loops in case all swap is turned off. The code has been refactored and
the loop check (loop < 2) has been enhanced for soft limits. For soft
limits, we try to do more targetted reclaim. Instead of bailing out after
two loops, the routine now reclaims memory proportional to the size by
which the soft limit is exceeded. The proportion has been empirically
determined.
[akpm@linux-foundation.org: build fix]
[kamezawa.hiroyu@jp.fujitsu.com: fix softlimit css refcnt handling]
[nishimura@mxp.nes.nec.co.jp: refcount of the "victim" should be decremented before exiting the loop]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For mem_cgroup, shrink_zone() may call shrink_list() with nr_to_scan=1, in
which case shrink_list() _still_ calls isolate_pages() with the much
larger SWAP_CLUSTER_MAX. It effectively scales up the inactive list scan
rate by up to 32 times.
For example, with 16k inactive pages and DEF_PRIORITY=12, (16k >> 12)=4.
So when shrink_zone() expects to scan 4 pages in the active/inactive list,
the active list will be scanned 4 pages, while the inactive list will be
(over) scanned SWAP_CLUSTER_MAX=32 pages in effect. And that could break
the balance between the two lists.
It can further impact the scan of anon active list, due to the anon
active/inactive ratio rebalance logic in balance_pgdat()/shrink_zone():
inactive anon list over scanned => inactive_anon_is_low() == TRUE
=> shrink_active_list()
=> active anon list over scanned
So the end result may be
- anon inactive => over scanned
- anon active => over scanned (maybe not as much)
- file inactive => over scanned
- file active => under scanned (relatively)
The accesses to nr_saved_scan are not lock protected and so not 100%
accurate, however we can tolerate small errors and the resulted small
imbalanced scan rates between zones.
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The name `zone_nr_pages' can be mis-read as zone's (total) number pages,
but it actually returns zone's LRU list number pages.
Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enlighten the reader of this code about what reference count makes a page
cache page freeable.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make page_has_private() return a true boolean value and remove the double
negations from the two callsites using it for arithmetic.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_is_file_cache() has been used for both boolean checks and LRU
arithmetic, which was always a bit weird.
Now that page_lru_base_type() exists for LRU arithmetic, make
page_is_file_cache() a real predicate function and adjust the
boolean-using callsites to drop those pesky double negations.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of abusing page_is_file_cache() for LRU list index arithmetic, add
another helper with a more appropriate name and convert the non-boolean
users of page_is_file_cache() accordingly.
This new helper gives the LRU base type a page is supposed to live on,
inactive anon or inactive file.
[hugh.dickins@tiscali.co.uk: convert del_page_from_lru() also]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pages in the list passed move_active_pages_to_lru() are already
touched by shrink_active_list(). IOW the prefetch in
move_active_pages_to_lru() don't populate any cache. it's pointless.
This patch remove it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page_lru() already evaluate PageActive() and PageSwapBacked(). We
don't need to re-evaluate it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The move_active_pages_to_lru() function is called under irq disabled and
ClearPageActive() doesn't need irq disabling.
Then, this patch move it into shrink_active_list().
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM already avoids attempting to reclaim anon pages in various places,
But it doesn't avoid it for lumpy reclaim.
It shuffles lru list unnecessary so that it is pointless.
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
global_lru_pages() / zone_lru_pages() can be used in two ways:
- to estimate max reclaimable pages in determine_dirtyable_memory()
- to calculate the slab scan ratio
When swap is full or not present, the anon lru lists are not reclaimable
and also won't be scanned. So the anon pages shall not be counted in both
usage scenarios. Also rename to _reclaimable_pages: now they are counting
the possibly reclaimable lru pages.
It can greatly (and correctly) increase the slab scan rate under high
memory pressure (when most file pages have been reclaimed and swap is
full/absent), thus reduce false OOM kills.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Howells <dhowells@redhat.com>
Cc: "Li, Ming Chun" <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When way too many processes go into direct reclaim, it is possible for all
of the pages to be taken off the LRU. One result of this is that the next
process in the page reclaim code thinks there are no reclaimable pages
left and triggers an out of memory kill.
One solution to this problem is to never let so many processes into the
page reclaim path that the entire LRU is emptied. Limiting the system to
only having half of each inactive list isolated for reclaim should be
safe.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the system is running a heavy load of processes then concurrent reclaim
can isolate a large number of pages from the LRU. /proc/vmstat and the
output generated for an OOM do not show how many pages were isolated.
This has been observed during process fork bomb testing (mstctl11 in LTP).
This patch shows the information about isolated pages.
Reproduced via:
-----------------------
% ./hackbench 140 process 1000
=> OOM occur
active_anon:146 inactive_anon:0 isolated_anon:49245
active_file:79 inactive_file:18 isolated_file:113
unevictable:0 dirty:0 writeback:0 unstable:0 buffer:39
free:370 slab_reclaimable:309 slab_unreclaimable:5492
mapped:53 shmem:15 pagetables:28140 bounce:0
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If sc->isolate_pages() return 0, we don't need to call shrink_page_list().
In past days, shrink_inactive_list() handled it properly.
But commit fb8d14e1 (three years ago commit!) breaked it. current
shrink_inactive_list() always call shrink_page_list() although
isolate_pages() return 0.
This patch restore proper return value check.
Requirements:
o "nr_taken == 0" condition should stay before calling shrink_page_list().
o "nr_taken == 0" condition should stay after nr_scan related statistics
modification.
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the pgmoved variable has two meanings. It causes harder
reviewing. This patch separates it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_to_unmap currently has multiple modi (migration, munlock, normal unmap)
which are selected by magic flag variables. The logic is not very straight
forward, because each of these flag change multiple behaviours (e.g.
migration turns off aging, not only sets up migration ptes etc.)
Also the different flags interact in magic ways.
A later patch in this series adds another mode to try_to_unmap, so
this becomes quickly unmanageable.
Replace the different flags with a action code (migration, munlock, munmap)
and some additional flags as modifiers (ignore mlock, ignore aging).
This makes the logic more straight forward and allows easier extension
to new behaviours. Change all the caller to declare what they want to
do.
This patch is supposed to be a nop in behaviour. If anyone can prove
it is not that would be a bug.
Cc: Lee.Schermerhorn@hp.com
Cc: npiggin@suse.de
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This gets rid of pdflush for bdi writeout and kupdated style cleaning.
pdflush writeout suffers from lack of locality and also requires more
threads to handle the same workload, since it has to work in a
non-blocking fashion against each queue. This also introduces lumpy
behaviour and potential request starvation, since pdflush can be starved
for queue access if others are accessing it. A sample ffsb workload that
does random writes to files is about 8% faster here on a simple SATA drive
during the benchmark phase. File layout also seems a LOT more smooth in
vmstat:
r b swpd free buff cache si so bi bo in cs us sy id wa
0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42
0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44
1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37
0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58
0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34
0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37
0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44
0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38
0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41
0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45
where vanilla tends to fluctuate a lot in the creation phase:
r b swpd free buff cache si so bi bo in cs us sy id wa
1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36
1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51
0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40
0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37
1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41
0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49
0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36
1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43
0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39
1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45
1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34
0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54
A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A
SSD based writeback test on XFS performs over 20% better as well, with
the throughput being very stable around 1GB/sec, where pdflush only
manages 750MB/sec and fluctuates wildly while doing so. Random buffered
writes to many files behave a lot better as well, as does random mmap'ed
writes.
A separate thread is added to sync the super blocks. In the long term,
adding sync_supers_bdi() functionality could get rid of this thread again.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
An mlocked page might lose the isolatation race. This causes the page to
clear PG_mlocked while it remains in a VM_LOCKED vma. This means it can
be put onto the [in]active list. We can rescue it by using try_to_unmap()
in shrink_page_list().
But now, As Wu Fengguang pointed out, vmscan has a bug. If the page has
PG_referenced, it can't reach try_to_unmap() in shrink_page_list() but is
put into the active list. If the page is referenced repeatedly, it can
remain on the [in]active list without being moving to the unevictable
list.
This patch fixes it.
Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <<kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 1faa16d228 accidentally broke
the bdi congestion wait queue logic, causing us to wait on congestion
for WRITE (== 1) when we really wanted BLK_RW_ASYNC (== 0) instead.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The isolated page is "cursor_page" not "page".
This could cause LRU list corruption under memory pressure, caught by
CONFIG_DEBUG_LIST.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Try to fix memcg's lru rotation sanity: make memcg use the same logic as
the global LRU does.
Now, at __isolate_lru_page() retruns -EBUSY, the page is rotated to the
tail of LRU in global LRU's isolate LRU pages. But in memcg, it's not
handled. This makes memcg do the same behavior as global LRU and rotate
LRU in the page is busy.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At lumpy reclaim, a page failed to be taken by __isolate_lru_page() can be
pushed back to "src" list by list_move(). But the page may not be from
"src" list. This pushes the page back to wrong LRU. And list_move()
itself is unnecessary because the page is not on top of LRU. Then, leave
it as it is if __isolate_lru_page() fails.
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim. On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met.
There is a heuristic that determines if the scan is worthwhile but it is
possible that the heuristic will fail and the CPU gets tied up scanning
uselessly. Detecting the situation requires some guesswork and
experimentation so this patch adds a counter "zreclaim_failed" to
/proc/vmstat. If during high CPU utilisation this counter is increasing
rapidly, then the resolution to the problem may be to set
/proc/sys/vm/zone_reclaim_mode to 0.
[akpm@linux-foundation.org: name things consistently]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim. On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met. The problem is that zone_reclaim() failing at all means the
zone gets marked full.
This can cause situations where a zone is usable, but is being skipped
because it has been considered full. Take a situation where a large tmpfs
mount is occuping a large percentage of memory overall. The pages do not
get cleaned or reclaimed by zone_reclaim(), but the zone gets marked full
and the zonelist cache considers them not worth trying in the future.
This patch makes zone_reclaim() return more fine-grained information about
what occured when zone_reclaim() failued. The zone only gets marked full
if it really is unreclaimable. If it's a case that the scan did not occur
or if enough pages were not reclaimed with the limited reclaim_mode, then
the zone is simply skipped.
There is a side-effect to this patch. Currently, if zone_reclaim()
successfully reclaimed SWAP_CLUSTER_MAX, an allocation attempt would go
ahead. With this patch applied, zone watermarks are rechecked after
zone_reclaim() does some work.
This bug was introduced by commit 9276b1bc96
("memory page_alloc zonelist caching speedup") way back in 2.6.19 when the
zonelist_cache was introduced. It was not intended that zone_reclaim()
aggressively consider the zone to be full when it failed as full direct
reclaim can still be an option. Due to the age of the bug, it should be
considered a -stable candidate.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A bug was brought to my attention against a distro kernel but it affects
mainline and I believe problems like this have been reported in various
guises on the mailing lists although I don't have specific examples at the
moment.
The reported problem was that malloc() stalled for a long time (minutes in
some cases) if a large tmpfs mount was occupying a large percentage of
memory overall. The pages did not get cleaned or reclaimed by
zone_reclaim() because the zone_reclaim_mode was unsuitable, but the lists
are uselessly scanned frequencly making the CPU spin at near 100%.
This patchset intends to address that bug and bring the behaviour of
zone_reclaim() more in line with expectations which were noticed during
investigation. It is based on top of mmotm and takes advantage of
Kosaki's work with respect to zone_reclaim().
Patch 1 fixes the heuristics that zone_reclaim() uses to determine if the
scan should go ahead. The broken heuristic is what was causing the
malloc() stall as it uselessly scanned the LRU constantly. Currently,
zone_reclaim is assuming zone_reclaim_mode is 1 and historically it
could not deal with tmpfs pages at all. This fixes up the heuristic so
that an unnecessary scan is more likely to be correctly avoided.
Patch 2 notes that zone_reclaim() returning a failure automatically means
the zone is marked full. This is not always true. It could have
failed because the GFP mask or zone_reclaim_mode were unsuitable.
Patch 3 introduces a counter zreclaim_failed that will increment each
time the zone_reclaim scan-avoidance heuristics fail. If that
counter is rapidly increasing, then zone_reclaim_mode should be
set to 0 as a temporarily resolution and a bug reported because
the scan-avoidance heuristic is still broken.
This patch:
On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim. On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met.
There is a heuristic that determines if the scan is worthwhile but the
problem is that the heuristic is not being properly applied and is
basically assuming zone_reclaim_mode is 1 if it is enabled. The lack of
proper detection can manfiest as high CPU usage as the LRU list is scanned
uselessly.
Historically, once enabled it was depending on NR_FILE_PAGES which may
include swapcache pages that the reclaim_mode cannot deal with. Patch
vmscan-change-the-number-of-the-unmapped-files-in-zone-reclaim.patch by
Kosaki Motohiro noted that zone_page_state(zone, NR_FILE_PAGES) included
pages that were not file-backed such as swapcache and made a calculation
based on the inactive, active and mapped files. This is far superior when
zone_reclaim==1 but if RECLAIM_SWAP is set, then NR_FILE_PAGES is a
reasonable starting figure.
This patch alters how zone_reclaim() works out how many pages it might be
able to reclaim given the current reclaim_mode. If RECLAIM_SWAP is set in
the reclaim_mode it will either consider NR_FILE_PAGES as potential
candidates or else use NR_{IN}ACTIVE}_PAGES-NR_FILE_MAPPED to discount
swapcache and other non-file-backed pages. If RECLAIM_WRITE is not set,
then NR_FILE_DIRTY number of pages are not candidates. If RECLAIM_SWAP is
not set, then NR_FILE_MAPPED are not.
[kosaki.motohiro@jp.fujitsu.com: Estimate unmapped pages minus tmpfs pages]
[fengguang.wu@intel.com: Fix underflow problem in Kosaki's estimate]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 2e2e425989 ("vmscan,memcg:
reintroduce sc->may_swap) add may_swap flag and handle it at
get_scan_ratio().
But the result of get_scan_ratio() is ignored when priority == 0, so anon
lru is scanned even if may_swap == 0 or nr_swap_pages == 0. IMHO, this is
not an expected behavior.
As for memcg especially, because of this behavior many and many pages are
swapped-out just in vain when oom is invoked by mem+swap limit.
This patch is for handling may_swap flag more strictly.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "move pages to active list" and "move pages to inactive list" code
blocks are mostly identical and can be served by a function.
Thanks to Andrew Morton for pointing this out.
Note that buffer_heads_over_limit check will also be carried out for
re-activated pages, which is slightly different from pre-2.6.28 kernels.
Also, Rik's "vmscan: evict use-once pages first" patch could totally stop
scans of active file list when memory pressure is low. So the net effect
could be, the number of buffer heads is now more likely to grow large.
However that's fine according to Johannes' comments:
I don't think that this could be harmful. We just preserve the buffer
mappings of what we consider the working set and with low memory
pressure, as you say, this set is not big.
As to stripping of reactivated pages: the only pages we re-activate
for now are those VM_EXEC mapped ones. Since we don't expect IO from
or to these pages, removing the buffer mappings in case they grow too
large should be okay, I guess.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Protect referenced PROT_EXEC mapped pages from being deactivated.
PROT_EXEC(or its internal presentation VM_EXEC) pages normally belong to some
currently running executables and their linked libraries, they shall really be
cached aggressively to provide good user experiences.
Thanks to Johannes Weiner for the advice to reuse the VMA walk in
page_referenced() to get the PROT_EXEC bit.
[more details]
( The consequences of this patch will have to be discussed together with
Rik van Riel's recent patch "vmscan: evict use-once pages first". )
( Some of the good points and insights are taken into this changelog.
Thanks to all the involved people for the great LKML discussions. )
the problem
===========
For a typical desktop, the most precious working set is composed of
*actively accessed*
(1) memory mapped executables
(2) and their anonymous pages
(3) and other files
(4) and the dcache/icache/.. slabs
while the least important data are
(5) infrequently used or use-once files
For a typical desktop, one major problem is busty and large amount of (5)
use-once files flushing out the working set.
Inside the working set, (4) dcache/icache have already been too sticky ;-)
So we only have to care (2) anonymous and (1)(3) file pages.
anonymous pages
===============
Anonymous pages are effectively immune to the streaming IO attack, because we
now have separate file/anon LRU lists. When the use-once files crowd into the
file LRU, the list's "quality" is significantly lowered. Therefore the scan
balance policy in get_scan_ratio() will choose to scan the (low quality) file
LRU much more frequently than the anon LRU.
file pages
==========
Rik proposed to *not* scan the active file LRU when the inactive list grows
larger than active list. This guarantees that when there are use-once streaming
IO, and the working set is not too large(so that active_size < inactive_size),
the active file LRU will *not* be scanned at all. So the not-too-large working
set can be well protected.
But there are also situations where the file working set is a bit large so that
(active_size >= inactive_size), or the streaming IOs are not purely use-once.
In these cases, the active list will be scanned slowly. Because the current
shrink_active_list() policy is to deactivate active pages regardless of their
referenced bits. The deactivated pages become susceptible to the streaming IO
attack: the inactive list could be scanned fast (500MB / 50MBps = 10s) so that
the deactivated pages don't have enough time to get re-referenced. Because a
user tend to switch between windows in intervals from seconds to minutes.
This patch holds mapped executable pages in the active list as long as they
are referenced during each full scan of the active list. Because the active
list is normally scanned much slower, they get longer grace time (eg. 100s)
for further references, which better matches the pace of user operations.
Therefore this patch greatly prolongs the in-cache time of executable code,
when there are moderate memory pressures.
before patch: guaranteed to be cached if reference intervals < I
after patch: guaranteed to be cached if reference intervals < I+A
(except when randomly reclaimed by the lumpy reclaim)
where
A = time to fully scan the active file LRU
I = time to fully scan the inactive file LRU
Note that normally A >> I.
side effects
============
This patch is safe in general, it restores the pre-2.6.28 mmap() behavior
but in a much smaller and well targeted scope.
One may worry about some one to abuse the PROT_EXEC heuristic. But as
Andrew Morton stated, there are other tricks to getting that sort of boost.
Another concern is the PROT_EXEC mapped pages growing large in rare cases,
and therefore hurting reclaim efficiency. But a sane application targeted for
large audience will never use PROT_EXEC for data mappings. If some home made
application tries to abuse that bit, it shall be aware of the consequences.
If it is abused to scale of 2/3 total memory, it gains nothing but overheads.
benchmarks
==========
1) memory tight desktop
1.1) brief summary
- clock time and major faults are reduced by 50%;
- pswpin numbers are reduced to ~1/3.
That means X desktop responsiveness is doubled under high memory/swap pressure.
1.2) test scenario
- nfsroot gnome desktop with 512M physical memory
- run some programs, and switch between the existing windows
after starting each new program.
1.3) progress timing (seconds)
before after programs
0.02 0.02 N xeyes
0.75 0.76 N firefox
2.02 1.88 N nautilus
3.36 3.17 N nautilus --browser
5.26 4.89 N gthumb
7.12 6.47 N gedit
9.22 8.16 N xpdf /usr/share/doc/shared-mime-info/shared-mime-info-spec.pdf
13.58 12.55 N xterm
15.87 14.57 N mlterm
18.63 17.06 N gnome-terminal
21.16 18.90 N urxvt
26.24 23.48 N gnome-system-monitor
28.72 26.52 N gnome-help
32.15 29.65 N gnome-dictionary
39.66 36.12 N /usr/games/sol
43.16 39.27 N /usr/games/gnometris
48.65 42.56 N /usr/games/gnect
53.31 47.03 N /usr/games/gtali
58.60 52.05 N /usr/games/iagno
65.77 55.42 N /usr/games/gnotravex
70.76 61.47 N /usr/games/mahjongg
76.15 67.11 N /usr/games/gnome-sudoku
86.32 75.15 N /usr/games/glines
92.21 79.70 N /usr/games/glchess
103.79 88.48 N /usr/games/gnomine
113.84 96.51 N /usr/games/gnotski
124.40 102.19 N /usr/games/gnibbles
137.41 114.93 N /usr/games/gnobots2
155.53 125.02 N /usr/games/blackjack
179.85 135.11 N /usr/games/same-gnome
224.49 154.50 N /usr/bin/gnome-window-properties
248.44 162.09 N /usr/bin/gnome-default-applications-properties
282.62 173.29 N /usr/bin/gnome-at-properties
323.72 188.21 N /usr/bin/gnome-typing-monitor
363.99 199.93 N /usr/bin/gnome-at-visual
394.21 206.95 N /usr/bin/gnome-sound-properties
435.14 224.49 N /usr/bin/gnome-at-mobility
463.05 234.11 N /usr/bin/gnome-keybinding-properties
503.75 248.59 N /usr/bin/gnome-about-me
554.00 276.27 N /usr/bin/gnome-display-properties
615.48 304.39 N /usr/bin/gnome-network-preferences
693.03 342.01 N /usr/bin/gnome-mouse-properties
759.90 388.58 N /usr/bin/gnome-appearance-properties
937.90 508.47 N /usr/bin/gnome-control-center
1109.75 587.57 N /usr/bin/gnome-keyboard-properties
1399.05 758.16 N : oocalc
1524.64 830.03 N : oodraw
1684.31 900.03 N : ooimpress
1874.04 993.91 N : oomath
2115.12 1081.89 N : ooweb
2369.02 1161.99 N : oowriter
Note that the last ": oo*" commands are actually commented out.
1.4) vmstat numbers (some relevant ones are marked with *)
before after
nr_free_pages 1293 3898
nr_inactive_anon 59956 53460
nr_active_anon 26815 30026
nr_inactive_file 2657 3218
nr_active_file 2019 2806
nr_unevictable 4 4
nr_mlock 4 4
nr_anon_pages 26706 27859
*nr_mapped 3542 4469
nr_file_pages 72232 67681
nr_dirty 1 0
nr_writeback 123 19
nr_slab_reclaimable 3375 3534
nr_slab_unreclaimable 11405 10665
nr_page_table_pages 8106 7864
nr_unstable 0 0
nr_bounce 0 0
*nr_vmscan_write 394776 230839
nr_writeback_temp 0 0
numa_hit 6843353 3318676
numa_miss 0 0
numa_foreign 0 0
numa_interleave 1719 1719
numa_local 6843353 3318676
numa_other 0 0
*pgpgin 5954683 2057175
*pgpgout 1578276 922744
*pswpin 1486615 512238
*pswpout 394568 230685
pgalloc_dma 277432 56602
pgalloc_dma32 6769477 3310348
pgalloc_normal 0 0
pgalloc_movable 0 0
pgfree 7048396 3371118
pgactivate 2036343 1471492
pgdeactivate 2189691 1612829
pgfault 3702176 3100702
*pgmajfault 452116 201343
pgrefill_dma 12185 7127
pgrefill_dma32 334384 653703
pgrefill_normal 0 0
pgrefill_movable 0 0
pgsteal_dma 74214 22179
pgsteal_dma32 3334164 1638029
pgsteal_normal 0 0
pgsteal_movable 0 0
pgscan_kswapd_dma 1081421 1216199
pgscan_kswapd_dma32 58979118 46002810
pgscan_kswapd_normal 0 0
pgscan_kswapd_movable 0 0
pgscan_direct_dma 2015438 1086109
pgscan_direct_dma32 55787823 36101597
pgscan_direct_normal 0 0
pgscan_direct_movable 0 0
pginodesteal 3461 7281
slabs_scanned 564864 527616
kswapd_steal 2889797 1448082
kswapd_inodesteal 14827 14835
pageoutrun 43459 21562
allocstall 9653 4032
pgrotated 384216 228631
1.5) free numbers at the end of the tests
before patch:
total used free shared buffers cached
Mem: 474 467 7 0 0 236
-/+ buffers/cache: 230 243
Swap: 1023 418 605
after patch:
total used free shared buffers cached
Mem: 474 457 16 0 0 236
-/+ buffers/cache: 221 253
Swap: 1023 404 619
2) memory flushing in a file server
2.1) brief summary
The number of major faults from 50 to 3 during 10% cache hot reads.
That means this patch successfully stops major faults when the active file
list is slowly scanned when there are partially cache hot streaming IO.
2.2) test scenario
Do 100000 pread(size=110 pages, offset=(i*100) pages), where 10% of the
pages will be activated:
for i in `seq 0 100 10000000`; do echo $i 110; done > pattern-hot-10
iotrace.rb --load pattern-hot-10 --play /b/sparse
vmmon nr_mapped nr_active_file nr_inactive_file pgmajfault pgdeactivate pgfree
and monitor /proc/vmstat during the time. The test box has 2G memory.
I carried out tests on fresh booted console as well as X desktop, and
fetched the vmstat numbers on
(1) begin: shortly after the big read IO starts;
(2) end: just before the big read IO stops;
(3) restore: the big read IO stops and the zsh working set restored
(4) restore X: after IO, switch back and forth between the urxvt and firefox
windows to restore their working set.
2.3) console mode results
nr_mapped nr_active_file nr_inactive_file pgmajfault pgdeactivate pgfree
2.6.29 VM_EXEC protection ON:
begin: 2481 2237 8694 630 0 574299
end: 275 231976 233914 633 776271 20933042
restore: 370 232154 234524 691 777183 20958453
2.6.29 VM_EXEC protection ON (second run):
begin: 2434 2237 8493 629 0 574195
end: 284 231970 233536 632 771918 20896129
restore: 399 232218 234789 690 774526 20957909
2.6.30-rc4-mm VM_EXEC protection OFF:
begin: 2479 2344 9659 210 0 579643
end: 284 232010 234142 260 772776 20917184
restore: 379 232159 234371 301 774888 20967849
The above console numbers show that
- The startup pgmajfault of 2.6.30-rc4-mm is merely 1/3 that of 2.6.29.
I'd attribute that improvement to the mmap readahead improvements :-)
- The pgmajfault increment during the file copy is 633-630=3 vs 260-210=50.
That's a huge improvement - which means with the VM_EXEC protection logic,
active mmap pages is pretty safe even under partially cache hot streaming IO.
- when active:inactive file lru size reaches 1:1, their scan rates is 1:20.8
under 10% cache hot IO. (computed with formula Dpgdeactivate:Dpgfree)
That roughly means the active mmap pages get 20.8 more chances to get
re-referenced to stay in memory.
- The absolute nr_mapped drops considerably to 1/9 during the big IO, and the
dropped pages are mostly inactive ones. The patch has almost no impact in
this aspect, that means it won't unnecessarily increase memory pressure.
(In contrast, your 20% mmap protection ratio will keep them all, and
therefore eliminate the extra 41 major faults to restore working set
of zsh etc.)
The iotrace.rb read throughput is
151.194384MB/s 284.198252s 100001x 450560b --load pattern-hot-10 --play /b/sparse
which means the inactive list is rotated at the speed of 250MB/s,
so a full scan of which takes about 3.5 seconds, while a full scan
of active file list takes about 77 seconds.
2.4) X mode results
We can reach roughly the same conclusions for X desktop:
nr_mapped nr_active_file nr_inactive_file pgmajfault pgdeactivate pgfree
2.6.30-rc4-mm VM_EXEC protection ON:
begin: 9740 8920 64075 561 0 678360
end: 768 218254 220029 565 798953 21057006
restore: 857 218543 220987 606 799462 21075710
restore X: 2414 218560 225344 797 799462 21080795
2.6.30-rc4-mm VM_EXEC protection OFF:
begin: 9368 5035 26389 554 0 633391
end: 770 218449 221230 661 646472 17832500
restore: 1113 218466 220978 710 649881 17905235
restore X: 2687 218650 225484 947 802700 21083584
- the absolute nr_mapped drops considerably (to 1/13 of the original size)
during the streaming IO.
- the delta of pgmajfault is 3 vs 107 during IO, or 236 vs 393
during the whole process.
Cc: Elladan <elladan@eskimo.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Collect vma->vm_flags of the VMAs that actually referenced the page.
This is preparing for more informed reclaim heuristics, eg. to protect
executable file pages more aggressively. For now only the VM_EXEC bit
will be used by the caller.
Thanks to Johannes, Peter and Minchan for all the good tips.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a following patch, the usage of swap cache is recorded into swap_map.
This patch is for necessary interface changes to do that.
2 interfaces:
- swapcache_prepare()
- swapcache_free()
are added for allocating/freeing refcnt from swap-cache to existing swap
entries. But implementation itself is not changed under this patch. At
adding swapcache_free(), memcg's hook code is moved under
swapcache_free(). This is better than using scattered hooks.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shrink_zone() can deactivate active anon pages even if we don't have a
swap device. Many embedded products don't have a swap device. So the
deactivation of anon pages is unnecessary.
This patch prevents unnecessary deactivation of anon lru pages. But, it
don't prevent aging of anon pages to swap out.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This effectively lifts the unit of updates to nr_inactive_* and
pgdeactivate from PAGEVEC_SIZE=14 to SWAP_CLUSTER_MAX=32, or
MAX_ORDER_NR_PAGES=1024 for reclaim_zone().
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmscan batching logic is twisting. Move it into a standalone function
nr_scan_try_batch() and document it. No behavior change.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the file LRU lists are dominated by streaming IO pages, evict those
pages first, before considering evicting other pages.
This should be safe from deadlocks or performance problems
because only three things can happen to an inactive file page:
1) referenced twice and promoted to the active list
2) evicted by the pageout code
3) under IO, after which it will get evicted or promoted
The pages freed in this way can either be reused for streaming IO, or
allocated for something else. If the pages are used for streaming IO,
this pageout pattern continues. Otherwise, we will fall back to the
normal pageout pattern.
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Elladan <elladan@eskimo.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ALLOC_WMARK_MIN, ALLOC_WMARK_LOW and ALLOC_WMARK_HIGH determin whether
pages_min, pages_low or pages_high is used as the zone watermark when
allocating the pages. Two branches in the allocator hotpath determine
which watermark to use.
This patch uses the flags as an array index into a watermark array that is
indexed with WMARK_* defines accessed via helpers. All call sites that
use zone->pages_* are updated to use the helpers for accessing the values
and the array offsets for setting.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 33c120ed28 ("more aggressively use
lumpy reclaim") increased how aggressive lumpy reclaim was by isolating
both active and inactive pages for asynchronous lumpy reclaim on
costly-high-order pages and for cheap-high-order when memory pressure is
high. However, if the system is under heavy pressure and there are dirty
pages, asynchronous IO may not be sufficient to reclaim a suitable page in
time.
This patch causes the caller to enter synchronous lumpy reclaim for
costly-high-order pages and for cheap-high-order pages when under memory
pressure.
Minchan.kim@gmail.com said:
Andy added synchronous lumpy reclaim with
c661b078fd. At that time, lumpy reclaim is
not agressive. His intension is just for high-order users.(above
PAGE_ALLOC_COSTLY_ORDER).
After some time, Rik added aggressive lumpy reclaim with
33c120ed28. His intention was to do lumpy
reclaim when high-order users and trouble getting a small set of
contiguous pages.
So we also have to add synchronous pageout for small set of contiguous
pages.
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <Minchan.kim@gmail.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the shrinking of memory from the suspend-to-RAM code, where
it is not really necessary.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@tuxonice.net>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
mapping->tree_lock can be acquired from interrupt context. Then,
following dead lock can occur.
Assume "A" as a page.
CPU0:
lock_page_cgroup(A)
interrupted
-> take mapping->tree_lock.
CPU1:
take mapping->tree_lock
-> lock_page_cgroup(A)
This patch tries to fix above deadlock by moving memcg's hook to out of
mapping->tree_lock. charge/uncharge of pagecache/swapcache is protected
by page lock, not tree_lock.
After this patch, lock_page_cgroup() is not called under mapping->tree_lock.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Local variable `scan' can overflow on zones which are larger than
(2G * 4k) / 100 = 80GB.
Making it 64-bit on 64-bit will fix that up.
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a6dc60f897 ("vmscan: rename
sc.may_swap to may_unmap") removed the may_swap flag, but memcg had used
it as a flag for "we need to use swap?", as the name indicate.
And in the current implementation, memcg cannot reclaim mapped file
caches when mem+swap hits the limit.
re-introduce may_swap flag and handle it at get_scan_ratio(). This
patch doesn't influence any scan_control users other than memcg.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit d979677c4c ("mm: shrink_all_memory(): use sc.nr_reclaimed")
broke the memory shrinking used by hibernation, becuse it did not update
shrink_all_zones() in accordance with the other changes it made.
Fix this by making shrink_all_zones() update sc->nr_reclaimed instead of
overwriting its value.
This fixes http://bugzilla.kernel.org/show_bug.cgi?id=13058
Reported-and-tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask: (36 commits)
cpumask: remove cpumask allocation from idle_balance, fix
numa, cpumask: move numa_node_id default implementation to topology.h, fix
cpumask: remove cpumask allocation from idle_balance
x86: cpumask: x86 mmio-mod.c use cpumask_var_t for downed_cpus
x86: cpumask: update 32-bit APM not to mug current->cpus_allowed
x86: microcode: cleanup
x86: cpumask: use work_on_cpu in arch/x86/kernel/microcode_core.c
cpumask: fix CONFIG_CPUMASK_OFFSTACK=y cpu hotunplug crash
numa, cpumask: move numa_node_id default implementation to topology.h
cpumask: convert node_to_cpumask_map[] to cpumask_var_t
cpumask: remove x86 cpumask_t uses.
cpumask: use cpumask_var_t in uv_flush_tlb_others.
cpumask: remove cpumask_t assignment from vector_allocation_domain()
cpumask: make Xen use the new operators.
cpumask: clean up summit's send_IPI functions
cpumask: use new cpumask functions throughout x86
x86: unify cpu_callin_mask/cpu_callout_mask/cpu_initialized_mask/cpu_sibling_setup_mask
cpumask: convert struct cpuinfo_x86's llc_shared_map to cpumask_var_t
cpumask: convert node_to_cpumask_map[] to cpumask_var_t
x86: unify 32 and 64-bit node_to_cpumask_map
...
Recruit a page flag to aid in cache management. The following extra flag is
defined:
(1) PG_fscache (PG_private_2)
The marked page is backed by a local cache and is pinning resources in the
cache driver.
If PG_fscache is set, then things that checked for PG_private will now also
check for that. This includes things like truncation and page invalidation.
The function page_has_private() had been added to make the checks for both
PG_private and PG_private_2 at the same time.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
try_to_free_pages() is used for the direct reclaim of up to
SWAP_CLUSTER_MAX pages when watermarks are low. The caller to
alloc_pages_nodemask() can specify a nodemask of nodes that are allowed to
be used but this is not passed to try_to_free_pages(). This can lead to
unnecessary reclaim of pages that are unusable by the caller and int the
worst case lead to allocation failure as progress was not been make where
it is needed.
This patch passes the nodemask used for alloc_pages_nodemask() to
try_to_free_pages().
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a shrinker has a negative number of objects to delete, the symbol
name of the shrinker should be printed, not shrink_slab. This also makes
the error message slightly more informative.
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pagevec_swap_free() at the end of shrink_active_list() was introduced
in 68a22394 "vmscan: free swap space on swap-in/activation" when
shrink_active_list() was still rotating referenced active pages.
In 7e9cd48 "vmscan: fix pagecache reclaim referenced bit check" this was
changed, the rotating removed but the pagevec_swap_free() after the
rotation loop was forgotten, applying now to the pagevec of the
deactivation loop instead.
Now swap space is freed for deactivated pages. And only for those that
happen to be on the pagevec after the deactivation loop.
Complete 7e9cd48 and remove the rest of the swap freeing.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In shrink_active_list() after the deactivation loop, we strip buffer heads
from the potentially remaining pages in the pagevec.
Currently, this drops the zone's lru lock for stripping, only to reacquire
it again afterwards to update statistics.
It is not necessary to strip the pages before updating the stats, so move
the whole thing out of the protected region and save the extra locking.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During page allocation, there are two stages of direct reclaim that are
applied to each zone in the preferred list. The first stage using
zone_reclaim() reclaims unmapped file backed pages and slab pages if over
defined limits as these are cheaper to reclaim. The caller specifies the
order of the target allocation but the scan control is not being correctly
initialised.
The impact is that the correct number of pages are being reclaimed but
that lumpy reclaim is not being applied. This increases the chances of a
full direct reclaim via try_to_free_pages() is required.
This patch initialises the order field of the scan control as requested by
the caller.
[mel@csn.ul.ie: rewrote changelog]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shrink_inactive_list() scans in sc->swap_cluster_max chunks until it hits
the scan limit it was passed.
shrink_inactive_list()
{
do {
isolate_pages(swap_cluster_max)
shrink_page_list()
} while (nr_scanned < max_scan);
}
This assumes that swap_cluster_max is not bigger than the scan limit
because the latter is checked only after at least one iteration.
In shrink_all_memory() sc->swap_cluster_max is initialized to the overall
reclaim goal in the beginning but not decreased while reclaim is making
progress which leads to subsequent calls to shrink_inactive_list()
reclaiming way too much in the one iteration that is done unconditionally.
Set sc->swap_cluster_max always to the proper goal before doing
shrink_all_zones()
shrink_list()
shrink_inactive_list().
While the current shrink_all_memory() happily reclaims more than actually
requested, this patch fixes it to never exceed the goal:
unpatched
wanted=10000 reclaimed=13356
wanted=10000 reclaimed=19711
wanted=10000 reclaimed=10289
wanted=10000 reclaimed=17306
wanted=10000 reclaimed=10700
wanted=10000 reclaimed=10004
wanted=10000 reclaimed=13301
wanted=10000 reclaimed=10976
wanted=10000 reclaimed=10605
wanted=10000 reclaimed=10088
wanted=10000 reclaimed=15000
patched
wanted=10000 reclaimed=10000
wanted=10000 reclaimed=9599
wanted=10000 reclaimed=8476
wanted=10000 reclaimed=8326
wanted=10000 reclaimed=10000
wanted=10000 reclaimed=10000
wanted=10000 reclaimed=9919
wanted=10000 reclaimed=10000
wanted=10000 reclaimed=10000
wanted=10000 reclaimed=10000
wanted=10000 reclaimed=10000
wanted=10000 reclaimed=9624
wanted=10000 reclaimed=10000
wanted=10000 reclaimed=10000
wanted=8500 reclaimed=8092
wanted=316 reclaimed=316
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: MinChan Kim <minchan.kim@gmail.com>
Acked-by: Nigel Cunningham <ncunningham@crca.org.au>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a79311c14e "vmscan: bail out of
direct reclaim after swap_cluster_max pages" moved the nr_reclaimed
counter into the scan control to accumulate the number of all reclaimed
pages in a reclaim invocation.
shrink_all_memory() can use the same mechanism. it increase code
consistency and redability.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: cleanup
In almost cases, for_each_zone() is used with populated_zone(). It's
because almost function doesn't need memoryless node information.
Therefore, for_each_populated_zone() can help to make code simplify.
This patch has no functional change.
[akpm@linux-foundation.org: small cleanup]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sc.may_swap does not only influence reclaiming of anon pages but pages
mapped into pagetables in general, which also includes mapped file pages.
In shrink_page_list():
if (!sc->may_swap && page_mapped(page))
goto keep_locked;
For anon pages, this makes sense as they are always mapped and reclaiming
them always requires swapping.
But mapped file pages are skipped here as well and it has nothing to do
with swapping.
The real effect of the knob is whether mapped pages are unmapped and
reclaimed or not. Rename it to `may_unmap' to have its name match its
actual meaning more precisely.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: MinChan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: cleanup
node_to_cpumask (and the blecherous node_to_cpumask_ptr which
contained a declaration) are replaced now everyone implements
cpumask_of_node.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Even when page reclaim is under mem_cgroup, # of scan page is determined by
status of global LRU. Fix that.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move local variables to innermost possible scopes and use local
variables to cache calculations/reads done more than once.
No change in functionality (intended).
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg KH <gregkh@suse.de>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sc.swappiness is not used in the swsusp memory shrinking path, do not
set it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg KH <gregkh@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: fix build warning
Fix:
mm/vmscan.c: In function ‘kswapd’:
mm/vmscan.c:1969: warning: ISO C90 forbids mixed declarations and code
node_to_cpumask_ptr(cpumask, pgdat->node_id), has a side-effect: it
defines the 'cpumask' local variable as well, so it has to go into
the variable definition section.
Sidenote: it might make sense to make this purpose of these macros
more apparent, by naming them the standard way, such as:
DEFINE_node_to_cpumask_ptr(cpumask, pgdat->node_id);
(But that is outside the scope of this patch.)
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Here is another version, with the incremental patch rolled up, and
added reclaim context annotation to kswapd, and allocation tracing
to slab allocators (which may only ever reach the page allocator
in rare cases, so it is good to put annotations here too).
Haven't tested this version as such, but it should be getting closer
to merge worthy ;)
--
After noticing some code in mm/filemap.c accidentally perform a __GFP_FS
allocation when it should not have been, I thought it might be a good idea to
try to catch this kind of thing with lockdep.
I coded up a little idea that seems to work. Unfortunately the system has to
actually be in __GFP_FS page reclaim, then take the lock, before it will mark
it. But at least that might still be some orders of magnitude more common
(and more debuggable) than an actual deadlock condition, so we have some
improvement I hope (the concept is no less complete than discovery of a lock's
interrupt contexts).
I guess we could even do the same thing with __GFP_IO (normal reclaim), and
even GFP_NOIO locks too... but filesystems will have the most locks and fiddly
code paths, so let's start there and see how it goes.
It *seems* to work. I did a quick test.
=================================
[ INFO: inconsistent lock state ]
2.6.28-rc6-00007-ged31348-dirty #26
---------------------------------
inconsistent {in-reclaim-W} -> {ov-reclaim-W} usage.
modprobe/8526 [HC0[0]:SC0[0]:HE1:SE1] takes:
(testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]
{in-reclaim-W} state was registered at:
[<ffffffff80267bdb>] __lock_acquire+0x75b/0x1a60
[<ffffffff80268f71>] lock_acquire+0x91/0xc0
[<ffffffff8070f0e1>] mutex_lock_nested+0xb1/0x310
[<ffffffffa002002b>] brd_init+0x2b/0x216 [brd]
[<ffffffff8020903b>] _stext+0x3b/0x170
[<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
[<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
irq event stamp: 3929
hardirqs last enabled at (3929): [<ffffffff8070f2b5>] mutex_lock_nested+0x285/0x310
hardirqs last disabled at (3928): [<ffffffff8070f089>] mutex_lock_nested+0x59/0x310
softirqs last enabled at (3732): [<ffffffff8061f623>] sk_filter+0x83/0xe0
softirqs last disabled at (3730): [<ffffffff8061f5b6>] sk_filter+0x16/0xe0
other info that might help us debug this:
1 lock held by modprobe/8526:
#0: (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]
stack backtrace:
Pid: 8526, comm: modprobe Not tainted 2.6.28-rc6-00007-ged31348-dirty #26
Call Trace:
[<ffffffff80265483>] print_usage_bug+0x193/0x1d0
[<ffffffff80266530>] mark_lock+0xaf0/0xca0
[<ffffffff80266735>] mark_held_locks+0x55/0xc0
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffff802667ca>] trace_reclaim_fs+0x2a/0x60
[<ffffffff80285005>] __alloc_pages_internal+0x475/0x580
[<ffffffff8070f29e>] ? mutex_lock_nested+0x26e/0x310
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffffa002006a>] brd_init+0x6a/0x216 [brd]
[<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
[<ffffffff8020903b>] _stext+0x3b/0x170
[<ffffffff8070f8b9>] ? mutex_unlock+0x9/0x10
[<ffffffff8070f83d>] ? __mutex_unlock_slowpath+0x10d/0x180
[<ffffffff802669ec>] ? trace_hardirqs_on_caller+0x12c/0x190
[<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
[<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, inactive_ratio of memcg is calculated at setting limit.
because page_alloc.c does so and current implementation is straightforward
porting.
However, memcg introduced hierarchy feature recently. In hierarchy
restriction, memory limit is not only decided memory.limit_in_bytes of
current cgroup, but also parent limit and sibling memory usage.
Then, The optimal inactive_ratio is changed frequently. So, everytime
calculation is better.
Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, /proc/sys/vm/swappiness can change swappiness ratio for global
reclaim. However, memcg reclaim doesn't have tuning parameter for itself.
In general, the optimal swappiness depend on workload. (e.g. hpc
workload need to low swappiness than the others.)
Then, per cgroup swappiness improve administrator tunability.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, get_scan_ratio() return correct value although memcg reclaim. Then,
mem_cgroup_calc_reclaim() can be removed.
So, memcg reclaim get the same capability of anon/file reclaim balancing
as global reclaim now.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inactive_anon_is_low() is key component of active/inactive anon
balancing on reclaim. However current inactive_anon_is_low() function
only consider global reclaim.
Therefore, we need following ugly scan_global_lru() condition.
if (lru == LRU_ACTIVE_ANON &&
(!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
shrink_active_list(nr_to_scan, zone, sc, priority, file);
return 0;
it cause that memcg reclaim always deactivate pages when shrink_list() is
called. To make mem_cgroup_inactive_anon_is_low() improve active/inactive
anon balancing of memcgroup.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: "Pekka Enberg" <penberg@cs.helsinki.fi>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, get_scan_ratio() always calculate the balancing value for
global reclaim and memcg reclaim doesn't use it. Therefore it doesn't
have scan_global_lru() condition.
However, we plan to expand get_scan_ratio() to be usable for memcg too,
latter. Then, The dependency code of global reclaim in the
get_scan_ratio() insert into scan_global_lru() condision explictly.
This patch doesn't have any functional change.
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add zone_nr_pages() helper function.
It is used by a later patch. This patch doesn't have any functional
change.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inactive_anon_is_low() is called only vmscan. Then it can move to
vmscan.c
This patch doesn't have any functional change.
Reviewd-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A big patch for changing memcg's LRU semantics.
Now,
- page_cgroup is linked to mem_cgroup's its own LRU (per zone).
- LRU of page_cgroup is not synchronous with global LRU.
- page and page_cgroup is one-to-one and statically allocated.
- To find page_cgroup is on what LRU, you have to check pc->mem_cgroup as
- lru = page_cgroup_zoneinfo(pc, nid_of_pc, zid_of_pc);
- SwapCache is handled.
And, when we handle LRU list of page_cgroup, we do following.
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc); .....................(1)
mz = page_cgroup_zoneinfo(pc);
spin_lock(&mz->lru_lock);
.....add to LRU
spin_unlock(&mz->lru_lock);
unlock_page_cgroup(pc);
But (1) is spin_lock and we have to be afraid of dead-lock with zone->lru_lock.
So, trylock() is used at (1), now. Without (1), we can't trust "mz" is correct.
This is a trial to remove this dirty nesting of locks.
This patch changes mz->lru_lock to be zone->lru_lock.
Then, above sequence will be written as
spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
mem_cgroup_add/remove/etc_lru() {
pc = lookup_page_cgroup(page);
mz = page_cgroup_zoneinfo(pc);
if (PageCgroupUsed(pc)) {
....add to LRU
}
spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
This is much simpler.
(*) We're safe even if we don't take lock_page_cgroup(pc). Because..
1. When pc->mem_cgroup can be modified.
- at charge.
- at account_move().
2. at charge
the PCG_USED bit is not set before pc->mem_cgroup is fixed.
3. at account_move()
the page is isolated and not on LRU.
Pros.
- easy for maintenance.
- memcg can make use of laziness of pagevec.
- we don't have to duplicated LRU/Active/Unevictable bit in page_cgroup.
- LRU status of memcg will be synchronized with global LRU's one.
- # of locks are reduced.
- account_move() is simplified very much.
Cons.
- may increase cost of LRU rotation.
(no impact if memcg is not configured.)
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements per cgroup limit for usage of memory+swap. However
there are SwapCache, double counting of swap-cache and swap-entry is
avoided.
Mem+Swap controller works as following.
- memory usage is limited by memory.limit_in_bytes.
- memory + swap usage is limited by memory.memsw_limit_in_bytes.
This has following benefits.
- A user can limit total resource usage of mem+swap.
Without this, because memory resource controller doesn't take care of
usage of swap, a process can exhaust all the swap (by memory leak.)
We can avoid this case.
And Swap is shared resource but it cannot be reclaimed (goes back to memory)
until it's used. This characteristic can be trouble when the memory
is divided into some parts by cpuset or memcg.
Assume group A and group B.
After some application executes, the system can be..
Group A -- very large free memory space but occupy 99% of swap.
Group B -- under memory shortage but cannot use swap...it's nearly full.
Ability to set appropriate swap limit for each group is required.
Maybe someone wonder "why not swap but mem+swap ?"
- The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
to move account from memory to swap...there is no change in usage of
mem+swap.
In other words, when we want to limit the usage of swap without affecting
global LRU, mem+swap limit is better than just limiting swap.
Accounting target information is stored in swap_cgroup which is
per swap entry record.
Charge is done as following.
map
- charge page and memsw.
unmap
- uncharge page/memsw if not SwapCache.
swap-out (__delete_from_swap_cache)
- uncharge page
- record mem_cgroup information to swap_cgroup.
swap-in (do_swap_page)
- charged as page and memsw.
record in swap_cgroup is cleared.
memsw accounting is decremented.
swap-free (swap_free())
- if swap entry is freed, memsw is uncharged by PAGE_SIZE.
There are people work under never-swap environments and consider swap as
something bad. For such people, this mem+swap controller extension is just an
overhead. This overhead is avoided by config or boot option.
(see Kconfig. detail is not in this patch.)
TODO:
- maybe more optimization can be don in swap-in path. (but not very safe.)
But we just do simple accounting at this stage.
[nishimura@mxp.nes.nec.co.jp: make resize limit hold mutex]
[hugh@veritas.com: memswap controller core swapcache fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wassim Dagash reported following kswapd infinite loop problem.
kswapd runs in some infinite loop trying to swap until order 10 of zone
highmem is OK.... kswapd will continue to try to balance order 10 of zone
highmem forever (or until someone release a very large chunk of highmem).
For non order-0 allocations, the system may never be balanced due to
fragmentation but kswapd should not infinitely loop as a result.
Instead, recheck all watermarks at order-0 as they are the most important.
If watermarks are ok, kswapd will go back to sleep.
[akpm@linux-foundation.org: fix comment]
Reported-by: wassim dagash <wassim.dagash@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These three statements manipulate local variables and do not need the lock
coverage.
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the VM is under pressure, it can happen that several direct reclaim
processes are in the pageout code simultaneously. It also happens that
the reclaiming processes run into mostly referenced, mapped and dirty
pages in the first round.
This results in multiple direct reclaim processes having a lower
pageout priority, which corresponds to a higher target of pages to
scan.
This in turn can result in each direct reclaim process freeing
many pages. Together, they can end up freeing way too many pages.
This kicks useful data out of memory (in some cases more than half
of all memory is swapped out). It also impacts performance by
keeping tasks stuck in the pageout code for too long.
A 30% improvement in hackbench has been observed with this patch.
The fix is relatively simple: in shrink_zone() we can check how many
pages we have already freed, direct reclaim tasks break out of the
scanning loop if they have already freed enough pages and have reached
a lower priority level.
We do not break out of shrink_zone() when priority == DEF_PRIORITY,
to ensure that equal pressure is applied to every zone in the common
case.
However, in order to do this we do need to know how many pages we already
freed, so move nr_reclaimed into scan_control.
akpm: a historical interlude...
We tried this in 2004:
:commit e468e46a9bea3297011d5918663ce6d19094cf87
:Author: akpm <akpm>
:Date: Thu Jun 24 15:53:52 2004 +0000
:
:[PATCH] vmscan.c: dont reclaim too many pages
:
: The shrink_zone() logic can, under some circumstances, cause far too many
: pages to be reclaimed. Say, we're scanning at high priority and suddenly hit
: a large number of reclaimable pages on the LRU.
: Change things so we bale out when SWAP_CLUSTER_MAX pages have been reclaimed.
And we reverted it in 2006:
:commit 210fe53030
:Author: Andrew Morton <akpm@osdl.org>
:Date: Fri Jan 6 00:11:14 2006 -0800
:
: [PATCH] vmscan: balancing fix
:
: Revert a patch which went into 2.6.8-rc1. The changelog for that patch was:
:
: The shrink_zone() logic can, under some circumstances, cause far too many
: pages to be reclaimed. Say, we're scanning at high priority and suddenly
: hit a large number of reclaimable pages on the LRU.
:
: Change things so we bale out when SWAP_CLUSTER_MAX pages have been
: reclaimed.
:
: Problem is, this change caused significant imbalance in inter-zone scan
: balancing by truncating scans of larger zones.
:
: Suppose, for example, ZONE_HIGHMEM is 10x the size of ZONE_NORMAL. The zone
: balancing algorithm would require that if we're scanning 100 pages of
: ZONE_HIGHMEM, we should scan 10 pages of ZONE_NORMAL. But this logic will
: cause the scanning of ZONE_HIGHMEM to bale out after only 32 pages are
: reclaimed. Thus effectively causing smaller zones to be scanned relatively
: harder than large ones.
:
: Now I need to remember what the workload was which caused me to write this
: patch originally, then fix it up in a different way...
And we haven't demonstrated that whatever problem caused that reversion is
not being reintroduced by this change in 2008.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse output following warning
mm/vmscan.c:2507:6: warning: symbol 'scan_zone_unevictable_pages' was not declared. Should it be static?
cleanup here.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse output following warning.
mm/vmscan.c:2549:6: warning: symbol 'scan_all_zones_unevictable_pages' was not declared. Should it be static?
cleanup here.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg reclaim shouldn't change zone->recent_rotated statistics. If
memcgroup reclaim changes zone statistics, global reclaim can get a bit
confused.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rik suggests a simplified get_scan_ratio() for !CONFIG_SWAP. Yes, the gcc
optimizer gives us that, when nr_swap_pages is #defined as 0L. Move usual
declaration to swapfile.c: it never belonged in page_alloc.c.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we add a failing stub for add_to_swap(), then we can remove the #ifdef
CONFIG_SWAP from mm/vmscan.c.
This was intended as a source cleanup, but looking more closely, it turns
out that the !CONFIG_SWAP case was going to keep_locked for an anonymous
page, whereas now it goes to the more suitable activate_locked, like the
CONFIG_SWAP nr_swap_pages 0 case.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove gfp_mask argument from add_to_swap(): it's misleading because its
only caller, shrink_page_list(), is not atomic at that point; and in due
course (implementing discard) we'll sometimes want to allocate some memory
with GFP_NOIO (as is used in swap_writepage) when allocating swap.
No change to the gfp_mask passed down to add_to_swap_cache(): still use
__GFP_HIGH without __GFP_WAIT (with nomemalloc and nowarn as before):
though it's not obvious if that's the best combination to ask for here.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An unfortunate feature of the Unevictable LRU work was that reclaiming an
anonymous page involved an extra scan through the anon_vma: to check that
the page is evictable before allocating swap, because the swap could not
be freed reliably soon afterwards.
Now try_to_free_swap() has replaced remove_exclusive_swap_page(), that's
not an issue any more: remove try_to_munlock() call from
shrink_page_list(), leaving it to try_to_munmap() to discover if the page
is one to be culled to the unevictable list - in which case then
try_to_free_swap().
Update unevictable-lru.txt to remove comments on the try_to_munlock() in
shrink_page_list(), and shorten some lines over 80 columns.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
remove_exclusive_swap_page(): its problem is in living up to its name.
It doesn't matter if someone else has a reference to the page (raised
page_count); it doesn't matter if the page is mapped into userspace
(raised page_mapcount - though that hints it may be worth keeping the
swap): all that matters is that there be no more references to the swap
(and no writeback in progress).
swapoff (try_to_unuse) has been removing pages from swapcache for years,
with no concern for page count or page mapcount, and we used to have a
comment in lookup_swap_cache() recognizing that: if you go for a page of
swapcache, you'll get the right page, but it could have been removed from
swapcache by the time you get page lock.
So, give up asking for exclusivity: get rid of
remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and
remove_exclusive_swap_page_count() which were spawned for the recent LRU
work: replace them by the simpler try_to_free_swap() which just checks
page_swapcount().
Similarly, remove the page_count limitation from free_swap_and_count(),
but assume that it's worth holding on to the swap if page is mapped and
swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()?
It would be consistent, but I think we probably have enough for now.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: Use new API
Convert kernel mm functions to use struct cpumask.
We skip include/linux/percpu.h and mm/allocpercpu.c, which are in flux.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Impact: Remove obsolete API usage
any_online_cpu() is a good name, but it takes a cpumask_t, not a
pointer.
There are several places where any_online_cpu() doesn't really want a
mask arg at all. Replace all callers with cpumask_any() and
cpumask_any_and().
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
The zone's rotation statistics must not be accessed without the
corresponding LRU lock held. Fix an unprotected write in
shrink_active_list().
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the old comment on the scan ratio calculations.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the past, GFP_NOFS (but of course not GFP_NOIO) was allowed to reclaim
by writing to swap. That got partially broken in 2.6.23, when may_enter_fs
initialization was moved up before the allocation of swap, so its
PageSwapCache test was failing the first time around,
Fix it by setting may_enter_fs when add_to_swap() succeeds with
__GFP_IO. In fact, check __GFP_IO before calling add_to_swap():
allocating swap we're not ready to use just increases disk seeking.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins reported show_page_path() is buggy and unsafe because
- lack dput() against d_find_alias()
- don't concern vma->vm_mm->owner == NULL
- lack lock_page()
it was only for debugging, so rather than trying to fix it, just remove
it now.
Reported-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
CC: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
CC: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
unlock_page is fairly expensive. It can be avoided in page reclaim
success path. By definition if we have any other references to the page
it would be a bug anyway.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During each reclaim scan we accumulate scan pressure on unrelated lists
which will result in bogus scans and unwanted reclaims eventually.
Scanning lists with few reclaim candidates results in a lot of rotation
and therefor also disturbs the list balancing, putting even more
pressure on the wrong lists.
In a test-case with much streaming IO, and therefor a crowded inactive
file page list, swapping started because
a) anon pages were reclaimed after swap_cluster_max reclaim
invocations -- nr_scan of this list has just accumulated
b) active file pages were scanned because *their* nr_scan has also
accumulated through the same logic. And this in return created a
lot of rotation for file pages and resulted in a decrease of file
list priority, again increasing the pressure on anon pages.
The result was an evicted working set of anon pages while there were
tons of inactive file pages that should have been taken instead.
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds a function to scan individual or all zones' unevictable
lists and move any pages that have become evictable onto the respective
zone's inactive list, where shrink_inactive_list() will deal with them.
Adds sysctl to scan all nodes, and per node attributes to individual
nodes' zones.
Kosaki: If evictable page found in unevictable lru when write
/proc/sys/vm/scan_unevictable_pages, print filename and file offset of
these pages.
[akpm@linux-foundation.org: fix one CONFIG_MMU=n build error]
[kosaki.motohiro@jp.fujitsu.com: adapt vmscan-unevictable-lru-scan-sysctl.patch to new sysfs API]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shmem segments locked into memory via shmctl(SHM_LOCKED) should not be
kept on the normal LRU, since scanning them is a waste of time and might
throw off kswapd's balancing algorithms. Place them on the unevictable
LRU list instead.
Use the AS_UNEVICTABLE flag to mark address_space of SHM_LOCKed shared
memory regions as unevictable. Then these pages will be culled off the
normal LRU lists during vmscan.
Add new wrapper function to clear the mapping's unevictable state when/if
shared memory segment is munlocked.
Add 'scan_mapping_unevictable_page()' to mm/vmscan.c to scan all pages in
the shmem segment's mapping [struct address_space] for evictability now
that they're no longer locked. If so, move them to the appropriate zone
lru list.
Changes depend on [CONFIG_]UNEVICTABLE_LRU.
[kosaki.motohiro@jp.fujitsu.com: revert shm change]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Christoph Lameter pointed out that ram disk pages also clutter the LRU
lists. When vmscan finds them dirty and tries to clean them, the ram disk
writeback function just redirties the page so that it goes back onto the
active list. Round and round she goes...
With the ram disk driver [rd.c] replaced by the newer 'brd.c', this is no
longer the case, as ram disk pages are no longer maintained on the lru.
[This makes them unmigratable for defrag or memory hot remove, but that
can be addressed by a separate patch series.] However, the ramfs pages
behave like ram disk pages used to, so:
Define new address_space flag [shares address_space flags member with
mapping's gfp mask] to indicate that the address space contains all
unevictable pages. This will provide for efficient testing of ramfs pages
in page_evictable().
Also provide wrapper functions to set/test the unevictable state to
minimize #ifdefs in ramfs driver and any other users of this facility.
Set the unevictable state on address_space structures for new ramfs
inodes. Test the unevictable state in page_evictable() to cull
unevictable pages.
These changes depend on [CONFIG_]UNEVICTABLE_LRU.
[riel@redhat.com: undo the brd.c part]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Debugged-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix to unevictable-lru-page-statistics.patch
Add unevictable lru infrastructure vm events to the statistics patch.
Rename the "NORECL_" and "noreclaim_" symbols and text strings to
"UNEVICTABLE_" and "unevictable_", respectively.
Currently, both the infrastructure and the mlocked pages event are
added by a single patch later in the series. This makes it difficult
to add or rework the incremental patches. The events actually "belong"
with the stats, so pull them up to here.
Also, restore the event counting to putback_lru_page(). This was removed
from previous patch in series where it was "misplaced". The actual events
weren't defined that early.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During an AIM7 run on a 16GB system, fork started failing around 32000
threads, despite the system having plenty of free swap and 15GB of
pageable memory. This was on x86-64, so 8k stacks.
If a higher order allocation fails, we can either:
- keep evicting pages off the end of the LRUs and hope that
we eventually create a contiguous region; this is somewhat
unlikely if the system is under enough stress by new
allocations
- after trying normal eviction for a bit, use lumpy reclaim
This patch switches the system to lumpy reclaim if the VM is having
trouble freeing enough pages, using the same threshold for detection as
used by pageout congestion wait.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Moving referenced pages back to the head of the active list creates a huge
scalability problem, because by the time a large memory system finally
runs out of free memory, every single page in the system will have been
referenced.
Not only do we not have the time to scan every single page on the active
list, but since they have will all have the referenced bit set, that bit
conveys no useful information.
A more scalable solution is to just move every page that hits the end of
the active list to the inactive list.
We clear the referenced bit off of mapped pages, which need just one
reference to be moved back onto the active list.
Unmapped pages will be moved back to the active list after two references
(see mark_page_accessed). We preserve the PG_referenced flag on unmapped
pages to preserve accesses that were made while the page was on the active
list.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We avoid evicting and scanning anonymous pages for the most part, but
under some workloads we can end up with most of memory filled with
anonymous pages. At that point, we suddenly need to clear the referenced
bits on all of memory, which can take ages on very large memory systems.
We can reduce the maximum number of pages that need to be scanned by not
taking the referenced state into account when deactivating an anonymous
page. After all, every anonymous page starts out referenced, so why
check?
If an anonymous page gets referenced again before it reaches the end of
the inactive list, we move it back to the active list.
To keep the maximum amount of necessary work reasonable, we scale the
active to inactive ratio with the size of memory, using the formula
active:inactive ratio = sqrt(memory in GB * 10).
Kswapd CPU use now seems to scale by the amount of pageout bandwidth,
instead of by the amount of memory present in the system.
[kamezawa.hiroyu@jp.fujitsu.com: fix OOM with memcg]
[kamezawa.hiroyu@jp.fujitsu.com: memcg: lru scan fix]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon"). The latter includes tmpfs.
The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.
This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists. The big
policy changes are in separate patches.
[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If vm_swap_full() (swap space more than 50% full), the system will free
swap space at swapin time. With this patch, the system will also free the
swap space in the pageout code, when we decide that the page is not a
candidate for swapout (and just wasting swap space).
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we are defining explicit variables for the inactive and active
list. An indexed array can be more generic and avoid repeating similar
code in several places in the reclaim code.
We are saving a few bytes in terms of code size:
Before:
text data bss dec hex filename
4097753 573120 4092484 8763357 85b7dd vmlinux
After:
text data bss dec hex filename
4097729 573120 4092484 8763333 85b7c5 vmlinux
Having an easy way to add new lru lists may ease future work on the
reclaim code.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On large memory systems, the VM can spend way too much time scanning
through pages that it cannot (or should not) evict from memory. Not only
does it use up CPU time, but it also provokes lock contention and can
leave large systems under memory presure in a catatonic state.
This patch series improves VM scalability by:
1) putting filesystem backed, swap backed and unevictable pages
onto their own LRUs, so the system only scans the pages that it
can/should evict from memory
2) switching to two handed clock replacement for the anonymous LRUs,
so the number of pages that need to be scanned when the system
starts swapping is bound to a reasonable number
3) keeping unevictable pages off the LRU completely, so the
VM does not waste CPU time scanning them. ramfs, ramdisk,
SHM_LOCKED shared memory segments and mlock()ed VMA pages
are keept on the unevictable list.
This patch:
isolate_lru_page logically belongs to be in vmscan.c than migrate.c.
It is tough, because we don't need that function without memory migration
so there is a valid argument to have it in migrate.c. However a
subsequent patch needs to make use of it in the core mm, so we can happily
move it to vmscan.c.
Also, make the function a little more generic by not requiring that it
adds an isolated page to a given list. Callers can do that.
Note that we now have '__isolate_lru_page()', that does
something quite different, visible outside of vmscan.c
for use with memory controller. Methinks we need to
rationalize these names/purposes. --lts
[akpm@linux-foundation.org: fix mm/memory_hotplug.c build]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Converting page lock to new locking bitops requires a change of page flag
operation naming, so we might as well convert it to something nicer
(!TestSetPageLocked_Lock => trylock_page, SetPageLocked => set_page_locked).
This also facilitates lockdeping of page lock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mapping->tree_lock has no read lockers. convert the lock from an rwlock
to a spinlock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we can be sure that elevating the page_count on a pagecache page will
pin it, we can speculatively run this operation, and subsequently check to
see if we hit the right page rather than relying on holding a lock or
otherwise pinning a reference to the page.
This can be done if get_page/put_page behaves consistently throughout the
whole tree (ie. if we "get" the page after it has been used for something
else, we must be able to free it with a put_page).
Actually, there is a period where the count behaves differently: when the
page is free or if it is a constituent page of a compound page. We need
an atomic_inc_not_zero operation to ensure we don't try to grab the page
in either case.
This patch introduces the core locking protocol to the pagecache (ie.
adds page_cache_get_speculative, and tweaks some update-side code to make
it work).
Thanks to Hugh for pointing out an improvement to the algorithm setting
page_count to zero when we have control of all references, in order to
hold off speculative getters.
[kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()]
[hugh@veritas.com: fix add_to_page_cache]
[akpm@linux-foundation.org: repair a comment]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sometimes, application responses become bad under heavy memory load.
Applications take a bit time to reclaim memory. The statistics, how long
memory reclaim takes, will be useful to measure memory usage.
This patch adds accounting memory reclaim to per-task-delay-accounting for
accounting the time of do_try_to_free_pages().
<i.e>
- When System is under low memory load,
memory reclaim may not occur.
$ free
total used free shared buffers cached
Mem: 8197800 1577300 6620500 0 4808 1516724
-/+ buffers/cache: 55768 8142032
Swap: 16386292 0 16386292
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 0 0 5069748 10612 3014060 0 0 0 0 3 26 0 0 100 0
0 0 0 5069748 10612 3014060 0 0 0 0 4 22 0 0 100 0
0 0 0 5069748 10612 3014060 0 0 0 0 3 18 0 0 100 0
Measure the time of tar command.
$ ls -s test.dat
1501472 test.dat
$ time tar cvf test.tar test.dat
real 0m13.388s
user 0m0.116s
sys 0m5.304s
$ ./delayget -d -p <pid>
CPU count real total virtual total delay total
428 5528345500 5477116080 62749891
IO count delay total
338 8078977189
SWAP count delay total
0 0
RECLAIM count delay total
0 0
- When system is under heavy memory load
memory reclaim may occur.
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 0 7159032 49724 1812 3012 0 0 0 0 3 24 0 0 100 0
0 0 7159032 49724 1812 3012 0 0 0 0 4 24 0 0 100 0
0 0 7159032 49848 1812 3012 0 0 0 0 3 22 0 0 100 0
In this case, one process uses more 8G memory
by execution of malloc() and memset().
$ time tar cvf test.tar test.dat
real 1m38.563s <- increased by 85 sec
user 0m0.140s
sys 0m7.060s
$ ./delayget -d -p <pid>
CPU count real total virtual total delay total
9021 7140446250 7315277975 923201824
IO count delay total
8965 90466349669
SWAP count delay total
3 21036367
RECLAIM count delay total
740 61011951153
In the later case, the value of RECLAIM is increasing.
So, taskstats can show how much memory reclaim influences TAT.
Signed-off-by: Keika Kobayashi <kobayashi.kk@ncos.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujistu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"Smarter retry of costly-order allocations" patch series change behaver of
do_try_to_free_pages(). But unfortunately ret variable type was
unchanged.
Thus an overflow is possible.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because of page order checks in __alloc_pages(), hugepage (and similarly
large order) allocations will not retry unless explicitly marked
__GFP_REPEAT. However, the current retry logic is nearly an infinite
loop (or until reclaim does no progress whatsoever). For these costly
allocations, that seems like overkill and could potentially never
terminate. Mel observed that allowing current __GFP_REPEAT semantics for
hugepage allocations essentially killed the system. I believe this is
because we may continue to reclaim small orders of pages all over, but
never have enough to satisfy the hugepage allocation request. This is
clearly only a problem for large order allocations, of which hugepages
are the most obvious (to me).
Modify try_to_free_pages() to indicate how many pages were reclaimed.
Use that information in __alloc_pages() to eventually fail a large
__GFP_REPEAT allocation when we've reclaimed an order of pages equal to
or greater than the allocation's order. This relies on lumpy reclaim
functioning as advertised. Due to fragmentation, lumpy reclaim may not
be able to free up the order needed in one invocation, so multiple
iterations may be requred. In other words, the more fragmented memory
is, the more retry attempts __GFP_REPEAT will make (particularly for
higher order allocations).
This changes the semantics of __GFP_REPEAT subtly, but *only* for
allocations > PAGE_ALLOC_COSTLY_ORDER. With this patch, for those size
allocations, we will try up to some point (at least 1<<order reclaimed
pages), rather than forever (which is the case for allocations <=
PAGE_ALLOC_COSTLY_ORDER).
This change improves the /proc/sys/vm/nr_hugepages interface with a
follow-on patch that makes pool allocations use __GFP_REPEAT. Rather
than administrators repeatedly echo'ing a particular value into the
sysctl, and forcing reclaim into action manually, this change allows for
the sysctl to attempt a reasonable effort itself. Similarly, dynamic
pool growth should be more successful under load, as lumpy reclaim can
try to free up pages, rather than failing right away.
Choosing to reclaim only up to the order of the requested allocation
strikes a balance between not failing hugepage allocations and returning
to the caller when it's unlikely to every succeed. Because of lumpy
reclaim, if we have freed the order requested, hopefully it has been in
big chunks and those chunks will allow our allocation to succeed. If
that isn't the case after freeing up the current order, I don't think it
is likely to succeed in the future, although it is possible given a
particular fragmentation pattern.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Tested-by: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Filtering zonelists requires very frequent use of zone_idx(). This is costly
as it involves a lookup of another structure and a substraction operation. As
the zone_idx is often required, it should be quickly accessible. The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.
This patch introduces a struct zoneref to store a zone pointer and a zone
index. The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary. Helpers are given for accessing the zone index as
well as the node index.
[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations. Based on the zones
allowed by a gfp mask, one of these zonelists is selected. All of these
zonelists consume memory and occupy cache lines.
This patch replaces the multiple zonelists per-node with two zonelists. The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages. The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.
An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following patches replace multiple zonelists per node with two zonelists
that are filtered based on the GFP flags. The patches as a set fix a bug with
regard to the use of MPOL_BIND and ZONE_MOVABLE. With this patchset, the
MPOL_BIND will apply to the two highest zones when the highest zone is
ZONE_MOVABLE. This should be considered as an alternative fix for the
MPOL_BIND+ZONE_MOVABLE in 2.6.23 to the previously discussed hack that filters
only custom zonelists.
The first patch cleans up an inconsistency where direct reclaim uses
zonelist->zones where other places use zonelist.
The second patch introduces a helper function node_zonelist() for looking up
the appropriate zonelist for a GFP mask which simplifies patches later in the
set.
The third patch defines/remembers the "preferred zone" for numa statistics, as
it is no longer always the first zone in a zonelist.
The forth patch replaces multiple zonelists with two zonelists that are
filtered. The two zonelists are due to the fact that the memoryless patchset
introduces a second set of zonelists for __GFP_THISNODE.
The fifth patch introduces helper macros for retrieving the zone and node
indices of entries in a zonelist.
The final patch introduces filtering of the zonelists based on a nodemask.
Two zonelists exist per node, one for normal allocations and one for
__GFP_THISNODE.
Performance results varied depending on the machine configuration. In real
workloads the gain/loss will depend on how much the userspace portion of the
benchmark benefits from having more cache available due to reduced referencing
of zonelists.
These are the range of performance losses/gains when running against
2.6.24-rc4-mm1. The set and these machines are a mix of i386, x86_64 and
ppc64 both NUMA and non-NUMA.
loss to gain
Total CPU time on Kernbench: -0.86% to 1.13%
Elapsed time on Kernbench: -0.79% to 0.76%
page_test from aim9: -4.37% to 0.79%
brk_test from aim9: -0.71% to 4.07%
fork_test from aim9: -1.84% to 4.60%
exec_test from aim9: -0.71% to 1.08%
This patch:
The allocator deals with zonelists which indicate the order in which zones
should be targeted for an allocation. Similarly, direct reclaim of pages
iterates over an array of zones. For consistency, this patch converts direct
reclaim to use a zonelist. No functionality is changed by this patch. This
simplifies zonelist iterators in the next patch.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Use new node_to_cpumask_ptr. This creates a pointer to the
cpumask for a given node. This definition is in mm patch:
asm-generic-add-node_to_cpumask_ptr-macro.patch
* Use new set_cpus_allowed_ptr function.
Depends on:
[mm-patch]: asm-generic-add-node_to_cpumask_ptr-macro.patch
[sched-devel]: sched: add new set_cpus_allowed_ptr function
[x86/latest]: x86: add cpus_scnprintf function
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Greg Banks <gnb@melbourne.sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Revert commit f1a9ee758de7de1e040de849fdef46e6802ea117:
Author: Rik van Riel <riel@redhat.com>
Date: Thu Feb 7 00:14:08 2008 -0800
kswapd should only wait on IO if there is IO
The current kswapd (and try_to_free_pages) code has an oddity where the
code will wait on IO, even if there is no IO in flight. This problem is
notable especially when the system scans through many unfreeable pages,
causing unnecessary stalls in the VM.
Additionally, tasks without __GFP_FS or __GFP_IO in the direct reclaim path
will sleep if a significant number of pages are encountered that should be
written out. This gives kswapd a chance to write out those pages, while
the direct reclaim task sleeps.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because of large latencies and interactivity problems reported by Carlos,
here: http://lkml.org/lkml/2008/3/22/211
Cc: Rik van Riel <riel@redhat.com>
Cc: "Carlos R. Mafra" <crmafra2@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each caller of mem_cgroup_move_lists is having to use page_get_page_cgroup:
it's more convenient if it acts upon the page itself not the page_cgroup; and
in a later patch this becomes important to handle within memcontrol.c.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename Memory Controller to Memory Resource Controller. Reflect the same
changes in the CONFIG definition for the Memory Resource Controller. Group
together the config options for Resource Counters and Memory Resource
Controller.
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When using memory controller, there are 2 levels of memory reclaim.
1. zone memory reclaim because of system/zone memory shortage.
2. memory cgroup memory reclaim because of hitting limit.
These two can be distinguished by sc->mem_cgroup parameter.
(scan_global_lru() macro)
This patch tries to make memory cgroup reclaim routine avoid affecting
system/zone memory reclaim. This patch inserts if (scan_global_lru()) and
hook to memory_cgroup reclaim support functions.
This patch can be a help for isolating system lru activity and group lru
activity and shows what additional functions are necessary.
* mem_cgroup_calc_mapped_ratio() ... calculate mapped ratio for cgroup.
* mem_cgroup_reclaim_imbalance() ... calculate active/inactive balance in
cgroup.
* mem_cgroup_calc_reclaim_active() ... calculate the number of active pages to
be scanned in this priority in mem_cgroup.
* mem_cgroup_calc_reclaim_inactive() ... calculate the number of inactive pages
to be scanned in this priority in mem_cgroup.
* mem_cgroup_all_unreclaimable() .. checks cgroup's page is all unreclaimable
or not.
* mem_cgroup_get_reclaim_priority() ...
* mem_cgroup_note_reclaim_priority() ... record reclaim priority (temporal)
* mem_cgroup_remember_reclaim_priority()
.... record reclaim priority as
zone->prev_priority.
This value is used for calc reclaim_mapped.
[akpm@linux-foundation.org: fix unused var warning]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Paul Menage <menage@google.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is used to detect which scan_control scans global lru or mem_cgroup lru.
And compiled to be static value (1) when memory controller is not configured.
This may make the meaning obvious.
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Paul Menage <menage@google.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because NODE_DATA(node)->node_zonelists[] is guaranteed to contain all
necessary zones, it is not necessary to use for_each_online_node.
And this for_each_online_node() makes reclaim routine start always
from node 0. This is not good. This patch makes reclaim start from
caller's node and just use usual (default) zonelist order.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current kswapd (and try_to_free_pages) code has an oddity where the
code will wait on IO, even if there is no IO in flight. This problem is
notable especially when the system scans through many unfreeable pages,
causing unnecessary stalls in the VM.
Additionally, tasks without __GFP_FS or __GFP_IO in the direct reclaim path
will sleep if a significant number of pages are encountered that should be
written out. This gives kswapd a chance to write out those pages, while
the direct reclaim task sleeps.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nick Piggin pointed out that swap cache and page cache addition routines
could be called from non GFP_KERNEL contexts. This patch makes the
charging routine aware of the gfp context. Charging might fail if the
cgroup is over it's limit, in which case a suitable error is returned.
This patch was tested on a Powerpc box. I am still looking at being able
to test the path, through which allocations happen in non GFP_KERNEL
contexts.
[kamezawa.hiroyu@jp.fujitsu.com: problem with ZONE_MOVABLE]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make page_referenced() cgroup aware. Without this patch, page_referenced()
can cause a page to be skipped while reclaiming pages. This patch ensures
that other cgroups do not hold pages in a particular cgroup hostage. It
is required to ensure that shared pages are freed from a cgroup when they
are not actively referenced from the cgroup that brought them in
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the page_cgroup to the per cgroup LRU. The reclaim algorithm has
been modified to make the isolate_lru_pages() as a pluggable component. The
scan_control data structure now accepts the cgroup on behalf of which
reclaims are carried out. try_to_free_pages() has been extended to become
cgroup aware.
[akpm@linux-foundation.org: fix warning]
[Lee.Schermerhorn@hp.com: initialize all scan_control's isolate_pages member]
[bunk@kernel.org: make do_try_to_free_pages() static]
[hugh@veritas.com: memcgroup: fix try_to_free order]
[kamezawa.hiroyu@jp.fujitsu.com: this unlock_page_cgroup() is unnecessary]
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Get rid of sparse related warnings from places that use integer as NULL
pointer.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Ian Kent <raven@themaw.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduces new zone flag interface for testing and setting flags:
int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
Instead of setting and clearing ZONE_RECLAIM_LOCKED each time shrink_zone() is
called, this flag is test and set before starting zone reclaim. Zone reclaim
starts in __alloc_pages() when a zone's watermark fails and the system is in
zone_reclaim_mode. If it's already in reclaim, there's no need to start again
so it is simply considered full for that allocation attempt.
There is a change of behavior with regard to concurrent zone shrinking. It is
now possible for try_to_free_pages() or kswapd to already be shrinking a
particular zone when __alloc_pages() starts zone reclaim. In this case, it is
possible for two concurrent threads to invoke shrink_zone() for a single zone.
This change forbids a zone to be in zone reclaim twice, which was always the
behavior, but allows for concurrent try_to_free_pages() or kswapd shrinking
when starting zone reclaim.
Cc: Andrea Arcangeli <andrea@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert the int all_unreclaimable member of struct zone to unsigned long
flags. This can now be used to specify several different zone flags such as
all_unreclaimable and reclaim_in_progress, which can now be removed and
converted to a per-zone flag.
Flags are set and cleared as follows:
zone_set_flag(struct zone *zone, zone_flags_t flag)
zone_clear_flag(struct zone *zone, zone_flags_t flag)
Defines the first zone flags, ZONE_ALL_UNRECLAIMABLE and ZONE_RECLAIM_LOCKED,
which have the same semantics as the old zone->all_unreclaimable and
zone->reclaim_in_progress, respectively. Also converts all current users that
set or clear either flag to use the new interface.
Helper functions are defined to test the flags:
int zone_is_all_unreclaimable(const struct zone *zone)
int zone_is_reclaim_locked(const struct zone *zone)
All flag operators are of the atomic variety because there are currently
readers that are implemented that do not take zone->lock.
[akpm@linux-foundation.org: add needed include]
Cc: Andrea Arcangeli <andrea@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swappiness isn't a safe sysctl. Setting it to 0 for example can hang a
system. That's a corner case but even setting it to 10 or lower can waste
enormous amounts of cpu without making much progress. We've customers who
wants to use swappiness but they can't because of the current
implementation (if you change it so the system stops swapping it really
stops swapping and nothing works sane anymore if you really had to swap
something to make progress).
This patch from Kurt Garloff makes swappiness safer to use (no more huge
cpu usage or hangs with low swappiness values).
I think the prev_priority can also be nuked since it wastes 4 bytes per
zone (that would be an incremental patch but I wait the nr_scan_[in]active
to be nuked first for similar reasons). Clearly somebody at some point
noticed how broken that thing was and they had to add min(priority,
prev_priority) to give it some reliability, but they didn't go the last
mile to nuke prev_priority too. Calculating distress only in function of
not-racy priority is correct and sure more than enough without having to
add randomness into the equation.
Patch is tested on older kernels but it compiles and it's quite simple
so...
Overall I'm not very satisified by the swappiness tweak, since it doesn't
rally do anything with the dirty pagecache that may be inactive. We need
another kind of tweak that controls the inactive scan and tunes the
can_writepage feature (not yet in mainline despite having submitted it a
few times), not only the active one. That new tweak will tell the kernel
how hard to scan the inactive list for pure clean pagecache (something the
mainline kernel isn't capable of yet). We already have that feature
working in all our enterprise kernels with the default reasonable tune, or
they can't even run a readonly backup with tar without triggering huge
write I/O. I think it should be available also in mainline later.
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Kurt Garloff <garloff@suse.de>
Signed-off-by: Andrea Arcangeli <andrea@suse.de>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a cpu is onlined on memory-less-node box, kernel panics due to touch
NULL pointer of pgdat->kswapd. Current kswapd runs only nodes which have
memory. So, calling of set_cpus_allowed() is not necessary for memory-less
node.
This is fix for it.
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need the check for a node with cpu in zone reclaim. Zone reclaim will not
allow remote zone reclaim if a node has a cpu.
[Lee.Schermerhorn@hp.com: Move setup of N_CPU node state mask]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A node without memory does not need a kswapd. So use the memory map instead
of the online map when starting kswapd.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current VM can get itself into trouble fairly easily on systems with a
small ZONE_HIGHMEM, which is common on i686 computers with 1GB of memory.
On one side, page_alloc() will allocate down to zone->pages_low, while on
the other side, kswapd() and balance_pgdat() will try to free memory from
every zone, until every zone has more free pages than zone->pages_high.
Highmem can be filled up to zone->pages_low with page tables, ramfs,
vmalloc allocations and other unswappable things quite easily and without
many bad side effects, since we still have a huge ZONE_NORMAL to do future
allocations from.
However, as long as the number of free pages in the highmem zone is below
zone->pages_high, kswapd will continue swapping things out from
ZONE_NORMAL, too!
Sami Farin managed to get his system into a stage where kswapd had freed
about 700MB of low memory and was still "going strong".
The attached patch will make kswapd stop paging out data from zones when
there is more than enough memory free. We do go above zone->pages_high in
order to keep pressure between zones equal in normal circumstances, but the
patch should prevent the kind of excesses that made Sami's computer totally
unusable.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lumpy reclaim works by selecting a lead page from the LRU list and then
selecting pages for reclaim from the order-aligned area of pages. In the
situation were all pages in that region are inactive and not referenced by any
process over time, it works well.
In the situation where there is even light load on the system, the pages may
not free quickly. Out of a area of 1024 pages, maybe only 950 of them are
freed when the allocation attempt occurs because lumpy reclaim returned early.
This patch alters the behaviour of direct reclaim for large contiguous
blocks.
The first attempt to call shrink_page_list() is asynchronous but if it fails,
the pages are submitted a second time and the calling process waits for the IO
to complete. This may stall allocators waiting for contiguous memory but that
should be expected behaviour for high-order users. It is preferable behaviour
to potentially queueing unnecessary areas for IO. Note that kswapd will not
stall in this fashion.
[apw@shadowen.org: update to version 2]
[apw@shadowen.org: update to version 3]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As pointed out by Mel when reclaim is applied at higher orders a significant
amount of IO may be started. As this takes finite time to drain reclaim will
consider more areas than ultimatly needed to satisfy the request. This leads
to more reclaim than strictly required and reduced success rates.
I was able to confirm Mel's test results on systems locally. These show that
even under light load the success rates drop off far more than expected.
Testing with a modified version of his patch (which follows) I was able to
allocate almost all of ZONE_MOVABLE with a near idle system. I ran 5 test
passes sequentially following system boot (the system has 29 hugepages in
ZONE_MOVABLE):
2.6.23-rc1 11 8 6 7 7
sync_lumpy 28 28 29 29 26
These show that although hugely better than the near 0% success normally
expected we can only allocate about a 1/4 of the zone. Using synchronous
reclaim for these allocations we get close to 100% as expected.
I have also run our standard high order tests and these show no regressions in
allocation success rates at rest, and some significant improvements under
load.
This patch:
We are transitioning pages from active to inactive in clear_active_flags,
those need counting as PGDEACTIVATE vm events.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the freezer treats all tasks as freezable, except for the kernel
threads that explicitly set the PF_NOFREEZE flag for themselves. This
approach is problematic, since it requires every kernel thread to either
set PF_NOFREEZE explicitly, or call try_to_freeze(), even if it doesn't
care for the freezing of tasks at all.
It seems better to only require the kernel threads that want to or need to
be frozen to use some freezer-related code and to remove any
freezer-related code from the other (nonfreezable) kernel threads, which is
done in this patch.
The patch causes all kernel threads to be nonfreezable by default (ie. to
have PF_NOFREEZE set by default) and introduces the set_freezable()
function that should be called by the freezable kernel threads in order to
unset PF_NOFREEZE. It also makes all of the currently freezable kernel
threads call set_freezable(), so it shouldn't cause any (intentional)
change of behaviour to appear. Additionally, it updates documentation to
describe the freezing of tasks more accurately.
[akpm@linux-foundation.org: build fixes]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I can never remember what the function to register to receive VM pressure
is called. I have to trace down from __alloc_pages() to find it.
It's called "set_shrinker()", and it needs Your Help.
1) Don't hide struct shrinker. It contains no magic.
2) Don't allocate "struct shrinker". It's not helpful.
3) Call them "register_shrinker" and "unregister_shrinker".
4) Call the function "shrink" not "shrinker".
5) Reduce the 17 lines of waffly comments to 13, but document it properly.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: David Chinner <dgc@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we are out of memory of a suitable size we enter reclaim. The current
reclaim algorithm targets pages in LRU order, which is great for fairness at
order-0 but highly unsuitable if you desire pages at higher orders. To get
pages of higher order we must shoot down a very high proportion of memory;
>95% in a lot of cases.
This patch set adds a lumpy reclaim algorithm to the allocator. It targets
groups of pages at the specified order anchored at the end of the active and
inactive lists. This encourages groups of pages at the requested orders to
move from active to inactive, and active to free lists. This behaviour is
only triggered out of direct reclaim when higher order pages have been
requested.
This patch set is particularly effective when utilised with an
anti-fragmentation scheme which groups pages of similar reclaimability
together.
This patch set is based on Peter Zijlstra's lumpy reclaim V2 patch which forms
the foundation. Credit to Mel Gorman for sanitity checking.
Mel said:
The patches have an application with hugepage pool resizing.
When lumpy-reclaim is used used with ZONE_MOVABLE, the hugepages pool can
be resized with greater reliability. Testing on a desktop machine with 2GB
of RAM showed that growing the hugepage pool with ZONE_MOVABLE on it's own
was very slow as the success rate was quite low. Without lumpy-reclaim,
each attempt to grow the pool by 100 pages would yield 1 or 2 hugepages.
With lumpy-reclaim, getting 40 to 70 hugepages on each attempt was typical.
[akpm@osdl.org: ia64 pfn_to_nid fixes and loop cleanup]
[bunk@stusta.de: static declarations for internal functions]
[a.p.zijlstra@chello.nl: initial lumpy V2 implementation]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since nonboot CPUs are now disabled after tasks and devices have been
frozen and the CPU hotplug infrastructure is used for this purpose, we need
special CPU hotplug notifications that will help the CPU-hotplug-aware
subsystems distinguish normal CPU hotplug events from CPU hotplug events
related to a system-wide suspend or resume operation in progress. This
patch introduces such notifications and causes them to be used during
suspend and resume transitions. It also changes all of the
CPU-hotplug-aware subsystems to take these notifications into consideration
(for now they are handled in the same way as the corresponding "normal"
ones).
[oleg@tv-sign.ru: cleanups]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup: setting an outstanding error on a mapping was open coded too many
times. Factor it out in mapping_set_error().
Signed-off-by: Guillaume Chazarain <guichaz@yahoo.fr>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we can miss freeze_process()->signal_wake_up() in kswapd() if it
happens between try_to_freeze() and prepare_to_wait(). To prevent this
from happening we should check freezing(current) before calling schedule().
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
throttle_vm_writeout() is designed to wait for the dirty levels to subside.
But if the caller holds IO or FS locks, we might be holding up that writeout.
So change it to take a single nap to give other devices a chance to clean some
memory, then return.
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: Pete Zaitcev <zaitcev@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The determination of the dirty ratio to determine writeback behavior is
currently based on the number of total pages on the system.
However, not all pages in the system may be dirtied. Thus the ratio is always
too low and can never reach 100%. The ratio may be particularly skewed if
large hugepage allocations, slab allocations or device driver buffers make
large sections of memory not available anymore. In that case we may get into
a situation in which f.e. the background writeback ratio of 40% cannot be
reached anymore which leads to undesired writeback behavior.
This patchset fixes that issue by determining the ratio based on the actual
pages that may potentially be dirty. These are the pages on the active and
the inactive list plus free pages.
The problem with those counts has so far been that it is expensive to
calculate these because counts from multiple nodes and multiple zones will
have to be summed up. This patchset makes these counters ZVC counters. This
means that a current sum per zone, per node and for the whole system is always
available via global variables and not expensive anymore to calculate.
The patchset results in some other good side effects:
- Removal of the various functions that sum up free, active and inactive
page counts
- Cleanup of the functions that display information via the proc filesystem.
This patch:
The use of a ZVC for nr_inactive and nr_active allows a simplification of some
counter operations. More ZVC functionality is used for sums etc in the
following patches.
[akpm@osdl.org: UP build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the end of shrink_all_memory() we forget to recalculate lru_pages: it can
be zero.
Fix that up, and add a helper function for this operation too.
Also, recalculate lru_pages each time around the inner loop to get the
balancing correct.
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix a rather obvious buglet. Noticed while instrumenting the VM using
/proc/vmstat.
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The version of mm/vmscan.c in Linus' current tree has swapped parameters in
the shrink_all_zones declaration and call, used by the various
suspend-to-disk implementations. This doesn't seem to have any great
adverse effect, but it's clearly wrong.
Signed-off-by: Nigel Cunningham <nigel@suspend2.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Elaborate the API for calling cpuset_zone_allowed(), so that users have to
explicitly choose between the two variants:
cpuset_zone_allowed_hardwall()
cpuset_zone_allowed_softwall()
Until now, whether or not you got the hardwall flavor depended solely on
whether or not you or'd in the __GFP_HARDWALL gfp flag to the gfp_mask
argument.
If you didn't specify __GFP_HARDWALL, you implicitly got the softwall
version.
Unfortunately, this meant that users would end up with the softwall version
without thinking about it. Since only the softwall version might sleep,
this led to bugs with possible sleeping in interrupt context on more than
one occassion.
The hardwall version requires that the current tasks mems_allowed allows
the node of the specified zone (or that you're in interrupt or that
__GFP_THISNODE is set or that you're on a one cpuset system.)
The softwall version, depending on the gfp_mask, might allow a node if it
was allowed in the nearest enclusing cpuset marked mem_exclusive (which
requires taking the cpuset lock 'callback_mutex' to evaluate.)
This patch removes the cpuset_zone_allowed() call, and forces the caller to
explicitly choose between the hardwall and the softwall case.
If the caller wants the gfp_mask to determine this choice, they should (1)
be sure they can sleep or that __GFP_HARDWALL is set, and (2) invoke the
cpuset_zone_allowed_softwall() routine.
This adds another 100 or 200 bytes to the kernel text space, due to the few
lines of nearly duplicate code at the top of both cpuset_zone_allowed_*
routines. It should save a few instructions executed for the calls that
turned into calls of cpuset_zone_allowed_hardwall, thanks to not having to
set (before the call) then check (within the call) the __GFP_HARDWALL flag.
For the most critical call, from get_page_from_freelist(), the same
instructions are executed as before -- the old cpuset_zone_allowed()
routine it used to call is the same code as the
cpuset_zone_allowed_softwall() routine that it calls now.
Not a perfect win, but seems worth it, to reduce this chance of hitting a
sleeping with irq off complaint again.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There was lots of #ifdef noise in the kernel due to hotcpu_notifier(fn,
prio) not correctly marking 'fn' as used in the !HOTPLUG_CPU case, and thus
generating compiler warnings of unused symbols, hence forcing people to add
#ifdefs.
the compiler can skip truly unused functions just fine:
text data bss dec hex filename
1624412 728710 3674856 6027978 5bfaca vmlinux.before
1624412 728710 3674856 6027978 5bfaca vmlinux.after
[akpm@osdl.org: topology.c fix]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move process freezing functions from include/linux/sched.h to freezer.h, so
that modifications to the freezer or the kernel configuration don't require
recompiling just about everything.
[akpm@osdl.org: fix ueagle driver]
Signed-off-by: Nigel Cunningham <nigel@suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently swsusp saves the contents of highmem pages by copying them to the
normal zone which is quite inefficient (eg. it requires two normal pages
to be used for saving one highmem page). This may be improved by using
highmem for saving the contents of saveable highmem pages.
Namely, during the suspend phase of the suspend-resume cycle we try to
allocate as many free highmem pages as there are saveable highmem pages.
If there are not enough highmem image pages to store the contents of all of
the saveable highmem pages, some of them will be stored in the "normal"
memory. Next, we allocate as many free "normal" pages as needed to store
the (remaining) image data. We use a memory bitmap to mark the allocated
free pages (ie. highmem as well as "normal" image pages).
Now, we use another memory bitmap to mark all of the saveable pages
(highmem as well as "normal") and the contents of the saveable pages are
copied into the image pages. Then, the second bitmap is used to save the
pfns corresponding to the saveable pages and the first one is used to save
their data.
During the resume phase the pfns of the pages that were saveable during the
suspend are loaded from the image and used to mark the "unsafe" page
frames. Next, we try to allocate as many free highmem page frames as to
load all of the image data that had been in the highmem before the suspend
and we allocate so many free "normal" page frames that the total number of
allocated free pages (highmem and "normal") is equal to the size of the
image. While doing this we have to make sure that there will be some extra
free "normal" and "safe" page frames for two lists of PBEs constructed
later.
Now, the image data are loaded, if possible, into their "original" page
frames. The image data that cannot be written into their "original" page
frames are loaded into "safe" page frames and their "original" kernel
virtual addresses, as well as the addresses of the "safe" pages containing
their copies, are stored in one of two lists of PBEs.
One list of PBEs is for the copies of "normal" suspend pages (ie. "normal"
pages that were saveable during the suspend) and it is used in the same way
as previously (ie. by the architecture-dependent parts of swsusp). The
other list of PBEs is for the copies of highmem suspend pages. The pages
in this list are restored (in a reversible way) right before the
arch-dependent code is called.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If try_to_free_pages / balance_pgdat are called with a gfp_mask specifying
GFP_IO and/or GFP_FS, they will reclaim the requisite number of pages, and the
reset prev_priority to DEF_PRIORITY (or to some other high (ie: unurgent)
value).
However, another reclaimer without those gfp_mask flags set (say, GFP_NOIO)
may still be struggling to reclaim pages. The concurrent overwrite of
zone->prev_priority will cause this GFP_NOIO thread to unexpectedly cease
deactivating mapped pages, thus causing reclaim difficulties.
Fix this is to key the distress calculation not off zone->prev_priority, but
also take into account the local caller's priority by using
min(zone->prev_priority, sc->priority)
Signed-off-by: Martin J. Bligh <mbligh@google.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The temp_priority field in zone is racy, as we can walk through a reclaim
path, and just before we copy it into prev_priority, it can be overwritten
(say with DEF_PRIORITY) by another reclaimer.
The same bug is contained in both try_to_free_pages and balance_pgdat, but
it is fixed slightly differently. In balance_pgdat, we keep a separate
priority record per zone in a local array. In try_to_free_pages there is
no need to do this, as the priority level is the same for all zones that we
reclaim from.
Impact of this bug is that temp_priority is copied into prev_priority, and
setting this artificially high causes reclaimers to set distress
artificially low. They then fail to reclaim mapped pages, when they are,
in fact, under severe memory pressure (their priority may be as low as 0).
This causes the OOM killer to fire incorrectly.
From: Andrew Morton <akpm@osdl.org>
__zone_reclaim() isn't modifying zone->prev_priority. But zone->prev_priority
is used in the decision whether or not to bring mapped pages onto the inactive
list. Hence there's a risk here that __zone_reclaim() will fail because
zone->prev_priority ir large (ie: low urgency) and lots of mapped pages end up
stuck on the active list.
Fix that up by decreasing (ie making more urgent) zone->prev_priority as
__zone_reclaim() scans the zone's pages.
This bug perhaps explains why ZONE_RECLAIM_PRIORITY was created. It should be
possible to remove that now, and to just start out at DEF_PRIORITY?
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Separate out the concept of "queue congestion" from "backing-dev congestion".
Congestion is a backing-dev concept, not a queue concept.
The blk_* congestion functions are retained, as wrappers around the core
backing-dev congestion functions.
This proper layering is needed so that NFS can cleanly use the congestion
functions, and so that CONFIG_BLOCK=n actually links.
Cc: "Thomas Maier" <balagi@justmail.de>
Cc: "Jens Axboe" <jens.axboe@oracle.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: David Howells <dhowells@redhat.com>
Cc: Peter Osterlund <petero2@telia.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If remove_mapping() failed to remove the page from its mapping, don't go and
mark it not uptodate! Makes kernel go dead.
(Actually, I don't think the ClearPageUptodate is needed there at all).
Says Nick Piggin:
"Right, it isn't needed because at this point the page is guaranteed
by remove_mapping to have no references (except us) and cannot pick
up any new ones because it is removed from pagecache.
We can delete it."
Signed-off-by: Andrew Morton <akpm@osdl.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean up the invalidate code, and use a common function to safely remove
the page from pagecache.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The VM is supposed to minimise the number of pages which get written off the
LRU (for IO scheduling efficiency, and for high reclaim-success rates). But
we don't actually have a clear way of showing how true this is.
So add `nr_vmscan_write' to /proc/vmstat and /proc/zoneinfo - the number of
pages which have been written by the vm scanner in this zone and globally.
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There are many places where we need to determine the node of a zone.
Currently we use a difficult to read sequence of pointer dereferencing.
Put that into an inline function and use throughout VM. Maybe we can find
a way to optimize the lookup in the future.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Minor performance fix.
If we reclaimed enough slab pages from a zone then we can avoid going off
node with the current allocation. Take care of updating nr_reclaimed when
reclaiming from the slab.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently one can enable slab reclaim by setting an explicit option in
/proc/sys/vm/zone_reclaim_mode. Slab reclaim is then used as a final
option if the freeing of unmapped file backed pages is not enough to free
enough pages to allow a local allocation.
However, that means that the slab can grow excessively and that most memory
of a node may be used by slabs. We have had a case where a machine with
46GB of memory was using 40-42GB for slab. Zone reclaim was effective in
dealing with pagecache pages. However, slab reclaim was only done during
global reclaim (which is a bit rare on NUMA systems).
This patch implements slab reclaim during zone reclaim. Zone reclaim
occurs if there is a danger of an off node allocation. At that point we
1. Shrink the per node page cache if the number of pagecache
pages is more than min_unmapped_ratio percent of pages in a zone.
2. Shrink the slab cache if the number of the nodes reclaimable slab pages
(patch depends on earlier one that implements that counter)
are more than min_slab_ratio (a new /proc/sys/vm tunable).
The shrinking of the slab cache is a bit problematic since it is not node
specific. So we simply calculate what point in the slab we want to reach
(current per node slab use minus the number of pages that neeed to be
allocated) and then repeately run the global reclaim until that is
unsuccessful or we have reached the limit. I hope we will have zone based
slab reclaim at some point which will make that easier.
The default for the min_slab_ratio is 5%
Also remove the slab option from /proc/sys/vm/zone_reclaim_mode.
[akpm@osdl.org: cleanups]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove the atomic counter for slab_reclaim_pages and replace the counter
and NR_SLAB with two ZVC counter that account for unreclaimable and
reclaimable slab pages: NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE.
Change the check in vmscan.c to refer to to NR_SLAB_RECLAIMABLE. The
intend seems to be to check for slab pages that could be freed.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
*_pages is a better description of the role of the variable.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Potentially it takes several scans of the lru lists before we can even start
reclaiming pages.
mapped pages, with young ptes can take 2 passes on the active list + one on
the inactive list. But reclaim_mapped may not always kick in instantly, so it
could take even more than that.
Raise the threshold for marking a zone as all_unreclaimable from a factor of 4
time the pages in the zone to 6. Introduce a mechanism to force
reclaim_mapped if we've reached a factor 3 and still haven't made progress.
Previously, a customer doing stress testing was able to easily OOM the box
after using only a small fraction of its swap (~100MB). After the patches, it
would only OOM after having used up all swap (~800MB).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
__alloc_pages currently starts shooting if page reclaim has failed to free up
swap_cluster_max pages in one run through the priorities. This is not always
a good indicator on its own, so make use of the all_unreclaimable logic as
well: don't consider going OOM until all zones we're interested in are
unreclaimable.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Some users of remove_mapping had been unsafe.
Modify the remove_mapping precondition to ensure the caller has locked the
page and obtained the correct mapping. Modify callers to ensure the
mapping is the correct one.
[hugh@veritas.com: swapper_space fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Introduce a VM_BUG_ON, which is turned on with CONFIG_DEBUG_VM. Use this
in the lightweight, inline refcounting functions; PageLRU and PageActive
checks in vmscan, because they're pretty well confined to vmscan. And in
page allocate/free fastpaths which can be the hottest parts of the kernel
for kbuilds.
Unlike BUG_ON, VM_BUG_ON must not be used to execute statements with
side-effects, and should not be used outside core mm code.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It turns out that it is advantageous to leave a small portion of unmapped file
backed pages if all of a zone's pages (or almost all pages) are allocated and
so the page allocator has to go off-node.
This allows recently used file I/O buffers to stay on the node and
reduces the times that zone reclaim is invoked if file I/O occurs
when we run out of memory in a zone.
The problem is that zone reclaim runs too frequently when the page cache is
used for file I/O (read write and therefore unmapped pages!) alone and we have
almost all pages of the zone allocated. Zone reclaim may remove 32 unmapped
pages. File I/O will use these pages for the next read/write requests and the
unmapped pages increase. After the zone has filled up again zone reclaim will
remove it again after only 32 pages. This cycle is too inefficient and there
are potentially too many zone reclaim cycles.
With the 1% boundary we may still remove all unmapped pages for file I/O in
zone reclaim pass. However. it will take a large number of read and writes
to get back to 1% again where we trigger zone reclaim again.
The zone reclaim 2.6.16/17 does not show this behavior because we have a 30
second timeout.
[akpm@osdl.org: rename the /proc file and the variable]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The remaining counters in page_state after the zoned VM counter patches
have been applied are all just for show in /proc/vmstat. They have no
essential function for the VM.
We use a simple increment of per cpu variables. In order to avoid the most
severe races we disable preempt. Preempt does not prevent the race between
an increment and an interrupt handler incrementing the same statistics
counter. However, that race is exceedingly rare, we may only loose one
increment or so and there is no requirement (at least not in kernel) that
the vm event counters have to be accurate.
In the non preempt case this results in a simple increment for each
counter. For many architectures this will be reduced by the compiler to a
single instruction. This single instruction is atomic for i386 and x86_64.
And therefore even the rare race condition in an interrupt is avoided for
both architectures in most cases.
The patchset also adds an off switch for embedded systems that allows a
building of linux kernels without these counters.
The implementation of these counters is through inline code that hopefully
results in only a single instruction increment instruction being emitted
(i386, x86_64) or in the increment being hidden though instruction
concurrency (EPIC architectures such as ia64 can get that done).
Benefits:
- VM event counter operations usually reduce to a single inline instruction
on i386 and x86_64.
- No interrupt disable, only preempt disable for the preempt case.
Preempt disable can also be avoided by moving the counter into a spinlock.
- Handling is similar to zoned VM counters.
- Simple and easily extendable.
- Can be omitted to reduce memory use for embedded use.
References:
RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2
RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2
local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2
V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2
V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2
V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Allows reclaim to access counter without looping over processor counts.
- Allows accurate statistics on how many pages are used in a zone by
the slab. This may become useful to balance slab allocations over
various zones.
[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The zone_reclaim_interval was necessary because we were not able to determine
how many unmapped pages exist in a zone. Therefore we had to scan in
intervals to figure out if any pages were unmapped.
With the zoned counters and NR_ANON_PAGES we now know the number of pagecache
pages and the number of mapped pages in a zone. So we can simply skip the
reclaim if there is an insufficient number of unmapped pages. We use
SWAP_CLUSTER_MAX as the boundary.
Drop all support for /proc/sys/vm/zone_reclaim_interval.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The current NR_FILE_MAPPED is used by zone reclaim and the dirty load
calculation as the number of mapped pagecache pages. However, that is not
true. NR_FILE_MAPPED includes the mapped anonymous pages. This patch
separates those and therefore allows an accurate tracking of the anonymous
pages per zone.
It then becomes possible to determine the number of unmapped pages per zone
and we can avoid scanning for unmapped pages if there are none.
Also it may now be possible to determine the mapped/unmapped ratio in
get_dirty_limit. Isnt the number of anonymous pages irrelevant in that
calculation?
Note that this will change the meaning of the number of mapped pages reported
in /proc/vmstat /proc/meminfo and in the per node statistics. This may affect
user space tools that monitor these counters! NR_FILE_MAPPED works like
NR_FILE_DIRTY. It is only valid for pagecache pages.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We can now access the number of pages in a mapped state in an inexpensive way
in shrink_active_list. So drop the nr_mapped field from scan_control.
[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
nr_mapped is important because it allows a determination of how many pages of
a zone are not mapped, which would allow a more efficient means of determining
when we need to reclaim memory in a zone.
We take the nr_mapped field out of the page state structure and define a new
per zone counter named NR_FILE_MAPPED (the anonymous pages will be split off
from NR_MAPPED in the next patch).
We replace the use of nr_mapped in various kernel locations. This avoids the
looping over all processors in try_to_free_pages(), writeback, reclaim (swap +
zone reclaim).
[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In 2.6.17, there was a problem with cpu_notifiers and XFS. I provided a
band-aid solution to solve that problem. In the process, i undid all the
changes you both were making to ensure that these notifiers were available
only at init time (unless CONFIG_HOTPLUG_CPU is defined).
We deferred the real fix to 2.6.18. Here is a set of patches that fixes the
XFS problem cleanly and makes the cpu notifiers available only at init time
(unless CONFIG_HOTPLUG_CPU is defined).
If CONFIG_HOTPLUG_CPU is defined then cpu notifiers are available at run
time.
This patch reverts the notifier_call changes made in 2.6.17
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When node is hot-added, kswapd for the node should start. This export kswapd
start function as kswapd_run() to use at add_memory().
[akpm@osdl.org: daemonize() isn't needed when using the kthread API]
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: "Brown, Len" <len.brown@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initialise total_memory earlier in boot. Because if for some reason we run
page reclaim early in boot, we don't want total_memory to be zero when we use
it as a divisor.
And rename total_memory to vm_total_pages to avoid naming clashes with
architectures.
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Martin Bligh <mbligh@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This implements the use of migration entries to preserve ptes of file backed
pages during migration. Processes can therefore be migrated back and forth
without loosing their connection to pagecache pages.
Note that we implement the migration entries only for linear mappings.
Nonlinear mappings still require the unmapping of the ptes for migration.
And another writepage() ugliness shows up. writepage() can drop the page
lock. Therefore we have to remove migration ptes before calling writepages()
in order to avoid having migration entries point to unlocked pages.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When a writeback_control's `start' and `end' fields are used to
indicate a one-byte-range starting at file offset zero, the required
values of .start=0,.end=0 mean that the ->writepages() implementation
has no way of telling that it is being asked to perform a range
request. Because we're currently overloading (start == 0 && end == 0)
to mean "this is not a write-a-range request".
To make all this sane, the patch changes range of writeback_control.
So caller does: If it is calling ->writepages() to write pages, it
sets range (range_start/end or range_cyclic) always.
And if range_cyclic is true, ->writepages() thinks the range is
cyclic, otherwise it just uses range_start and range_end.
This patch does,
- Add LLONG_MAX, LLONG_MIN, ULLONG_MAX to include/linux/kernel.h
-1 is usually ok for range_end (type is long long). But, if someone did,
range_end += val; range_end is "val - 1"
u64val = range_end >> bits; u64val is "~(0ULL)"
or something, they are wrong. So, this adds LLONG_MAX to avoid nasty
things, and uses LLONG_MAX for range_end.
- All callers of ->writepages() sets range_start/end or range_cyclic.
- Fix updates of ->writeback_index. It seems already bit strange.
If it starts at 0 and ended by check of nr_to_write, this last
index may reduce chance to scan end of file. So, this updates
->writeback_index only if range_cyclic is true or whole-file is
scanned.
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Steven French <sfrench@us.ibm.com>
Cc: "Vladimir V. Saveliev" <vs@namesys.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rework the swsusp's memory shrinker in the following way:
- Simplify balance_pgdat() by removing all of the swsusp-related code
from it.
- Make shrink_all_memory() use shrink_slab() and a new function
shrink_all_zones() which calls shrink_active_list() and
shrink_inactive_list() directly for each zone in a way that's optimized
for suspend.
In shrink_all_memory() we try to free exactly as many pages as the caller
asks for, preferably in one shot, starting from easier targets. If slab
caches are huge, they are most likely to have enough pages to reclaim.
The inactive lists are next (the zones with more inactive pages go first)
etc.
Each time shrink_all_memory() attempts to shrink the active and inactive
lists for each zone in 5 passes. In the first pass, only the inactive
lists are taken into consideration. In the next two passes the active
lists are also shrunk, but mapped pages are not reclaimed. In the last
two passes the active and inactive lists are shrunk and mapped pages are
reclaimed as well. The aim of this is to alter the reclaim logic to choose
the best pages to keep on resume and improve the responsiveness of the
resumed system.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Con Kolivas <kernel@kolivas.org>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
From: Christoph Lameter <clameter@sgi.com>
Looks like a comma was left from the conversion from a struct to an
assignment.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Few of the notifier_chain_register() callers use __init in the definition
of notifier_call. It is incorrect as the function definition should be
available after the initializations (they do not unregister them during
initializations).
This patch fixes all such usages to _not_ have the notifier_call __init
section.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A couple of places are forgetting to take it.
The kswapd case is probably unimportant. keventd_create_kthread() was racy.
The whole thing is a bit flakey: you start a kernel thread, get its pid from
kernel_thread() then look up its task_struct.
a) It assumes that pid recycling takes a "long" time.
b) We get a task_struct but no reference was taken on it. The owner of the
kswapd and kthread task_struct*'s must assume that the new thread won't
exit unexpectedly. Because if it does, they're left holding dead memory
and any attempt to control or stop that task will crash.
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Centralize the page migration functions in anticipation of additional
tinkering. Creates a new file mm/migrate.c
1. Extract buffer_migrate_page() from fs/buffer.c
2. Extract central migration code from vmscan.c
3. Extract some components from mempolicy.c
4. Export pageout() and remove_from_swap() from vmscan.c
5. Make it possible to configure NUMA systems without page migration
and non-NUMA systems with page migration.
I had to so some #ifdeffing in mempolicy.c that may need a cleanup.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make shrink_all_memory() repeat the attempts to free more memory if there
seems to be no pages to free.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As suggested by Marcelo:
1. The optimization introduced recently for not calling
page_referenced() during zone reclaim makes two additional checks in
shrink_list unnecessary.
2. The if (unlikely(sc->may_swap)) in refill_inactive_zone is optimized
for the zone_reclaim case. However, most peoples system only does swap.
Undo that.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Marcelo Tosatti <marcelo.tosatti@cyclades.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove __put_page from outside the core mm/. It is dangerous because it does
not handle compound pages nicely, and misses 1->0 transitions. If a user
later appears that really needs the extra speed we can reevaluate.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In shrink_inactive_list(), nr_scan is not accounted when nr_taken is 0.
But 0 pages taken does not mean 0 pages scanned.
Move the goto statement below the accounting code to fix it.
Signed-off-by: Wu Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In isolate_lru_pages(), *scanned reports one more scan because the scan
counter is increased one more time on exit of the while-loop.
Change the while-loop to for-loop to fix it.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add some comments to explain how zone reclaim works. And it fixes the
following issues:
- PF_SWAPWRITE needs to be set for RECLAIM_SWAP to be able to write
out pages to swap. Currently RECLAIM_SWAP may not do that.
- remove setting nr_reclaimed pages after slab reclaim since the slab shrinking
code does not use that and the nr_reclaimed pages is just right for the
intended follow up action.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We have:
try_to_free_pages
->shrink_caches(struct zone **zones, ..)
->shrink_zone(struct zone *, ...)
->shrink_cache(struct zone *, ...)
->shrink_list(struct list_head *, ...)
->refill_inactive_list((struct zone *, ...)
which is fairly irrational.
Rename things so that we have
try_to_free_pages
->shrink_zones(struct zone **zones, ..)
->shrink_zone(struct zone *, ...)
->shrink_inactive_list(struct zone *, ...)
->shrink_page_list(struct list_head *, ...)
->shrink_active_list(struct zone *, ...)
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Change all the vmscan functions to retunr the number-of-reclaimed pages and
remove scan_conrtol.nr_reclaimed.
Saves ten-odd bytes of text and makes things clearer and more consistent.
The patch also changes the behaviour of zone_reclaim() when it falls back to slab shrinking. Christoph says
"Setting this to one means that we will rescan and shrink the slab for
each allocation if we are out of zone memory and RECLAIM_SLAB is set. Plus
if we do an order 0 allocation we do not go off node as intended.
"We better set this to zero. This means the allocation will go offnode
despite us having potentially freed lots of memory on the zone. Future
allocations can then again be done from this zone."
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Turn basically everything in vmscan.c into `unsigned long'. This is to avoid
the possibility that some piece of code in there might decide to operate upon
more than 4G (or even 2G) of pages in one hit.
This might be silly, but we'll need it one day.
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initialise as much of scan_control as possible at the declaration site. This
tidies things up a bit and assures us that all unmentioned fields are zeroed
out.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make nr_to_scan and priority a parameter instead of putting it into scan
control. This allows various small optimizations and IMHO makes the code
easier to read.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The VM has an interesting race where a page refcount can drop to zero, but it
is still on the LRU lists for a short time. This was solved by testing a 0->1
refcount transition when picking up pages from the LRU, and dropping the
refcount in that case.
Instead, use atomic_add_unless to ensure we never pick up a 0 refcount page
from the LRU, thus a 0 refcount page will never have its refcount elevated
until it is allocated again.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
PG_active is protected by zone->lru_lock, it does not need TestSet/TestClear
operations.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
PG_lru is protected by zone->lru_lock. It does not need TestSet/TestClear
operations.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If vmscan finds a zero refcount page on the lru list, never ClearPageLRU
it. This means the release code need not hold ->lru_lock to stabilise
PageLRU, so that lock may be skipped entirely when releasing !PageLRU pages
(because we know PageLRU won't have been temporarily cleared by vmscan,
which was previously guaranteed by holding the lock to synchronise against
vmscan).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
page migration currently simply retries a couple of times if try_to_unmap()
fails without inspecting the return code.
However, SWAP_FAIL indicates that the page is in a vma that has the
VM_LOCKED flag set (if ignore_refs ==1). We can check for that return code
and avoid retrying the migration.
migrate_page_remove_references() now needs to return a reason why the
failure occured. So switch migrate_page_remove_references to use -Exx
style error messages.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If the process has already set PF_MALLOC and is already using
current->reclaim_state then do not try to reclaim memory from the zone.
This is set by kswapd and/or synchrononous global reclaim which will not
take it lightly if we zap the reclaim_state.
Signed-off-by: Christoph Lameter <clameter@sig.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- PF_SWAPWRITE needs to be set for RECLAIM_SWAP to be able to write
out pages to swap. Currently RECLAIM_SWAP may not do that.
- remove setting nr_reclaimed pages after slab reclaim since the slab shrinking
code does not use that and the nr_reclaimed pages is just right for the
intended follow up action.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This puts the variables and the way to get to reclaim_mapped in one block.
And allows zone_reclaim or other things to skip the determination (maybe
this whole block of code does not belong into refill_inactive_zone()?)
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
shrink_zone() already increments reclaim_in_progress. No need to do it in
balance_pgdat.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
shrink_list() and refill_inactive() check all ptes pointing to a page for
reference bits in order to decide if the page should be put on the active
list. This is not necessary for zone_reclaim since we are only interested
in removing unmapped pages. Skip the checks in both functions.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This adds some additional comments in order to help others figure out how
exactly the code works. And fix a variable name.
Also swap_page does need to ignore all reference bits when unmapping a
page. Otherwise we may have to repeatedly unmap a frequently touched page.
So change the try_to_unmap parameter to 1.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Migrate a page with buffers without requiring writeback
This introduces a new address space operation migratepage() that may be used
by a filesystem to implement its own version of page migration.
A version is provided that migrates buffers attached to pages. Some
filesystems (ext2, ext3, xfs) are modified to utilize this feature.
The swapper address space operation are modified so that a regular
migrate_page() will occur for anonymous pages without writeback (migrate_pages
forces every anonymous page to have a swap entry).
Signed-off-by: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add remove_from_swap
remove_from_swap() allows the restoration of the pte entries that existed
before page migration occurred for anonymous pages by walking the reverse
maps. This reduces swap use and establishes regular pte's without the need
for page faults.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add direct migration support with fall back to swap.
Direct migration support on top of the swap based page migration facility.
This allows the direct migration of anonymous pages and the migration of file
backed pages by dropping the associated buffers (requires writeout).
Fall back to swap out if necessary.
The patch is based on lots of patches from the hotplug project but the code
was restructured, documented and simplified as much as possible.
Note that an additional patch that defines the migrate_page() method for
filesystems is necessary in order to avoid writeback for anonymous and file
backed pages.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If large amounts of zone memory are used by empty slabs then zone_reclaim
becomes uneffective. This patch shakes the slab a bit.
The problem with this patch is that the slab reclaim is not containable to a
zone. Thus slab reclaim may affect the whole system and be extremely slow.
This also means that we cannot determine how many pages were freed in this
zone. Thus we need to go off node for at least one allocation.
The functionality is disabled by default.
We could modify the shrinkers to take a zone parameter but that would be quite
invasive. Better ideas are welcome.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In some situations one may want zone_reclaim to behave differently. For
example a process writing large amounts of memory will spew unto other nodes
to cache the writes if many pages in a zone become dirty. This may impact the
performance of processes running on other nodes.
Allowing writes during reclaim puts a stop to that behavior and throttles the
process by restricting the pages to the local zone.
Similarly one may want to contain processes to local memory by enabling
regular swap behavior during zone_reclaim. Off node memory allocation can
then be controlled through memory policies and cpusets.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently the zone_reclaim code has a fixed window of 30 seconds of off node
allocations should a local zone have no unused pagecache pages left. Reclaim
will be attempted again after this timeout period to avoid repeated useless
scans for memory. This is also useful to established sufficiently large off
node allocation chunks to relieve the local node.
It may be beneficial to adjust that time period for some special situations.
For example if memory use was exceeding node capacity one may want to give up
for longer periods of time. If memory spikes intermittendly then one may want
to shorten the time period to reduce the number of off node allocations.
This patch allows just that....
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Instead of scanning all the pages in a zone, imitate real swap and scan
only a portion of the pages and gradually scan more if we do not free up
enough pages. This avoids a zone suddenly loosing all unused pagecache
pages (we may after all access some of these again so they deserve another
chance) but it still frees up large chunks of memory if a zone only
contains unused pagecache pages.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
zone_reclaim should leave that to the real swapper. We are only interested
in evicting unmapped pages.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- If we only reclaim nr_pages then its okay to stay on node.
Switch from > to >= for the comparison.
- vm_table[] entry for zone_reclaim_mode is a bit screwed up.
- Add empty lines around shrink_zone to show that this is the
central function to be called.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make sc->may_writepage control the writeout behavior of shrink_list.
Remove the laptop_mode trick from shrink_list and instead set may_writepage
in try_to_free_pages properly.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Zone reclaim is usually only run on the local node. Headless nodes do not
have any local processors. This patch checks for headless nodes and
performs zone reclaim on them.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Ensure that the performance of off node pages stays the same as before.
Off node pagefault tests showed an 18% drop in performance without this
patch.
- Increase the timeout to 30 seconds to reduce the overhead.
- Move all code possible out of the off node hot path for zone reclaim
(Sorry Andrew, the struct initialization had to be sacrificed).
The read_page_state() bit us there.
- Check first for the timeout before any other checks.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Some bits for zone reclaim exists in 2.6.15 but they are not usable. This
patch fixes them up, removes unused code and makes zone reclaim usable.
Zone reclaim allows the reclaiming of pages from a zone if the number of
free pages falls below the watermarks even if other zones still have enough
pages available. Zone reclaim is of particular importance for NUMA
machines. It can be more beneficial to reclaim a page than taking the
performance penalties that come with allocating a page on a remote zone.
Zone reclaim is enabled if the maximum distance to another node is higher
than RECLAIM_DISTANCE, which may be defined by an arch. By default
RECLAIM_DISTANCE is 20. 20 is the distance to another node in the same
component (enclosure or motherboard) on IA64. The meaning of the NUMA
distance information seems to vary by arch.
If zone reclaim is not successful then no further reclaim attempts will
occur for a certain time period (ZONE_RECLAIM_INTERVAL).
This patch was discussed before. See
http://marc.theaimsgroup.com/?l=linux-kernel&m=113519961504207&w=2http://marc.theaimsgroup.com/?l=linux-kernel&m=113408418232531&w=2http://marc.theaimsgroup.com/?l=linux-kernel&m=113389027420032&w=2http://marc.theaimsgroup.com/?l=linux-kernel&m=113380938612205&w=2
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Zone reclaim has a huge impact on NUMA performance (f.e. our maximum
throughput with XFS is raised from 4GB to 6GB/sec / page cache contamination
of numa nodes destroys locality if one just does a large copy operation which
results in performance dropping for good until reboot).
This patch:
Resurrect may_swap in struct scan_control
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Migration code currently does not take a reference to target page
properly, so between unlocking the pte and trying to take a new
reference to the page with isolate_lru_page, anything could happen to
it.
Fix this by holding the pte lock until we get a chance to elevate the
refcount.
Other small cleanups while we're here.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use -Exxx instead of numeric return codes and cleanup the code in
migrate_pages() using -Exx error codes.
Consolidate successful migration handling
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Extend the parameters of migrate_pages() to allow the caller control over the
fate of successfully migrated or impossible to migrate pages.
Swap migration and direct migration will have the same interface after this
patch so that patches can be independently applied to the policy layer and the
core migration code.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Drop unused pages immediately
If a page is encountered that is only referenced by the migration code then
there is no reason to swap or migrate the page. Release the page by calling
move_to_lru().
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add gfp_mask to add_to_swap
add_to_swap does allocations with GFP_ATOMIC in order not to interfere with
swapping. During migration we may have use add_to_swap extensively which may
lead to out of memory errors.
This patch makes add_to_swap take a parameter that specifies the gfp mask.
The page migration code can then make add_to_swap use GFP_KERNEL.
Signed-off-by: Hirokazu Takahashi <taka@valinux.co.jp>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move move_to_lru, putback_lru_pages and isolate_lru in section surrounded by
CONFIG_MIGRATION saving some codesize for single processor kernels.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Include page migration if the system is NUMA or having a memory model that
allows distinct areas of memory (SPARSEMEM, DISCONTIGMEM).
And:
- Only include lru_add_drain_per_cpu if building for an SMP system.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This adds the basic page migration function with a minimal implementation that
only allows the eviction of pages to swap space.
Page eviction and migration may be useful to migrate pages, to suspend
programs or for remapping single pages (useful for faulty pages or pages with
soft ECC failures)
The process is as follows:
The function wanting to migrate pages must first build a list of pages to be
migrated or evicted and take them off the lru lists via isolate_lru_page().
isolate_lru_page determines that a page is freeable based on the LRU bit set.
Then the actual migration or swapout can happen by calling migrate_pages().
migrate_pages does its best to migrate or swapout the pages and does multiple
passes over the list. Some pages may only be swappable if they are not dirty.
migrate_pages may start writing out dirty pages in the initial passes over
the pages. However, migrate_pages may not be able to migrate or evict all
pages for a variety of reasons.
The remaining pages may be returned to the LRU lists using putback_lru_pages().
Changelog V4->V5:
- Use the lru caches to return pages to the LRU
Changelog V3->V4:
- Restructure code so that applying patches to support full migration does
require minimal changes. Rename swapout_pages() to migrate_pages().
Changelog V2->V3:
- Extract common code from shrink_list() and swapout_pages()
Signed-off-by: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: "Michael Kerrisk" <mtk-manpages@gmx.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add PF_SWAPWRITE to control a processes permission to write to swap.
- Use PF_SWAPWRITE in may_write_to_queue() instead of checking for kswapd
and pdflush
- Set PF_SWAPWRITE flag for kswapd and pdflush
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is the start of the `swap migration' patch series.
Swap migration allows the moving of the physical location of pages between
nodes in a numa system while the process is running. This means that the
virtual addresses that the process sees do not change. However, the system
rearranges the physical location of those pages.
The main intent of page migration patches here is to reduce the latency of
memory access by moving pages near to the processor where the process
accessing that memory is running.
The patchset allows a process to manually relocate the node on which its
pages are located through the MF_MOVE and MF_MOVE_ALL options while
setting a new memory policy.
The pages of process can also be relocated from another process using the
sys_migrate_pages() function call. Requires CAP_SYS_ADMIN. The migrate_pages
function call takes two sets of nodes and moves pages of a process that are
located on the from nodes to the destination nodes.
Manual migration is very useful if for example the scheduler has relocated a
process to a processor on a distant node. A batch scheduler or an
administrator can detect the situation and move the pages of the process
nearer to the new processor.
sys_migrate_pages() could be used on non-numa machines as well, to force all
of a particualr process's pages out to swap, if someone thinks that's useful.
Larger installations usually partition the system using cpusets into sections
of nodes. Paul has equipped cpusets with the ability to move pages when a
task is moved to another cpuset. This allows automatic control over locality
of a process. If a task is moved to a new cpuset then also all its pages are
moved with it so that the performance of the process does not sink
dramatically (as is the case today).
Swap migration works by simply evicting the page. The pages must be faulted
back in. The pages are then typically reallocated by the system near the node
where the process is executing.
For swap migration the destination of the move is controlled by the allocation
policy. Cpusets set the allocation policy before calling sys_migrate_pages()
in order to move the pages as intended.
No allocation policy changes are performed for sys_migrate_pages(). This
means that the pages may not faulted in to the specified nodes if no
allocation policy was set by other means. The pages will just end up near the
node where the fault occurred.
There's another patch series in the pipeline which implements "direct
migration".
The direct migration patchset extends the migration functionality to avoid
going through swap. The destination node of the relation is controllable
during the actual moving of pages. The crutch of using the allocation policy
to relocate is not necessary and the pages are moved directly to the target.
Its also faster since swap is not used.
And sys_migrate_pages() can then move pages directly to the specified node.
Implement functions to isolate pages from the LRU and put them back later.
This patch:
An earlier implementation was provided by Hirokazu Takahashi
<taka@valinux.co.jp> and IWAMOTO Toshihiro <iwamoto@valinux.co.jp> for the
memory hotplug project.
From: Magnus
This breaks out isolate_lru_page() and putpack_lru_page(). Needed for swap
migration.
Signed-off-by: Magnus Damm <magnus.damm@gmail.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add /proc/sys/vm/drop_caches. When written to, this will cause the kernel to
discard as much pagecache and/or reclaimable slab objects as it can. THis
operation requires root permissions.
It won't drop dirty data, so the user should run `sync' first.
Caveats:
a) Holds inode_lock for exorbitant amounts of time.
b) Needs to be taught about NUMA nodes: propagate these all the way through
so the discarding can be controlled on a per-node basis.
This is a debugging feature: useful for getting consistent results between
filesystem benchmarks. We could possibly put it under a config option, but
it's less than 300 bytes.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Optimise page_state manipulations by introducing interrupt unsafe accessors
to page_state fields. Callers must provide their own locking (either
disable interrupts or not update from interrupt context).
Switch over the hot callsites that can easily be moved under interrupts off
sections.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There are numerous places we check whether a zone is populated or not.
Provide a helper function to check for populated zones and convert all
checks for zone->present_pages.
Signed-off-by: Con Kolivas <kernel@kolivas.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Revert a patch which went into 2.6.8-rc1. The changelog for that patch was:
The shrink_zone() logic can, under some circumstances, cause far too many
pages to be reclaimed. Say, we're scanning at high priority and suddenly
hit a large number of reclaimable pages on the LRU.
Change things so we bale out when SWAP_CLUSTER_MAX pages have been
reclaimed.
Problem is, this change caused significant imbalance in inter-zone scan
balancing by truncating scans of larger zones.
Suppose, for example, ZONE_HIGHMEM is 10x the size of ZONE_NORMAL. The zone
balancing algorithm would require that if we're scanning 100 pages of
ZONE_HIGHMEM, we should scan 10 pages of ZONE_NORMAL. But this logic will
cause the scanning of ZONE_HIGHMEM to bale out after only 32 pages are
reclaimed. Thus effectively causing smaller zones to be scanned relatively
harder than large ones.
Now I need to remember what the workload was which caused me to write this
patch originally, then fix it up in a different way...
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove the last bits of Martin's ill-fated sys_set_zone_reclaim().
Cc: Martin Hicks <mort@wildopensource.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>