Memory cgroup limit reclaim and traditional global pressure reclaim will
soon share the same code to reclaim from a hierarchical tree of memory
cgroups.
In preparation of this, move the two right next to each other in
shrink_zone().
The mem_cgroup_hierarchical_reclaim() polymath is split into a soft
limit reclaim function, which still does hierarchy walking on its own,
and a limit (shrinking) reclaim function, which relies on generic
reclaim code to walk the hierarchy.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup limit reclaim currently picks one memory cgroup out of the
target hierarchy, remembers it as the last scanned child, and reclaims
all zones in it with decreasing priority levels.
The new hierarchy reclaim code will pick memory cgroups from the same
hierarchy concurrently from different zones and priority levels, it
becomes necessary that hierarchy roots not only remember the last
scanned child, but do so for each zone and priority level.
Until now, we reclaimed memcgs like this:
mem = mem_cgroup_iter(root)
for each priority level:
for each zone in zonelist:
reclaim(mem, zone)
But subsequent patches will move the memcg iteration inside the loop
over the zones:
for each priority level:
for each zone in zonelist:
mem = mem_cgroup_iter(root)
reclaim(mem, zone)
And to keep with the original scan order - memcg -> priority -> zone -
the last scanned memcg has to be remembered per zone and per priority
level.
Furthermore, global reclaim will be switched to the hierarchy walk as
well. Different from limit reclaim, which can just recheck the limit
after some reclaim progress, its target is to scan all memcgs for the
desired zone pages, proportional to the memcg size, and so reliably
detecting a full hierarchy round-trip will become crucial.
Currently, the code relies on one reclaimer encountering the same memcg
twice, but that is error-prone with concurrent reclaimers. Instead, use
a generation counter that is increased every time the child with the
highest ID has been visited, so that reclaimers can stop when the
generation changes.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup hierarchies are currently handled completely outside of
the traditional reclaim code, which is invoked with a single memory
cgroup as an argument for the whole call stack.
Subsequent patches will switch this code to do hierarchical reclaim, so
there needs to be a distinction between a) the memory cgroup that is
triggering reclaim due to hitting its limit and b) the memory cgroup
that is being scanned as a child of a).
This patch introduces a struct mem_cgroup_zone that contains the
combination of the memory cgroup and the zone being scanned, which is
then passed down the stack instead of the zone argument.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The traditional zone reclaim code is scanning the per-zone LRU lists
during direct reclaim and kswapd, and the per-zone per-memory cgroup LRU
lists when reclaiming on behalf of a memory cgroup limit.
Subsequent patches will convert the traditional reclaim code to reclaim
exclusively from the per-memory cgroup LRU lists. As a result, using
the predicate for which LRU list is scanned will no longer be
appropriate to tell global reclaim from limit reclaim.
This patch adds a global_reclaim() predicate to tell direct/kswapd
reclaim from memory cgroup limit reclaim and substitutes it in all
places where currently scanning_global_lru() is used for that.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg naturalization series:
Memory control groups are currently bolted onto the side of
traditional memory management in places where better integration would
be preferrable. To reclaim memory, for example, memory control groups
maintain their own LRU list and reclaim strategy aside from the global
per-zone LRU list reclaim. But an extra list head for each existing
page frame is expensive and maintaining it requires additional code.
This patchset disables the global per-zone LRU lists on memory cgroup
configurations and converts all its users to operate on the per-memory
cgroup lists instead. As LRU pages are then exclusively on one list,
this saves two list pointers for each page frame in the system:
page_cgroup array size with 4G physical memory
vanilla: allocated 31457280 bytes of page_cgroup
patched: allocated 15728640 bytes of page_cgroup
At the same time, system performance for various workloads is
unaffected:
100G sparse file cat, 4G physical memory, 10 runs, to test for code
bloat in the traditional LRU handling and kswapd & direct reclaim
paths, without/with the memory controller configured in
vanilla: 71.603(0.207) seconds
patched: 71.640(0.156) seconds
vanilla: 79.558(0.288) seconds
patched: 77.233(0.147) seconds
100G sparse file cat in 1G memory cgroup, 10 runs, to test for code
bloat in the traditional memory cgroup LRU handling and reclaim path
vanilla: 96.844(0.281) seconds
patched: 94.454(0.311) seconds
4 unlimited memcgs running kbuild -j32 each, 4G physical memory, 500M
swap on SSD, 10 runs, to test for regressions in kswapd & direct
reclaim using per-memcg LRU lists with multiple memcgs and multiple
allocators within each memcg
vanilla: 717.722(1.440) seconds [ 69720.100(11600.835) majfaults ]
patched: 714.106(2.313) seconds [ 71109.300(14886.186) majfaults ]
16 unlimited memcgs running kbuild, 1900M hierarchical limit, 500M
swap on SSD, 10 runs, to test for regressions in hierarchical memcg
setups
vanilla: 2742.058(1.992) seconds [ 26479.600(1736.737) majfaults ]
patched: 2743.267(1.214) seconds [ 27240.700(1076.063) majfaults ]
This patch:
There are currently two different implementations of iterating over a
memory cgroup hierarchy tree.
Consolidate them into one worker function and base the convenience
looping-macros on top of it.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ef6a3c6311 ("mm: add replace_page_cache_page() function") added a
function replace_page_cache_page(). This function replaces a page in the
radix-tree with a new page. WHen doing this, memory cgroup needs to fix
up the accounting information. memcg need to check PCG_USED bit etc.
In some(many?) cases, 'newpage' is on LRU before calling
replace_page_cache(). So, memcg's LRU accounting information should be
fixed, too.
This patch adds mem_cgroup_replace_page_cache() and removes the old hooks.
In that function, old pages will be unaccounted without touching
res_counter and new page will be accounted to the memcg (of old page).
WHen overwriting pc->mem_cgroup of newpage, take zone->lru_lock and avoid
races with LRU handling.
Background:
replace_page_cache_page() is called by FUSE code in its splice() handling.
Here, 'newpage' is replacing oldpage but this newpage is not a newly allocated
page and may be on LRU. LRU mis-accounting will be critical for memory cgroup
because rmdir() checks the whole LRU is empty and there is no account leak.
If a page is on the other LRU than it should be, rmdir() will fail.
This bug was added in March 2011, but no bug report yet. I guess there
are not many people who use memcg and FUSE at the same time with upstream
kernels.
The result of this bug is that admin cannot destroy a memcg because of
account leak. So, no panic, no deadlock. And, even if an active cgroup
exist, umount can succseed. So no problem at shutdown.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move CMPXCHG_DOUBLE and rename it to HAVE_CMPXCHG_DOUBLE so architectures
can simply select the option if it is supported.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move CMPXCHG_LOCAL and rename it to HAVE_CMPXCHG_LOCAL so architectures
can simply select the option if it is supported.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While implementing cmpxchg_double() on s390 I realized that we don't set
CONFIG_CMPXCHG_LOCAL despite the fact that we have support for it.
However setting that option will increase the size of struct page by
eight bytes on 64 bit, which we certainly do not want. Also, it doesn't
make sense that a present cpu feature should increase the size of struct
page.
Besides that it looks like the dependency to CMPXCHG_LOCAL is wrong and
that it should depend on CMPXCHG_DOUBLE instead.
This patch:
If an architecture supports CMPXCHG_LOCAL this shouldn't result
automatically in larger struct pages if the SLUB allocator is used.
Instead introduce a new config option "HAVE_ALIGNED_STRUCT_PAGE" which
can be selected if a double word aligned struct page is required. Also
update x86 Kconfig so that it should work as before.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/numa: Add constraints check for nid parameters
mm, x86: Remove debug_pagealloc_enabled
x86/mm: Initialize high mem before free_all_bootmem()
arch/x86/kernel/e820.c: quiet sparse noise about plain integer as NULL pointer
arch/x86/kernel/e820.c: Eliminate bubble sort from sanitize_e820_map()
x86: Fix mmap random address range
x86, mm: Unify zone_sizes_init()
x86, mm: Prepare zone_sizes_init() for unification
x86, mm: Use max_low_pfn for ZONE_NORMAL on 64-bit
x86, mm: Wrap ZONE_DMA32 with CONFIG_ZONE_DMA32
x86, mm: Use max_pfn instead of highend_pfn
x86, mm: Move zone init from paging_init() on 64-bit
x86, mm: Use MAX_DMA_PFN for ZONE_DMA on 32-bit
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
slub: disallow changing cpu_partial from userspace for debug caches
slub: add missed accounting
slub: Extract get_freelist from __slab_alloc
slub: Switch per cpu partial page support off for debugging
slub: fix a possible memleak in __slab_alloc()
slub: fix slub_max_order Documentation
slub: add missed accounting
slab: add taint flag outputting to debug paths.
slub: add taint flag outputting to debug paths
slab: introduce slab_max_order kernel parameter
slab: rename slab_break_gfp_order to slab_max_order
vmap_area->private is void* but we don't use the field for various purpose
but use only for vm_struct. So change it to a vm_struct* with naming to
improve for readability and type checking.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is not the tag page but the cursor page that we should process, and it
looks a typo.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lumpy reclaim does well to stop at a PageAnon when there's no swap, but
better is to stop at any PageSwapBacked, which includes shmem/tmpfs too.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lru_to_page is not used in mm/migrate.c.
Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we have to hand back the newly allocated huge page to page allocator,
for any reason, the changed counter should be recovered.
This affects only s390 at present.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mempool modifies gfp_mask so that the backing allocator doesn't try too
hard or trigger warning message when there's pool to fall back on. In
addition, for the first try, it removes __GFP_WAIT and IO, so that it
doesn't trigger reclaim or wait when allocation can be fulfilled from
pool; however, when that allocation fails and pool is empty too, it waits
for the pool to be replenished before retrying.
Allocation which could have succeeded after a bit of reclaim has to wait
on the reserved items and it's not like mempool doesn't retry with
__GFP_WAIT and IO. It just does that *after* someone returns an element,
pointlessly delaying things.
Fix it by retrying immediately if the first round of allocation attempts
w/o __GFP_WAIT and IO fails.
[akpm@linux-foundation.org: shorten the lock hold time]
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mempool_destroy() is a thin wrapper around free_pool(). The only thing it
adds is BUG_ON(pool->curr_nr != pool->min_nr). The intention seems to be
to enforce that all allocated elements are freed; however, the BUG_ON()
can't achieve that (it doesn't know anything about objects above min_nr)
and incorrect as mempool_resize() is allowed to leave the pool extended
but not filled. Furthermore, panicking is way worse than any memory leak
and there are better debug tools to track memory leaks.
Drop the BUG_ON() from mempool_destory() and as that leaves the function
identical to free_pool(), replace it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mempool_alloc/free() use undocumented smp_mb()'s. The code is slightly
broken and misleading.
The lockless part is in mempool_free(). It wants to determine whether the
item being freed needs to be returned to the pool or backing allocator
without grabbing pool->lock. Two things need to be guaranteed for correct
operation.
1. pool->curr_nr + #allocated should never dip below pool->min_nr.
2. Waiters shouldn't be left dangling.
For #1, The only necessary condition is that curr_nr visible at free is
from after the allocation of the element being freed (details in the
comment). For most cases, this is true without any barrier but there can
be fringe cases where the allocated pointer is passed to the freeing task
without going through memory barriers. To cover this case, wmb is
necessary before returning from allocation and rmb is necessary before
reading curr_nr. IOW,
ALLOCATING TASK FREEING TASK
update pool state after alloc;
wmb();
pass pointer to freeing task;
read pointer;
rmb();
read pool state to free;
The current code doesn't have wmb after pool update during allocation and
may theoretically, on machines where unlock doesn't behave as full wmb,
lead to pool depletion and deadlock. smp_wmb() needs to be added after
successful allocation from reserved elements and smp_mb() in
mempool_free() can be replaced with smp_rmb().
For #2, the waiter needs to add itself to waitqueue and then check the
wait condition and the waker needs to update the wait condition and then
wake up. Because waitqueue operations always go through full spinlock
synchronization, there is no need for extra memory barriers.
Furthermore, mempool_alloc() is already holding pool->lock when it decides
that it needs to wait. There is no reason to do unlock - add waitqueue -
test condition again. It can simply add itself to waitqueue while holding
pool->lock and then unlock and sleep.
This patch adds smp_wmb() after successful allocation from reserved pool,
replaces smp_mb() in mempool_free() with smp_rmb() and extend pool->lock
over waitqueue addition. More importantly, it explains what memory
barriers do and how the lockless testing is correct.
-v2: Oleg pointed out that unlock doesn't imply wmb. Added explicit
smp_wmb() after successful allocation from reserved pool and
updated comments accordingly.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
migration_entry_wait() can also be called from hugetlb_fault() now.
Remove the incorrect comment.
Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mpol_equal() logically returns a boolean. Use a bool type to slightly
improve readability.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Stephen Wilson <wilsons@start.ca>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The computation for pgoff is incorrect, at least with
(vma->vm_pgoff >> PAGE_SHIFT)
involved. It is fixed with the available method if HPAGE_SIZE is
concerned in page cache lookup.
[akpm@linux-foundation.org: use vma_hugecache_offset() directly, per Michal]
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's pointless to continue reclaiming when we have no swap space and lots
of anon pages in the inactive list.
Without this patch, it is possible when swap is disabled to continue
trying to reclaim when there are only anonymous pages in the system even
though that will not make any progress.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The loop that frees pages to the page allocator while bootstrapping tries
to free higher-order blocks only when the starting address is aligned to
that block size. Otherwise it will free all pages on that node
one-by-one.
Change it to free individual pages up to the first aligned block and then
try higher-order frees from there.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The area node_bootmem_map represents is aligned to BITS_PER_LONG, and all
bits in any aligned word of that map valid. When the represented area
extends beyond the end of the node, the non-existant pages will be marked
as reserved.
As a result, when freeing a page block, doing an explicit range check for
whether that block is within the node's range is redundant as the bitmap
is consulted anyway to see whether all pages in the block are unreserved.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__free_pages_bootmem() used to special-case higher-order frees to save
individual page checking with free_pages_bulk().
Nowadays, both zero order and non-zero order frees use free_pages(), which
checks each individual page anyway, and so there is little point in making
the distinction anymore. The higher-order loop will work just fine for
zero order pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_score_adj is used for guarding processes from OOM-Killer. One of
problem is that it's inherited at fork(). When a daemon set oom_score_adj
and make children, it's hard to know where the value is set.
This patch adds some tracepoints useful for debugging. This patch adds
3 trace points.
- creating new task
- renaming a task (exec)
- set oom_score_adj
To debug, users need to enable some trace pointer. Maybe filtering is useful as
# EVENT=/sys/kernel/debug/tracing/events/task/
# echo "oom_score_adj != 0" > $EVENT/task_newtask/filter
# echo "oom_score_adj != 0" > $EVENT/task_rename/filter
# echo 1 > $EVENT/enable
# EVENT=/sys/kernel/debug/tracing/events/oom/
# echo 1 > $EVENT/enable
output will be like this.
# grep oom /sys/kernel/debug/tracing/trace
bash-7699 [007] d..3 5140.744510: oom_score_adj_update: pid=7699 comm=bash oom_score_adj=-1000
bash-7699 [007] ...1 5151.818022: task_newtask: pid=7729 comm=bash clone_flags=1200011 oom_score_adj=-1000
ls-7729 [003] ...2 5151.818504: task_rename: pid=7729 oldcomm=bash newcomm=ls oom_score_adj=-1000
bash-7699 [002] ...1 5175.701468: task_newtask: pid=7730 comm=bash clone_flags=1200011 oom_score_adj=-1000
grep-7730 [007] ...2 5175.701993: task_rename: pid=7730 oldcomm=bash newcomm=grep oom_score_adj=-1000
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 297c5eee37 ("mm: make the vma list be doubly linked") added the
vm_prev member to vm_area_struct. We can simplify find_vma_prev() by
using it. Also, this change helps to improve page fault performance
because it has stronger locality of reference.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
migrate was doing an rmap_walk with speculative lock-less access on
pagetables. That could lead it to not serializing properly against mremap
PT locks. But a second problem remains in the order of vmas in the
same_anon_vma list used by the rmap_walk.
If vma_merge succeeds in copy_vma, the src vma could be placed after the
dst vma in the same_anon_vma list. That could still lead to migrate
missing some pte.
This patch adds an anon_vma_moveto_tail() function to force the dst vma at
the end of the list before mremap starts to solve the problem.
If the mremap is very large and there are a lots of parents or childs
sharing the anon_vma root lock, this should still scale better than taking
the anon_vma root lock around every pte copy practically for the whole
duration of mremap.
Update: Hugh noticed special care is needed in the error path where
move_page_tables goes in the reverse direction, a second
anon_vma_moveto_tail() call is needed in the error path.
This program exercises the anon_vma_moveto_tail:
===
int main()
{
static struct timeval oldstamp, newstamp;
long diffsec;
char *p, *p2, *p3, *p4;
if (posix_memalign((void **)&p, 2*1024*1024, SIZE))
perror("memalign"), exit(1);
if (posix_memalign((void **)&p2, 2*1024*1024, SIZE))
perror("memalign"), exit(1);
if (posix_memalign((void **)&p3, 2*1024*1024, SIZE))
perror("memalign"), exit(1);
memset(p, 0xff, SIZE);
printf("%p\n", p);
memset(p2, 0xff, SIZE);
memset(p3, 0x77, 4096);
if (memcmp(p, p2, SIZE))
printf("error\n");
p4 = mremap(p+SIZE/2, SIZE/2, SIZE/2, MREMAP_FIXED|MREMAP_MAYMOVE, p3);
if (p4 != p3)
perror("mremap"), exit(1);
p4 = mremap(p4, SIZE/2, SIZE/2, MREMAP_FIXED|MREMAP_MAYMOVE, p+SIZE/2);
if (p4 != p+SIZE/2)
perror("mremap"), exit(1);
if (memcmp(p, p2, SIZE))
printf("error\n");
printf("ok\n");
return 0;
}
===
$ perf probe -a anon_vma_moveto_tail
Add new event:
probe:anon_vma_moveto_tail (on anon_vma_moveto_tail)
You can now use it on all perf tools, such as:
perf record -e probe:anon_vma_moveto_tail -aR sleep 1
$ perf record -e probe:anon_vma_moveto_tail -aR ./anon_vma_moveto_tail
0x7f2ca2800000
ok
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.043 MB perf.data (~1860 samples) ]
$ perf report --stdio
100.00% anon_vma_moveto [kernel.kallsyms] [k] anon_vma_moveto_tail
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Nai Xia <nai.xia@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pawel Sikora <pluto@agmk.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 88f5acf88a ("mm: page allocator: adjust the per-cpu counter
threshold when memory is low") changed the form how free_pages is
calculated but it forgot that we used to do free_pages - ((1 << order) -
1) so we ended up with off-by-two when calculating free_pages.
Reported-by: Wang Sheng-Hui <shhuiw@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The first entry of bdata->node_bootmem_map holds the data for
bdata->node_min_pfn up to bdata->node_min_pfn + BITS_PER_LONG - 1. So the
test for freeing all pages of a single map entry can be slightly relaxed.
Moreover use DIV_ROUND_UP in another place instead of open coding it.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Cc: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After isolated the current pfn will no longer be scanned and isolated if
the next round is necessary, so push the isolate_migratepages search base
of the given compact_control one step ahead.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tell the page allocator that pages allocated through
grab_cache_page_write_begin() are expected to become dirty soon.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.
This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.
But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones. And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list. This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.
Enter per-zone dirty limits. They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place. As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.
As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon. The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.
At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case. With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations. Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.
For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation. Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.
Test results
15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))
seconds nr_vmscan_write
(stddev) min| median| max
xfs
vanilla: 549.747( 3.492) 0.000| 0.000| 0.000
patched: 550.996( 3.802) 0.000| 0.000| 0.000
fuse-ntfs
vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000
patched: 558.049(17.914) 0.000| 0.000| 43.000
btrfs
vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000
patched: 563.365(11.368) 0.000| 0.000| 1362.000
ext4
vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000
patched: 568.806(17.496) 0.000| 0.000| 0.000
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The next patch will introduce per-zone dirty limiting functions in
addition to the traditional global dirty limiting.
Rename determine_dirtyable_memory() to global_dirtyable_memory() before
adding the zone-specific version, and fix up its documentation.
Also, move the functions to determine the dirtyable memory and the
function to calculate the dirty limit based on that together so that their
relationship is more apparent and that they can be commented on as a
group.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mel@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per-zone dirty limits try to distribute page cache pages allocated for
writing across zones in proportion to the individual zone sizes, to reduce
the likelihood of reclaim having to write back individual pages from the
LRU lists in order to make progress.
This patch:
The amount of dirtyable pages should not include the full number of free
pages: there is a number of reserved pages that the page allocator and
kswapd always try to keep free.
The closer (reclaimable pages - dirty pages) is to the number of reserved
pages, the more likely it becomes for reclaim to run into dirty pages:
+----------+ ---
| anon | |
+----------+ |
| | |
| | -- dirty limit new -- flusher new
| file | | |
| | | |
| | -- dirty limit old -- flusher old
| | |
+----------+ --- reclaim
| reserved |
+----------+
| kernel |
+----------+
This patch introduces a per-zone dirty reserve that takes both the lowmem
reserve as well as the high watermark of the zone into account, and a
global sum of those per-zone values that is subtracted from the global
amount of dirtyable pages. The lowmem reserve is unavailable to page
cache allocations and kswapd tries to keep the high watermark free. We
don't want to end up in a situation where reclaim has to clean pages in
order to balance zones.
Not treating reserved pages as dirtyable on a global level is only a
conceptual fix. In reality, dirty pages are not distributed equally
across zones and reclaim runs into dirty pages on a regular basis.
But it is important to get this right before tackling the problem on a
per-zone level, where the distance between reclaim and the dirty pages is
mostly much smaller in absolute numbers.
[akpm@linux-foundation.org: fix highmem build]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we need to know a usecase, caller program name is critical important.
Show it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
David Rientjes <rientjes@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously POSIX_FADV_DONTNEED would start writeback for the entire file
when the bdi was not write congested. This negatively impacts performance
if the file contains dirty pages outside of the requested range. This
change uses __filemap_fdatawrite_range() to only initiate writeback for
the requested range.
Signed-off-by: Shawn Bohrer <sbohrer@rgmadvisors.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Disable slub debug facilities and allocate slabs at minimal order when
debug_guardpage_minorder > 0 to increase probability to catch random
memory corruption by cpu exception.
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With CONFIG_DEBUG_PAGEALLOC configured, the CPU will generate an exception
on access (read,write) to an unallocated page, which permits us to catch
code which corrupts memory. However the kernel is trying to maximise
memory usage, hence there are usually few free pages in the system and
buggy code usually corrupts some crucial data.
This patch changes the buddy allocator to keep more free/protected pages
and to interlace free/protected and allocated pages to increase the
probability of catching corruption.
When the kernel is compiled with CONFIG_DEBUG_PAGEALLOC,
debug_guardpage_minorder defines the minimum order used by the page
allocator to grant a request. The requested size will be returned with
the remaining pages used as guard pages.
The default value of debug_guardpage_minorder is zero: no change from
current behaviour.
[akpm@linux-foundation.org: tweak documentation, s/flg/flag/]
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
handle_mm_fault() passes 'faulted' address to hugetlb_fault(). This
address is not aligned to a hugepage boundary.
Most of the functions for hugetlb pages are aware of that and calculate an
alignment themselves. However some functions such as
copy_user_huge_page() and clear_huge_page() don't handle alignment by
themselves.
This patch make hugeltb_fault() fix the alignment and pass an aligned
addresss (to address of a faulted hugepage) to functions.
[akpm@linux-foundation.org: use &=]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's make it clear that we cannot race with other fault handlers due to
hugetlb (global) mutex. Also make it clear that we want to keep pte_same
checks anayway to have a transition from the global mutex easier.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we are not rechecking pte_same in hugetlb_cow after we take ptl
lock again in the page allocation failure code path and simply retry
again. This is not an issue at the moment because hugetlb fault path is
protected by hugetlb_instantiation_mutex so we cannot race.
The original page is locked and so we cannot race even with the page
migration.
Let's add the pte_same check anyway as we want to be consistent with the
other check later in this function and be safe if we ever remove the
mutex.
[mhocko@suse.cz: reworded the changelog]
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Colin Cross reported;
Under the following conditions, __alloc_pages_slowpath can loop forever:
gfp_mask & __GFP_WAIT is true
gfp_mask & __GFP_FS is false
reclaim and compaction make no progress
order <= PAGE_ALLOC_COSTLY_ORDER
These conditions happen very often during suspend and resume,
when pm_restrict_gfp_mask() effectively converts all GFP_KERNEL
allocations into __GFP_WAIT.
The oom killer is not run because gfp_mask & __GFP_FS is false,
but should_alloc_retry will always return true when order is less
than PAGE_ALLOC_COSTLY_ORDER.
In his fix, he avoided retrying the allocation if reclaim made no progress
and __GFP_FS was not set. The problem is that this would result in
GFP_NOIO allocations failing that previously succeeded which would be very
unfortunate.
The big difference between GFP_NOIO and suspend converting GFP_KERNEL to
behave like GFP_NOIO is that normally flushers will be cleaning pages and
kswapd reclaims pages allowing GFP_NOIO to succeed after a short delay.
The same does not necessarily apply during suspend as the storage device
may be suspended.
This patch special cases the suspend case to fail the page allocation if
reclaim cannot make progress and adds some documentation on how
gfp_allowed_mask is currently used. Failing allocations like this may
cause suspend to abort but that is better than a livelock.
[mgorman@suse.de: Rework fix to be suspend specific]
[rientjes@google.com: Move suspended device check to should_alloc_retry]
Reported-by: Colin Cross <ccross@android.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When min_free_kbytes is updated, some pageblocks are marked
MIGRATE_RESERVE. Ordinarily, this work is unnoticable as it happens early
in boot but on large machines with 1TB of memory, this has been reported
to delay boot times, probably due to the NUMA distances involved.
The bulk of the work is due to calling calling pageblock_is_reserved() an
unnecessary amount of times and accessing far more struct page metadata
than is necessary. This patch significantly reduces the amount of work
done by setup_zone_migrate_reserve() improving boot times on 1TB machines.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
migrate_page_move_mapping() drops a reference from the old page after
unfreezing its counter. Both operations can be merged into a single
atomic operation by directly unfreezing to one less reference.
The same applies to migrate_huge_page_move_mapping().
Signed-off-by: Jacobo Giralt <jacobo.giralt@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename mm_page_free_direct into mm_page_free and mm_pagevec_free into
mm_page_free_batched
Since v2.6.33-5426-gc475dab the kernel triggers mm_page_free_direct for
all freed pages, not only for directly freed. So, let's name it properly.
For pages freed via page-list we also trigger mm_page_free_batched event.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It not exported and now nobody uses it.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Logic added in commit 8cab4754d2 ("vmscan: make mapped executable pages
the first class citizen") was noticeably weakened in commit
6457474624 ("vmscan: detect mapped file pages used only once").
Currently these pages can become "first class citizens" only after second
usage. After this patch page_check_references() will activate they after
first usage, and executable code gets yet better chance to stay in memory.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 6457474624 ("vmscan: detect mapped file pages used only once")
greatly decreases lifetime of single-used mapped file pages.
Unfortunately it also decreases life time of all shared mapped file
pages. Because after commit bf3f3bc5e7 ("mm: don't mark_page_accessed
in fault path") page-fault handler does not mark page active or even
referenced.
Thus page_check_references() activates file page only if it was used twice
while it stays in inactive list, meanwhile it activates anon pages after
first access. Inactive list can be small enough, this way reclaimer can
accidentally throw away any widely used page if it wasn't used twice in
short period.
After this patch page_check_references() also activate file mapped page at
first inactive list scan if this page is already used multiple times via
several ptes.
I found this while trying to fix degragation in rhel6 (~2.6.32) from rhel5
(~2.6.18). There a complete mess with >100 web/mail/spam/ftp containers,
they share all their files but there a lot of anonymous pages: ~500mb
shared file mapped memory and 15-20Gb non-shared anonymous memory. In
this situation major-pagefaults are very costly, because all containers
share the same page. In my load kernel created a disproportionate
pressure on the file memory, compared with the anonymous, they equaled
only if I raise swappiness up to 150 =)
These patches actually wasn't helped a lot in my problem, but I saw
noticable (10-20 times) reduce in count and average time of
major-pagefault in file-mapped areas.
Actually both patches are fixes for commit v2.6.33-5448-g6457474, because
it was aimed at one scenario (singly used pages), but it breaks the logic
in other scenarios (shared and/or executable pages)
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The tracing ring-buffer used this function briefly, but not anymore.
Make it local to the writeback code again.
Also, move the function so that no forward declaration needs to be
reintroduced.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For caches with debugging enabled, "slub: Switch per cpu partial page
support off for debugging" changes cpu_partial to 0. It shouldn't be
tunable from userspace for such caches, otherwise the same accounting
issues arise during validation.
This patch disallows tuning /sys/kernel/slab/cache/cpu_partial to be non-
zero for caches with debugging enabled.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net:
igmp: Avoid zero delay when receiving odd mixture of IGMP queries
netdev: make net_device_ops const
bcm63xx: make ethtool_ops const
usbnet: make ethtool_ops const
net: Fix build with INET disabled.
net: introduce netif_addr_lock_nested() and call if when appropriate
net: correct lock name in dev_[uc/mc]_sync documentations.
net: sk_update_clone is only used in net/core/sock.c
8139cp: fix missing napi_gro_flush.
pktgen: set correct max and min in pktgen_setup_inject()
smsc911x: Unconditionally include linux/smscphy.h in smsc911x.h
asix: fix infinite loop in rx_fixup()
net: Default UDP and UNIX diag to 'n'.
r6040: fix typo in use of MCR0 register bits
net: fix sock_clone reference mismatch with tcp memcontrol
Including trace/events/*.h TRACE_EVENT() macro headers in other headers
can cause strange side effects if another trace/event/*.h header
includes that header. Having trace/events/kmem.h inside slab_def.h
caused a compile error in sparc64 when changes were done to some header
files. Moving the kmem.h trace header out of slab.h and into slab.c
fixes the problem.
Note, both slub.c and slob.c already include the trace/events/kmem.h
file. Only slab.c had it missing.
Link: http://lkml.kernel.org/r/20120105190405.1e3191fb5a43b2a0f1655e1f@canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: Remove irqsafe_cpu_xxx variants
Fix up conflict in arch/x86/include/asm/percpu.h due to clash with
cebef5beed ("x86: Fix and improve percpu_cmpxchg{8,16}b_double()")
which edited the (now removed) irqsafe_cpu_cmpxchg*_double code.
* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
cgroup: fix to allow mounting a hierarchy by name
cgroup: move assignement out of condition in cgroup_attach_proc()
cgroup: Remove task_lock() from cgroup_post_fork()
cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
cgroup: mark cgroup_rmdir_waitq and cgroup_attach_proc() as static
cgroup: only need to check oldcgrp==newgrp once
cgroup: remove redundant get/put of task struct
cgroup: remove redundant get/put of old css_set from migrate
cgroup: Remove unnecessary task_lock before fetching css_set on migration
cgroup: Drop task_lock(parent) on cgroup_fork()
cgroups: remove redundant get/put of css_set from css_set_check_fetched()
resource cgroups: remove bogus cast
cgroup: kill subsys->can_attach_task(), pre_attach() and attach_task()
cgroup, cpuset: don't use ss->pre_attach()
cgroup: don't use subsys->can_attach_task() or ->attach_task()
cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
cgroup: improve old cgroup handling in cgroup_attach_proc()
cgroup: always lock threadgroup during migration
threadgroup: extend threadgroup_lock() to cover exit and exec
threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
...
Fix up conflict in kernel/cgroup.c due to commit e0197aae59e5: "cgroups:
fix a css_set not found bug in cgroup_attach_proc" that already
mentioned that the bug is fixed (differently) in Tejun's cgroup
patchset. This one, in other words.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (53 commits)
Kconfig: acpi: Fix typo in comment.
misc latin1 to utf8 conversions
devres: Fix a typo in devm_kfree comment
btrfs: free-space-cache.c: remove extra semicolon.
fat: Spelling s/obsolate/obsolete/g
SCSI, pmcraid: Fix spelling error in a pmcraid_err() call
tools/power turbostat: update fields in manpage
mac80211: drop spelling fix
types.h: fix comment spelling for 'architectures'
typo fixes: aera -> area, exntension -> extension
devices.txt: Fix typo of 'VMware'.
sis900: Fix enum typo 'sis900_rx_bufer_status'
decompress_bunzip2: remove invalid vi modeline
treewide: Fix comment and string typo 'bufer'
hyper-v: Update MAINTAINERS
treewide: Fix typos in various parts of the kernel, and fix some comments.
clockevents: drop unknown Kconfig symbol GENERIC_CLOCKEVENTS_MIGR
gpio: Kconfig: drop unknown symbol 'CS5535_GPIO'
leds: Kconfig: Fix typo 'D2NET_V2'
sound: Kconfig: drop unknown symbol ARCH_CLPS7500
...
Fix up trivial conflicts in arch/powerpc/platforms/40x/Kconfig (some new
kconfig additions, close to removed commented-out old ones)
* 'pm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (76 commits)
PM / Hibernate: Implement compat_ioctl for /dev/snapshot
PM / Freezer: fix return value of freezable_schedule_timeout_killable()
PM / shmobile: Allow the A4R domain to be turned off at run time
PM / input / touchscreen: Make st1232 use device PM QoS constraints
PM / QoS: Introduce dev_pm_qos_add_ancestor_request()
PM / shmobile: Remove the stay_on flag from SH7372's PM domains
PM / shmobile: Don't include SH7372's INTCS in syscore suspend/resume
PM / shmobile: Add support for the sh7372 A4S power domain / sleep mode
PM: Drop generic_subsys_pm_ops
PM / Sleep: Remove forward-only callbacks from AMBA bus type
PM / Sleep: Remove forward-only callbacks from platform bus type
PM: Run the driver callback directly if the subsystem one is not there
PM / Sleep: Make pm_op() and pm_noirq_op() return callback pointers
PM/Devfreq: Add Exynos4-bus device DVFS driver for Exynos4210/4212/4412.
PM / Sleep: Merge internal functions in generic_ops.c
PM / Sleep: Simplify generic system suspend callbacks
PM / Hibernate: Remove deprecated hibernation snapshot ioctls
PM / Sleep: Fix freezer failures due to racy usermodehelper_is_disabled()
ARM: S3C64XX: Implement basic power domain support
PM / shmobile: Use common always on power domain governor
...
Fix up trivial conflict in fs/xfs/xfs_buf.c due to removal of unused
XBT_FORCE_SLEEP bit
* 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (165 commits)
reiserfs: Properly display mount options in /proc/mounts
vfs: prevent remount read-only if pending removes
vfs: count unlinked inodes
vfs: protect remounting superblock read-only
vfs: keep list of mounts for each superblock
vfs: switch ->show_options() to struct dentry *
vfs: switch ->show_path() to struct dentry *
vfs: switch ->show_devname() to struct dentry *
vfs: switch ->show_stats to struct dentry *
switch security_path_chmod() to struct path *
vfs: prefer ->dentry->d_sb to ->mnt->mnt_sb
vfs: trim includes a bit
switch mnt_namespace ->root to struct mount
vfs: take /proc/*/mounts and friends to fs/proc_namespace.c
vfs: opencode mntget() mnt_set_mountpoint()
vfs: spread struct mount - remaining argument of next_mnt()
vfs: move fsnotify junk to struct mount
vfs: move mnt_devname
vfs: move mnt_list to struct mount
vfs: switch pnode.h macros to struct mount *
...
* 'driver-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (73 commits)
arm: fix up some samsung merge sysdev conversion problems
firmware: Fix an oops on reading fw_priv->fw in sysfs loading file
Drivers:hv: Fix a bug in vmbus_driver_unregister()
driver core: remove __must_check from device_create_file
debugfs: add missing #ifdef HAS_IOMEM
arm: time.h: remove device.h #include
driver-core: remove sysdev.h usage.
clockevents: remove sysdev.h
arm: convert sysdev_class to a regular subsystem
arm: leds: convert sysdev_class to a regular subsystem
kobject: remove kset_find_obj_hinted()
m86k: gpio - convert sysdev_class to a regular subsystem
mips: txx9_sram - convert sysdev_class to a regular subsystem
mips: 7segled - convert sysdev_class to a regular subsystem
sh: dma - convert sysdev_class to a regular subsystem
sh: intc - convert sysdev_class to a regular subsystem
power: suspend - convert sysdev_class to a regular subsystem
power: qe_ic - convert sysdev_class to a regular subsystem
power: cmm - convert sysdev_class to a regular subsystem
s390: time - convert sysdev_class to a regular subsystem
...
Fix up conflicts with 'struct sysdev' removal from various platform
drivers that got changed:
- arch/arm/mach-exynos/cpu.c
- arch/arm/mach-exynos/irq-eint.c
- arch/arm/mach-s3c64xx/common.c
- arch/arm/mach-s3c64xx/cpu.c
- arch/arm/mach-s5p64x0/cpu.c
- arch/arm/mach-s5pv210/common.c
- arch/arm/plat-samsung/include/plat/cpu.h
- arch/powerpc/kernel/sysfs.c
and fix up cpu_is_hotpluggable() as per Greg in include/linux/cpu.h
Sockets can also be created through sock_clone. Because it copies
all data in the sock structure, it also copies the memcg-related pointer,
and all should be fine. However, since we now use reference counts in
socket creation, we are left with some sockets that have no reference
counts. It matters when we destroy them, since it leads to a mismatch.
Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: David S. Miller <davem@davemloft.net>
CC: Greg Thelen <gthelen@google.com>
CC: Hiroyouki Kamezawa <kamezawa.hiroyu@jp.fujitsu.com>
CC: Laurent Chavey <chavey@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
* 'for-linus' of git://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur/linux-2.6-arm: (207 commits)
ARM: 7267/1: Remove BUILD_BUG_ON from asm/bug.h
ARM: 7269/1: mach-sa1100: fix sched_clock breakage
ARM: 7198/1: arm/imx6: add restart support for imx6q
ARM: restart: remove the now empty arch_reset()
ARM: restart: remove comments about adding code to arch_reset()
ARM: restart: lpc32xx & u300: remove unnecessary printk
ARM: restart: plat-samsung: remove plat/reset.h and s5p_reset_hook
ARM: restart: w90x900: use new restart hook
ARM: restart: Versatile Express: use new restart hook
ARM: restart: versatile: use new restart hook
ARM: restart: u300: use new restart hook
ARM: restart: tegra: use new restart hook
ARM: restart: spear: use new restart hook
ARM: restart: shark: use new restart hook
ARM: restart: sa1100: use new restart hook
ARM: 7252/1: restart: S5PV210: use new restart hook
ARM: 7251/1: restart: S5PC100: use new restart hook
ARM: 7250/1: restart: S5P64X0: use new restart hook
ARM: 7266/1: restart: S3C64XX: use new restart hook
ARM: 7265/1: restart: S3C24XX: use new restart hook
...
Fix up trivial conflict in arch/arm/mm/init.c due to removal of
memblock_init() clashing with the movement of the sorting of the meminfo
array.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1958 commits)
net: pack skb_shared_info more efficiently
net_sched: red: split red_parms into parms and vars
net_sched: sfq: extend limits
cnic: Improve error recovery on bnx2x devices
cnic: Re-init dev->stats_addr after chip reset
net_sched: Bug in netem reordering
bna: fix sparse warnings/errors
bna: make ethtool_ops and strings const
xgmac: cleanups
net: make ethtool_ops const
vmxnet3" make ethtool ops const
xen-netback: make ops structs const
virtio_net: Pass gfp flags when allocating rx buffers.
ixgbe: FCoE: Add support for ndo_get_fcoe_hbainfo() call
netdev: FCoE: Add new ndo_get_fcoe_hbainfo() call
igb: reset PHY after recovering from PHY power down
igb: add basic runtime PM support
igb: Add support for byte queue limits.
e1000: cleanup CE4100 MDIO registers access
e1000: unmap ce4100_gbe_mdio_base_virt in e1000_remove
...
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86: Fix atomic64_xxx_cx8() functions
x86: Fix and improve cmpxchg_double{,_local}()
x86_64, asm: Optimise fls(), ffs() and fls64()
x86, bitops: Move fls64.h inside __KERNEL__
x86: Fix and improve percpu_cmpxchg{8,16}b_double()
x86: Report cpb and eff_freq_ro flags correctly
x86/i386: Use less assembly in strlen(), speed things up a bit
x86: Use the same node_distance for 32 and 64-bit
x86: Fix rflags in FAKE_STACK_FRAME
x86: Clean up and extend do_int3()
x86: Call do_notify_resume() with interrupts enabled
x86/div64: Add a micro-optimization shortcut if base is power of two
x86-64: Cleanup some assembly entry points
x86-64: Slightly shorten line system call entry and exit paths
x86-64: Reduce amount of redundant code generated for invalidate_interruptNN
x86-64: Slightly shorten int_ret_from_sys_call
x86, efi: Convert efi_phys_get_time() args to physical addresses
x86: Default to vsyscall=emulate
x86-64: Set siginfo and context on vsyscall emulation faults
x86: consolidate xchg and xadd macros
...
This resolves the conflict in the arch/arm/mach-s3c64xx/s3c6400.c file,
and it fixes the build error in the arch/x86/kernel/microcode_core.c
file, that the merge did not catch.
The microcode_core.c patch was provided by Stephen Rothwell
<sfr@canb.auug.org.au> who was invaluable in the merge issues involved
with the large sysdev removal process in the driver-core tree.
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* 'core-memblock-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
memblock: Reimplement memblock allocation using reverse free area iterator
memblock: Kill early_node_map[]
score: Use HAVE_MEMBLOCK_NODE_MAP
s390: Use HAVE_MEMBLOCK_NODE_MAP
mips: Use HAVE_MEMBLOCK_NODE_MAP
ia64: Use HAVE_MEMBLOCK_NODE_MAP
SuperH: Use HAVE_MEMBLOCK_NODE_MAP
sparc: Use HAVE_MEMBLOCK_NODE_MAP
powerpc: Use HAVE_MEMBLOCK_NODE_MAP
memblock: Implement memblock_add_node()
memblock: s/memblock_analyze()/memblock_allow_resize()/ and update users
memblock: Track total size of regions automatically
powerpc: Cleanup memblock usage
memblock: Reimplement memblock_enforce_memory_limit() using __memblock_remove()
memblock: Make memblock functions handle overflowing range @size
memblock: Reimplement __memblock_remove() using memblock_isolate_range()
memblock: Separate out memblock_isolate_range() from memblock_set_node()
memblock: Kill memblock_init()
memblock: Kill sentinel entries at the end of static region arrays
memblock: Add __memblock_dump_all()
...
Just like the per-CPU ones they had several
problems/shortcomings:
Only the first memory operand was mentioned in the asm()
operands, and the 2x64-bit version didn't have a memory clobber
while the 2x32-bit one did. The former allowed the compiler to
not recognize the need to re-load the data in case it had it
cached in some register, while the latter was overly
destructive.
The types of the local copies of the old and new values were
incorrect (the types of the pointed-to variables should be used
here, to make sure the respective old/new variable types are
compatible).
The __dummy/__junk variables were pointless, given that local
copies of the inputs already existed (and can hence be used for
discarded outputs).
The 32-bit variant of cmpxchg_double_local() referenced
cmpxchg16b_local().
At once also:
- change the return value type to what it really is: 'bool'
- unify 32- and 64-bit variants
- abstract out the common part of the 'normal' and 'local' variants
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/4F01F12A020000780006A19B@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
vfs_create() ignores everything outside of 16bit subset of its
mode argument; switching it to umode_t is obviously equivalent
and it's the only caller of the method
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vfs_mkdir() gets int, but immediately drops everything that might not
fit into umode_t and that's the only caller of ->mkdir()...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move invalidate_bdev, block_sync_page into fs/block_dev.c. Export
kill_bdev as well, so brd doesn't have to open code it. Reduce
buffer_head.h requirement accordingly.
Removed a rather large comment from invalidate_bdev, as it looked a bit
obsolete to bother moving. The small comment replacing it says enough.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Seeing that just about every destructor got that INIT_LIST_HEAD() copied into
it, there is no point whatsoever keeping this INIT_LIST_HEAD in inode_init_once();
the cost of taking it into inode_init_always() will be negligible for pipes
and sockets and negative for everything else. Not to mention the removal of
boilerplate code from ->destroy_inode() instances...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If a huge page is enqueued under the protection of hugetlb_lock, then the
operation is atomic and safe.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@vger.kernel.org> [2.6.37+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* pm-sleep: (51 commits)
PM: Drop generic_subsys_pm_ops
PM / Sleep: Remove forward-only callbacks from AMBA bus type
PM / Sleep: Remove forward-only callbacks from platform bus type
PM: Run the driver callback directly if the subsystem one is not there
PM / Sleep: Make pm_op() and pm_noirq_op() return callback pointers
PM / Sleep: Merge internal functions in generic_ops.c
PM / Sleep: Simplify generic system suspend callbacks
PM / Hibernate: Remove deprecated hibernation snapshot ioctls
PM / Sleep: Fix freezer failures due to racy usermodehelper_is_disabled()
PM / Sleep: Recommend [un]lock_system_sleep() over using pm_mutex directly
PM / Sleep: Replace mutex_[un]lock(&pm_mutex) with [un]lock_system_sleep()
PM / Sleep: Make [un]lock_system_sleep() generic
PM / Sleep: Use the freezer_count() functions in [un]lock_system_sleep() APIs
PM / Freezer: Remove the "userspace only" constraint from freezer[_do_not]_count()
PM / Hibernate: Replace unintuitive 'if' condition in kernel/power/user.c with 'else'
Freezer / sunrpc / NFS: don't allow TASK_KILLABLE sleeps to block the freezer
PM / Sleep: Unify diagnostic messages from device suspend/resume
ACPI / PM: Do not save/restore NVS on Asus K54C/K54HR
PM / Hibernate: Remove deprecated hibernation test modes
PM / Hibernate: Thaw processes in SNAPSHOT_CREATE_IMAGE ioctl test path
...
Conflicts:
kernel/kmod.c
Conflicts:
net/bluetooth/l2cap_core.c
Just two overlapping changes, one added an initialization of
a local variable, and another change added a new local variable.
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit e5671dfae5.
After a follow up discussion with Michal, it was agreed it would
be better to leave the kmem controller with just the tcp files,
deferring the behavior of the other general memory.kmem.* files
for a later time, when more caches are controlled. This is because
generic kmem files are not used by tcp accounting and it is
not clear how other slab caches would fit into the scheme.
We are reverting the original commit so we can track the reference.
Part of the patch is kept, because it was used by the later tcp
code. Conflicts are shown in the bottom. init/Kconfig is removed from
the revert entirely.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
CC: Kirill A. Shutemov <kirill@shutemov.name>
CC: Paul Menage <paul@paulmenage.org>
CC: Greg Thelen <gthelen@google.com>
CC: Johannes Weiner <jweiner@redhat.com>
CC: David S. Miller <davem@davemloft.net>
Conflicts:
Documentation/cgroups/memory.txt
mm/memcontrol.c
Signed-off-by: David S. Miller <davem@davemloft.net>
We simply say that regular this_cpu use must be safe regardless of
preemption and interrupt state. That has no material change for x86
and s390 implementations of this_cpu operations. However, arches that
do not provide their own implementation for this_cpu operations will
now get code generated that disables interrupts instead of preemption.
-tj: This is part of on-going percpu API cleanup. For detailed
discussion of the subject, please refer to the following thread.
http://thread.gmane.org/gmane.linux.kernel/1222078
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <alpine.DEB.2.00.1112221154380.11787@router.home>
lockdep reports a deadlock in jfs because a special inode's rw semaphore
is taken recursively. The mapping's gfp mask is GFP_NOFS, but is not
used when __read_cache_page() calls add_to_page_cache_lru().
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the 'memory sysdev_class' over to a regular 'memory' subsystem
and converts the devices to regular devices. The sysdev drivers are
implemented as subsystem interfaces now.
After all sysdev classes are ported to regular driver core entities, the
sysdev implementation will be entirely removed from the kernel.
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* master: (848 commits)
SELinux: Fix RCU deref check warning in sel_netport_insert()
binary_sysctl(): fix memory leak
mm/vmalloc.c: remove static declaration of va from __get_vm_area_node
ipmi_watchdog: restore settings when BMC reset
oom: fix integer overflow of points in oom_badness
memcg: keep root group unchanged if creation fails
nilfs2: potential integer overflow in nilfs_ioctl_clean_segments()
nilfs2: unbreak compat ioctl
cpusets: stall when updating mems_allowed for mempolicy or disjoint nodemask
evm: prevent racing during tfm allocation
evm: key must be set once during initialization
mmc: vub300: fix type of firmware_rom_wait_states module parameter
Revert "mmc: enable runtime PM by default"
mmc: sdhci: remove "state" argument from sdhci_suspend_host
x86, dumpstack: Fix code bytes breakage due to missing KERN_CONT
IB/qib: Correct sense on freectxts increment and decrement
RDMA/cma: Verify private data length
cgroups: fix a css_set not found bug in cgroup_attach_proc
oprofile: Fix uninitialized memory access when writing to writing to oprofilefs
Revert "xen/pv-on-hvm kexec: add xs_reset_watches to shutdown watches from old kernel"
...
Conflicts:
kernel/cgroup_freezer.c
Static storage is not required for the struct vmap_area in
__get_vm_area_node.
Removing "static" to store this variable on the stack instead.
Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An integer overflow will happen on 64bit archs if task's sum of rss,
swapents and nr_ptes exceeds (2^31)/1000 value. This was introduced by
commit
f755a04 oom: use pte pages in OOM score
where the oom score computation was divided into several steps and it's no
longer computed as one expression in unsigned long(rss, swapents, nr_pte
are unsigned long), where the result value assigned to points(int) is in
range(1..1000). So there could be an int overflow while computing
176 points *= 1000;
and points may have negative value. Meaning the oom score for a mem hog task
will be one.
196 if (points <= 0)
197 return 1;
For example:
[ 3366] 0 3366 35390480 24303939 5 0 0 oom01
Out of memory: Kill process 3366 (oom01) score 1 or sacrifice child
Here the oom1 process consumes more than 24303939(rss)*4096~=92GB physical
memory, but it's oom score is one.
In this situation the mem hog task is skipped and oom killer kills another and
most probably innocent task with oom score greater than one.
The points variable should be of type long instead of int to prevent the
int overflow.
Signed-off-by: Frantisek Hrbata <fhrbata@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the request is to create non-root group and we fail to meet it, we
should leave the root unchanged.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an upper limit to balanced_rate according to the below inequality.
This filters out some rare but huge singular points, which at least
enables more readable gnuplot figures.
When there are N dd dirtiers,
balanced_dirty_ratelimit = write_bw / N
So it holds that
balanced_dirty_ratelimit <= write_bw
The singular points originate from dirty_rate in the below formular:
balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate
where
dirty_rate = (number of page dirties in the past 200ms) / 200ms
In the extreme case, if all dd tasks suddenly get blocked on something
else and hence no pages are dirtied at all, dirty_rate will be 0 and
balanced_dirty_ratelimit will be inf. This could happen in reality.
Note that these huge singular points are not a real threat, since they
are _guaranteed_ to be filtered out by the
min(balanced_dirty_ratelimit, task_ratelimit)
line in bdi_update_dirty_ratelimit(). task_ratelimit is based on the
number of dirty pages, which will never _suddenly_ fly away like
balanced_dirty_ratelimit. So any weirdly large balanced_dirty_ratelimit
will be cut down to the level of task_ratelimit.
There won't be tiny singular points though, as long as the dirty pages
lie inside the dirty throttling region (above the freerun region).
Because there the dd tasks will be throttled by balanced_dirty_pages()
and won't be able to suddenly dirty much more pages than average.
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
This helps to reduce dirty throttling polls and hence CPU overheads.
bdi->dirty_exceeded typically only helps when suddenly starting 100+
dd's on a disk, in which case the dd's may need to poll
balance_dirty_pages() earlier than tsk->nr_dirtied_pause.
CC: Jan Kara <jack@suse.cz>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The LKP tests see big 56% regression for the case fio_mmap_randwrite_64k.
Shaohua manages to root cause it to be the much smaller dirty pause times
and hence much more frequent invocations to the IO-less balance_dirty_pages().
Since fio_mmap_randwrite_64k effectively contains both reads and writes,
the more frequent pauses triggered more idling in the cfq IO scheduler.
The solution is to increase pause time all the way up to the max 200ms
in this case, which is found to restore most performance. This will help
reduce CPU overheads in other cases, too.
Note that I don't expect many performance critical workloads to run this
access pattern: the mmap read-on-write is rather inefficient and could
be avoided by doing normal writes syscalls.
CC: Jan Kara <jack@suse.cz>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: Li Shaohua <shaohua.li@intel.com>
Tested-by: Li Shaohua <shaohua.li@intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Control the pause time and the call intervals to balance_dirty_pages()
with three parameters:
1) max_pause, limited by bdi_dirty and MAX_PAUSE
2) the target pause time, grows with the number of dd tasks
and is normally limited by max_pause/2
3) the minimal pause, set to half the target pause
and is used to skip short sleeps and accumulate them into bigger ones
The typical behaviors after patch:
- if ever task_ratelimit is far below dirty_ratelimit, the pause time
will remain constant at max_pause and nr_dirtied_pause will be
fluctuating with task_ratelimit
- in the normal cases, nr_dirtied_pause will remain stable (keep in the
same pace with dirty_ratelimit) and the pause time will be fluctuating
with task_ratelimit
In summary, someone has to fluctuate with task_ratelimit, because
task_ratelimit = nr_dirtied_pause / pause
We normally prefer a stable nr_dirtied_pause, until reaching max_pause.
The notable behavior changes are:
- in stable workloads, there will no longer be sudden big trajectory
switching of nr_dirtied_pause as concerned by Peter. It will be as
smooth as dirty_ratelimit and changing proportionally with it (as
always, assuming bdi bandwidth does not fluctuate across 2^N lines,
otherwise nr_dirtied_pause will show up in 2+ parallel trajectories)
- in the rare cases when something keeps task_ratelimit far below
dirty_ratelimit, the smoothness can no longer be retained and
nr_dirtied_pause will be "dancing" with task_ratelimit. This fixes a
(not that destructive but still not good) bug that
dirty_ratelimit gets brought down undesirably
<= balanced_dirty_ratelimit is under estimated
<= weakly executed task_ratelimit
<= pause goes too large and gets trimmed down to max_pause
<= nr_dirtied_pause (based on dirty_ratelimit) is set too large
<= dirty_ratelimit being much larger than task_ratelimit
- introduce min_pause to avoid small pause sleeps
- when pause is trimmed down to max_pause, try to compensate it at the
next pause time
The "refactor" type of changes are:
The max_pause equation is slightly transformed to make it slightly more
efficient.
We now scale target_pause by (N * 10ms) on 2^N concurrent tasks, which
is effectively equal to the original scaling max_pause by (N * 20ms)
because the original code does implicit target_pause ~= max_pause / 2.
Based on the same implicit ratio, target_pause starts with 10ms on 1 dd.
CC: Jan Kara <jack@suse.cz>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Compensate the task's think time when computing the final pause time,
so that ->dirty_ratelimit can be executed accurately.
think time := time spend outside of balance_dirty_pages()
In the rare case that the task slept longer than the 200ms period time
(result in negative pause time), the sleep time will be compensated in
the following periods, too, if it's less than 1 second.
Accumulated errors are carefully avoided as long as the max pause area
is not hitted.
Pseudo code:
period = pages_dirtied / task_ratelimit;
think = jiffies - dirty_paused_when;
pause = period - think;
1) normal case: period > think
pause = period - think
dirty_paused_when = jiffies + pause
nr_dirtied = 0
period time
|===============================>|
think time pause time
|===============>|==============>|
------|----------------|---------------|------------------------
dirty_paused_when jiffies
2) no pause case: period <= think
don't pause; reduce future pause time by:
dirty_paused_when += period
nr_dirtied = 0
period time
|===============================>|
think time
|===================================================>|
------|--------------------------------+-------------------|----
dirty_paused_when jiffies
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>