This commit converts the ULONG_CMP_GE() in rcu_gp_fqs_loop() to
time_after() to reflect the fact that it is comparing a timestamp to
the jiffies counter.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Coccinelle reports a warning at use_softirq declaration
WARNING: Assignment of 0/1 to bool variable
The root cause is
use_softirq a variable of bool type is initialised with the integer 1
Replacing 1 with value true solve the issue.
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_state structure's gp_seq field is only to be modified by the RCU
grace-period kthread, which is single-threaded. This commit therefore
enlists KCSAN's help in enforcing this restriction. This commit applies
KCSAN-specific primitives, so cannot go upstream until KCSAN does.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Even if some CPUs have excessive numbers of callbacks, RCU's grace-period
kthread will still wait normally between successive force-quiescent-state
scans. The first two are the most important, as they are the ones that
enlist aid from the scheduler when overloaded. This commit therefore
omits the wait before the first and the second force-quiescent-state
scan under callback-overload conditions.
This approach was inspired by a discussion with Jeff Roberson.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_state structure's ncpus field is only to be modified by the
CPU-hotplug CPU-online code path, which is single-threaded. This
commit therefore enlists KCSAN's help in enforcing this restriction.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds stubs for KCSAN's data_race(), ASSERT_EXCLUSIVE_WRITER(),
and ASSERT_EXCLUSIVE_ACCESS() macros to allow code using these macros to
move ahead.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_nmi_enter_common() function can be invoked both in interrupt
and NMI handlers. If it is invoked from process context (as opposed
to userspace or idle context) on a nohz_full CPU, it might acquire the
CPU's leaf rcu_node structure's ->lock. Because this lock is held only
with interrupts disabled, this is safe from an interrupt handler, but
doing so from an NMI handler can result in self-deadlock.
This commit therefore adds "irq" to the "if" condition so as to only
acquire the ->lock from irq handlers or process context, never from
an NMI handler.
Fixes: 5b14557b07 ("rcu: Avoid tick_dep_set_cpu() misordering")
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: <stable@vger.kernel.org> # 5.5.x
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- Continued user-access cleanups in the futex code.
- percpu-rwsem rewrite that uses its own waitqueue and atomic_t
instead of an embedded rwsem. This addresses a couple of
weaknesses, but the primary motivation was complications on the -rt
kernel.
- Introduce raw lock nesting detection on lockdep
(CONFIG_PROVE_RAW_LOCK_NESTING=y), document the raw_lock vs. normal
lock differences. This too originates from -rt.
- Reuse lockdep zapped chain_hlocks entries, to conserve RAM
footprint on distro-ish kernels running into the "BUG:
MAX_LOCKDEP_CHAIN_HLOCKS too low!" depletion of the lockdep
chain-entries pool.
- Misc cleanups, smaller fixes and enhancements - see the changelog
for details"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (55 commits)
fs/buffer: Make BH_Uptodate_Lock bit_spin_lock a regular spinlock_t
thermal/x86_pkg_temp: Make pkg_temp_lock a raw_spinlock_t
Documentation/locking/locktypes: Minor copy editor fixes
Documentation/locking/locktypes: Further clarifications and wordsmithing
m68knommu: Remove mm.h include from uaccess_no.h
x86: get rid of user_atomic_cmpxchg_inatomic()
generic arch_futex_atomic_op_inuser() doesn't need access_ok()
x86: don't reload after cmpxchg in unsafe_atomic_op2() loop
x86: convert arch_futex_atomic_op_inuser() to user_access_begin/user_access_end()
objtool: whitelist __sanitizer_cov_trace_switch()
[parisc, s390, sparc64] no need for access_ok() in futex handling
sh: no need of access_ok() in arch_futex_atomic_op_inuser()
futex: arch_futex_atomic_op_inuser() calling conventions change
completion: Use lockdep_assert_RT_in_threaded_ctx() in complete_all()
lockdep: Add posixtimer context tracing bits
lockdep: Annotate irq_work
lockdep: Add hrtimer context tracing bits
lockdep: Introduce wait-type checks
completion: Use simple wait queues
sched/swait: Prepare usage in completions
...
Currently, rcu_barrier() ignores offline CPUs, However, it is possible
for an offline no-CBs CPU to have callbacks queued, and rcu_barrier()
must wait for those callbacks. This commit therefore makes rcu_barrier()
directly invoke the rcu_barrier_func() with interrupts disabled for such
CPUs. This requires passing the CPU number into this function so that
it can entrain the rcu_barrier() callback onto the correct CPU's callback
list, given that the code must instead execute on the current CPU.
While in the area, this commit fixes a bug where the first CPU's callback
might have been invoked before rcu_segcblist_entrain() returned, which
would also result in an early wakeup.
Fixes: 5d6742b377 ("rcu/nocb: Use rcu_segcblist for no-CBs CPUs")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[ paulmck: Apply optimization feedback from Boqun Feng. ]
Cc: <stable@vger.kernel.org> # 5.5.x
The rcu_state structure's gp_seq field is only to be modified by the RCU
grace-period kthread, which is single-threaded. This commit therefore
enlists KCSAN's help in enforcing this restriction.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Mark irq_work items with IRQ_WORK_HARD_IRQ which should be invoked in
hardirq context even on PREEMPT_RT. IRQ_WORK without this flag will be
invoked in softirq context on PREEMPT_RT.
Set ->irq_config to 1 for the IRQ_WORK items which are invoked in softirq
context so lockdep knows that these can safely acquire a spinlock_t.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.643576700@linutronix.de
The __call_rcu() function's header comment refers to a cpu argument
that no longer exists, and the comment of the return path from
rcu_nocb_try_bypass() ignores the non-no-CBs CPU case. This commit
therefore update both comments.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In default configutions, RCU currently waits at least 100 milliseconds
before asking cond_resched() and/or resched_rcu() for help seeking
quiescent states to end a grace period. But 100 milliseconds can be
one good long time during an RCU callback flood, for example, as can
happen when user processes repeatedly open and close files in a tight
loop. These 100-millisecond gaps in successive grace periods during a
callback flood can result in excessive numbers of callbacks piling up,
unnecessarily increasing memory footprint.
This commit therefore asks cond_resched() and/or resched_rcu() for help
as early as the first FQS scan when at least one of the CPUs has more
than 20,000 callbacks queued, a number that can be changed using the new
rcutree.qovld kernel boot parameter. An auxiliary qovld_calc variable
is used to avoid acquisition of locks that have not yet been initialized.
Early tests indicate that this reduces the RCU-callback memory footprint
during rcutorture floods by from 50% to 4x, depending on configuration.
Reported-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reported-by: Tejun Heo <tj@kernel.org>
[ paulmck: Fix bug located by Qian Cai. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Dexuan Cui <decui@microsoft.com>
Tested-by: Qian Cai <cai@lca.pw>
The rcu_data structure's ->core_needs_qs field does not necessarily get
cleared in a timely fashion after the corresponding CPUs' quiescent state
has been reported. From a functional viewpoint, no harm done, but this
can result in excessive invocation of RCU core processing, as witnessed
by the kernel test robot, which saw greatly increased softirq overhead.
This commit therefore restores the rcu_report_qs_rdp() function's
clearing of this field, but only when running on the corresponding CPU.
Cases where some other CPU reports the quiescent state (for example, on
behalf of an idle CPU) are handled by setting this field appropriately
within the __note_gp_changes() function's end-of-grace-period checks.
This handling is carried out regardless of whether the end of a grace
period actually happened, thus handling the case where a CPU goes non-idle
after a quiescent state is reported on its behalf, but before the grace
period ends. This fix also avoids cross-CPU updates to ->core_needs_qs,
While in the area, this commit changes the __note_gp_changes() need_gp
variable's name to need_qs because it is a quiescent state that is needed
from the CPU in question.
Fixes: ed93dfc6bc ("rcu: Confine ->core_needs_qs accesses to the corresponding CPU")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The event is given three parameters, first one is the name
of RCU flavour, second one is the number of elements in array
for free and last one is an address of the array holding
pointers to be freed by the kfree_bulk() function.
To enable the trace event your kernel has to be build with
CONFIG_RCU_TRACE=y, after that it is possible to track the
events using ftrace subsystem.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The kfree_rcu() logic can be improved further by using kfree_bulk()
interface along with "basic batching support" introduced earlier.
The are at least two advantages of using "bulk" interface:
- in case of large number of kfree_rcu() requests kfree_bulk()
reduces the per-object overhead caused by calling kfree()
per-object.
- reduces the number of cache-misses due to "pointer chasing"
between objects which can be far spread between each other.
This approach defines a new kfree_rcu_bulk_data structure that
stores pointers in an array with a specific size. Number of entries
in that array depends on PAGE_SIZE making kfree_rcu_bulk_data
structure to be exactly one page.
Since it deals with "block-chain" technique there is an extra
need in dynamic allocation when a new block is required. Memory
is allocated with GFP_NOWAIT | __GFP_NOWARN flags, i.e. that
allows to skip direct reclaim under low memory condition to
prevent stalling and fails silently under high memory pressure.
The "emergency path" gets maintained when a system is run out of
memory. In that case objects are linked into regular list.
The "rcuperf" was run to analyze this change in terms of memory
consumption and kfree_bulk() throughput.
1) Testing on the Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz, 12xCPUs
with following parameters:
kfree_loops=200000 kfree_alloc_num=1000 kfree_rcu_test=1 kfree_vary_obj_size=1
dev.2020.01.10a branch
Default / CONFIG_SLAB
53607352517 ns, loops: 200000, batches: 1885, memory footprint: 1248MB
53529637912 ns, loops: 200000, batches: 1921, memory footprint: 1193MB
53570175705 ns, loops: 200000, batches: 1929, memory footprint: 1250MB
Patch / CONFIG_SLAB
23981587315 ns, loops: 200000, batches: 810, memory footprint: 1219MB
23879375281 ns, loops: 200000, batches: 822, memory footprint: 1190MB
24086841707 ns, loops: 200000, batches: 794, memory footprint: 1380MB
Default / CONFIG_SLUB
51291025022 ns, loops: 200000, batches: 1713, memory footprint: 741MB
51278911477 ns, loops: 200000, batches: 1671, memory footprint: 719MB
51256183045 ns, loops: 200000, batches: 1719, memory footprint: 647MB
Patch / CONFIG_SLUB
50709919132 ns, loops: 200000, batches: 1618, memory footprint: 456MB
50736297452 ns, loops: 200000, batches: 1633, memory footprint: 507MB
50660403893 ns, loops: 200000, batches: 1628, memory footprint: 429MB
in case of CONFIG_SLAB there is double increase in performance and
slightly higher memory usage. As for CONFIG_SLUB, the performance
figures are better together with lower memory usage.
2) Testing on the HiKey-960, arm64, 8xCPUs with below parameters:
CONFIG_SLAB=y
kfree_loops=200000 kfree_alloc_num=1000 kfree_rcu_test=1
102898760401 ns, loops: 200000, batches: 5822, memory footprint: 158MB
89947009882 ns, loops: 200000, batches: 6715, memory footprint: 115MB
rcuperf shows approximately ~12% better throughput in case of
using "bulk" interface. The "drain logic" or its RCU callback
does the work faster that leads to better throughput.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit reworks the atomic_cmpxchg() loop in rcu_eqs_special_set()
to do only the initial read from the current CPU's rcu_data structure's
->dynticks field explicitly. On subsequent passes, this value is instead
retained from the failing atomic_cmpxchg() operation.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently rcu_check_gp_start_stall() complains if a grace period takes
too long to start, where "too long" is roughly one RCU CPU stall-warning
interval. This has worked well, but there are some debugging Kconfig
options (such as CONFIG_EFI_PGT_DUMP=y) that can make booting take a
very long time, so much so that the stall-warning interval has expired
before RCU's grace-period kthread has even been spawned.
This commit therefore resets the rcu_state.gp_req_activity and
rcu_state.gp_activity timestamps just before the grace-period kthread
is spawned, and modifies the checks and adds ordering to ensure that
if rcu_check_gp_start_stall() sees that the grace-period kthread
has been spawned, that it will also see the resets applied to the
rcu_state.gp_req_activity and rcu_state.gp_activity timestamps.
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[ paulmck: Fix whitespace issues reported by Qian Cai. ]
Tested-by: Qian Cai <cai@lca.pw>
[ paulmck: Simplify grace-period wakeup check per Steve Rostedt feedback. ]
The rcu_barrier_callback() function does an atomic_dec_and_test(), and
if it is the last CPU to check in, does the required wakeup. Either way,
it does an event trace. Unfortunately, this is susceptible to the
following sequence of events:
o CPU 0 invokes rcu_barrier_callback(), but atomic_dec_and_test()
says that it is not last. But at this point, CPU 0 is delayed,
perhaps due to an NMI, SMI, or vCPU preemption.
o CPU 1 invokes rcu_barrier_callback(), and atomic_dec_and_test()
says that it is last. So CPU 1 traces completion and does
the needed wakeup.
o The awakened rcu_barrier() function does cleanup and releases
rcu_state.barrier_mutex.
o Another CPU now acquires rcu_state.barrier_mutex and starts
another round of rcu_barrier() processing, including updating
rcu_state.barrier_sequence.
o CPU 0 gets its act back together and does its tracing. Except
that rcu_state.barrier_sequence has already been updated, so
its tracing is incorrect and probably quite confusing.
(Wait! Why did this CPU check in twice for one rcu_barrier()
invocation???)
This commit therefore causes rcu_barrier_callback() to take a
snapshot of the value of rcu_state.barrier_sequence before invoking
atomic_dec_and_test(), thus guaranteeing that the event-trace output
is sensible, even if the timing of the event-trace output might still
be confusing. (Wait! Why did the old rcu_barrier() complete before
all of its CPUs checked in???) But being that this is RCU, only so much
confusion can reasonably be eliminated.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely and due to the mild consequences of the
failure, namely a confusing event trace.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_data structure's ->rcu_forced_tick field is read locklessly, so
this commit adds WRITE_ONCE() to all updates and READ_ONCE() to all
lockless reads.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_data structure's ->gpwrap field is read locklessly, and so
this commit adds the required READ_ONCE() to a pair of laods in order
to avoid destructive compiler optimizations.
This data race was reported by KCSAN.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Convert to plural and add a note that this is for Tree RCU.
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The various RCU structures' ->gp_seq, ->gp_seq_needed, ->gp_req_activity,
and ->gp_activity fields are read locklessly, so they must be updated with
WRITE_ONCE() and, when read locklessly, with READ_ONCE(). This commit makes
these changes.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_state structure's ->qsmaskinitnext field is read locklessly,
so this commit adds the WRITE_ONCE() to an update in order to provide
proper documentation and READ_ONCE()/WRITE_ONCE() pairing.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely for systems not doing incessant CPU-hotplug
operations.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_state structure's ->gp_req_activity field is read locklessly,
so this commit adds the WRITE_ONCE() to an update in order to provide
proper documentation and READ_ONCE()/WRITE_ONCE() pairing.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_node structure's ->gp_seq field is read locklessly, so this
commit adds the READ_ONCE() to several loads in order to avoid
destructive compiler optimizations.
This data race was reported by KCSAN. Not appropriate for backporting
because this affects only tracing and warnings.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_node structure's ->qsmask field is read locklessly, so this
commit adds the WRITE_ONCE() to an update in order to provide proper
documentation and READ_ONCE()/WRITE_ONCE() pairing.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Long ago, RCU used the stop-machine mechanism to implement expedited
grace periods, but no longer does so. This commit therefore removes
the no-longer-needed #includes of linux/stop_machine.h.
Link: https://lwn.net/Articles/805317/
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, force_qs_rnp() uses a for_each_leaf_node_possible_cpu()
loop containing a check of the current CPU's bit in ->qsmask.
This works, but this commit saves three lines by instead using
for_each_leaf_node_cpu_mask(), which combines the functionality of
for_each_leaf_node_possible_cpu() and leaf_node_cpu_bit(). This commit
also replaces the use of the local variable "bit" with rdp->grpmask.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Only tree_stall.h needs to get name from GP state, so this commit
moves the gp_state_names[] array and the gp_state_getname()
from kernel/rcu/tree.h and kernel/rcu/tree.c, respectively, to
kernel/rcu/tree_stall.h. While moving gp_state_names[], this commit
uses the GCC syntax to ensure that the right string is associated with
the right CPP macro.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In the call to trace_rcu_utilization() at the start of the loop in
rcu_cpu_kthread(), "rcu_wait" is incorrect, plus this trace event needs
to be hoisted above the loop to balance with either the "rcu_wait" or
"rcu_yield", depending on how the loop exits. This commit therefore
makes these changes.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In the current code, rcu_nmi_enter_common() might decide to turn on
the tick using tick_dep_set_cpu(), but be delayed just before doing so.
Then the grace-period kthread might notice that the CPU in question had
in fact gone through a quiescent state, thus turning off the tick using
tick_dep_clear_cpu(). The later invocation of tick_dep_set_cpu() would
then incorrectly leave the tick on.
This commit therefore enlists the aid of the leaf rcu_node structure's
->lock to ensure that decisions to enable or disable the tick are
carried out before they can be reversed.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
CONFIG_PREEMPTION and CONFIG_PREEMPT_RCU are always identical,
but some code depends on CONFIG_PREEMPTION to access to
rcu_preempt functionality. This patch changes CONFIG_PREEMPTION
to CONFIG_PREEMPT_RCU in these cases.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Now that the kfree_rcu() special-casing has been removed from tree RCU,
this commit removes kfree_call_rcu_nobatch() since it is no longer needed.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit removes kfree_rcu() special-casing and the lazy-callback
handling from Tree RCU. It moves some of this special casing to Tiny RCU,
the removal of which will be the subject of later commits.
This results in a nice negative delta.
Suggested-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Add slab.h #include, thanks to kbuild test robot <lkp@intel.com>. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit applies RCU's debug_objects debugging to the new batched
kfree_rcu() implementations. The object is queued at the kfree_rcu()
call and dequeued during reclaim.
Tested that enabling CONFIG_DEBUG_OBJECTS_RCU_HEAD successfully detects
double kfree_rcu() calls.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Fix IRQ per kbuild test robot <lkp@intel.com> feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
During testing, it was observed that amount of memory consumed due
kfree_rcu() batching is 300-400MB. Previously we had only a single
head_free pointer pointing to the list of rcu_head(s) that are to be
freed after a grace period. Until this list is drained, we cannot queue
any more objects on it since such objects may not be ready to be
reclaimed when the worker thread eventually gets to drainin g the
head_free list.
We can do better by maintaining multiple lists as done by this patch.
Testing shows that memory consumption came down by around 100-150MB with
just adding another list. Adding more than 1 additional list did not
show any improvement.
Suggested-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Code style and initialization handling. ]
[ paulmck: Fix field name, reported by kbuild test robot <lkp@intel.com>. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Because the ->monitor_todo field is always protected by krcp->lock,
this commit downgrades from xchg() to non-atomic unmarked assignment
statements.
Signed-off-by: Joel Fernandes <joel@joelfernandes.org>
[ paulmck: Update to include early-boot kick code. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Recently a discussion about stability and performance of a system
involving a high rate of kfree_rcu() calls surfaced on the list [1]
which led to another discussion how to prepare for this situation.
This patch adds basic batching support for kfree_rcu(). It is "basic"
because we do none of the slab management, dynamic allocation, code
moving or any of the other things, some of which previous attempts did
[2]. These fancier improvements can be follow-up patches and there are
different ideas being discussed in those regards. This is an effort to
start simple, and build up from there. In the future, an extension to
use kfree_bulk and possibly per-slab batching could be done to further
improve performance due to cache-locality and slab-specific bulk free
optimizations. By using an array of pointers, the worker thread
processing the work would need to read lesser data since it does not
need to deal with large rcu_head(s) any longer.
Torture tests follow in the next patch and show improvements of around
5x reduction in number of grace periods on a 16 CPU system. More
details and test data are in that patch.
There is an implication with rcu_barrier() with this patch. Since the
kfree_rcu() calls can be batched, and may not be handed yet to the RCU
machinery in fact, the monitor may not have even run yet to do the
queue_rcu_work(), there seems no easy way of implementing rcu_barrier()
to wait for those kfree_rcu()s that are already made. So this means a
kfree_rcu() followed by an rcu_barrier() does not imply that memory will
be freed once rcu_barrier() returns.
Another implication is higher active memory usage (although not
run-away..) until the kfree_rcu() flooding ends, in comparison to
without batching. More details about this are in the second patch which
adds an rcuperf test.
Finally, in the near future we will get rid of kfree_rcu() special casing
within RCU such as in rcu_do_batch and switch everything to just
batching. Currently we don't do that since timer subsystem is not yet up
and we cannot schedule the kfree_rcu() monitor as the timer subsystem's
lock are not initialized. That would also mean getting rid of
kfree_call_rcu_nobatch() entirely.
[1] http://lore.kernel.org/lkml/20190723035725-mutt-send-email-mst@kernel.org
[2] https://lkml.org/lkml/2017/12/19/824
Cc: kernel-team@android.com
Cc: kernel-team@lge.com
Co-developed-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Applied 0day and Paul Walmsley feedback on ->monitor_todo. ]
[ paulmck: Make it work during early boot. ]
[ paulmck: Add a crude early boot self-test. ]
[ paulmck: Style adjustments and experimental docbook structure header. ]
Link: https://lore.kernel.org/lkml/alpine.DEB.2.21.9999.1908161931110.32497@viisi.sifive.com/T/#me9956f66cb611b95d26ae92700e1d901f46e8c59
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Each of rcu_state, rcu_rnp_online_cpus(), rcu_dynticks_curr_cpu_in_eqs(),
and rcu_dynticks_snap() are used only in the kernel/rcu/tree.o translation
unit, and may thus be marked static. This commit therefore makes this
change.
Reported-by: Ben Dooks <ben.dooks@codethink.co.uk>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The config option `CONFIG_PREEMPT' is used for the preemption model
"Low-Latency Desktop". The config option `CONFIG_PREEMPTION' is enabled
when kernel preemption is enabled which is true for the preemption model
`CONFIG_PREEMPT' and `CONFIG_PREEMPT_RT'.
Use `CONFIG_PREEMPTION' if it applies to both preemption models and not
just to `CONFIG_PREEMPT'.
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: rcu@vger.kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This fixes a data-race where `atomic_t dynticks` is copied by value. The
copy is performed non-atomically, resulting in a data-race if `dynticks`
is updated concurrently.
This data-race was found with KCSAN:
==================================================================
BUG: KCSAN: data-race in dyntick_save_progress_counter / rcu_irq_enter
write to 0xffff989dbdbe98e0 of 4 bytes by task 10 on cpu 3:
atomic_add_return include/asm-generic/atomic-instrumented.h:78 [inline]
rcu_dynticks_snap kernel/rcu/tree.c:310 [inline]
dyntick_save_progress_counter+0x43/0x1b0 kernel/rcu/tree.c:984
force_qs_rnp+0x183/0x200 kernel/rcu/tree.c:2286
rcu_gp_fqs kernel/rcu/tree.c:1601 [inline]
rcu_gp_fqs_loop+0x71/0x880 kernel/rcu/tree.c:1653
rcu_gp_kthread+0x22c/0x3b0 kernel/rcu/tree.c:1799
kthread+0x1b5/0x200 kernel/kthread.c:255
<snip>
read to 0xffff989dbdbe98e0 of 4 bytes by task 154 on cpu 7:
rcu_nmi_enter_common kernel/rcu/tree.c:828 [inline]
rcu_irq_enter+0xda/0x240 kernel/rcu/tree.c:870
irq_enter+0x5/0x50 kernel/softirq.c:347
<snip>
Reported by Kernel Concurrency Sanitizer on:
CPU: 7 PID: 154 Comm: kworker/7:1H Not tainted 5.3.0+ #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
Workqueue: kblockd blk_mq_run_work_fn
==================================================================
Signed-off-by: Marco Elver <elver@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: rcu@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The RCU-specific resched_cpu() function sends a resched IPI to the
specified CPU, which can be used to force the tick on for a given
nohz_full CPU. This is needed when this nohz_full CPU is looping in the
kernel while blocking the current grace period. However, for the tick
to actually be forced on in all cases, that CPU's rcu_data structure's
->rcu_urgent_qs flag must be set beforehand. This commit therefore
causes rcu_implicit_dynticks_qs() to set this flag prior to invoking
resched_cpu() on a holdout nohz_full CPU.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
If a nohz_full CPU is idle or executing in userspace, it makes good sense
to keep it out of RCU core processing. After all, the RCU grace-period
kthread can see its quiescent states and all of its callbacks are
offloaded, so there is nothing for RCU core processing to do.
However, if a nohz_full CPU is executing in kernel space, the RCU
grace-period kthread cannot do anything for it, so such a CPU must report
its own quiescent states. This commit therefore makes nohz_full CPUs
skip RCU core processing only if the scheduler-clock interrupt caught
them in idle or in userspace.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Commit 671a63517c ("rcu: Avoid unnecessary softirq when system
is idle") fixed a bug that could result in an indefinite number of
unnecessary invocations of the RCU_SOFTIRQ handler at the trailing edge
of a scheduler-clock interrupt. However, the fix introduced off-CPU
stores to ->core_needs_qs. These writes did not conflict with the
on-CPU stores because the CPU's leaf rcu_node structure's ->lock was
held across all such stores. However, the loads from ->core_needs_qs
were not promoted to READ_ONCE() and, worse yet, the code loading from
->core_needs_qs was written assuming that it was only ever updated by
the corresponding CPU. So operation has been robust, but only by luck.
This situation is therefore an accident waiting to happen.
This commit therefore takes a different approach. Instead of clearing
->core_needs_qs from the grace-period kthread's force-quiescent-state
processing, it modifies the rcu_pending() function to suppress the
rcu_sched_clock_irq() function's call to invoke_rcu_core() if there is no
grace period in progress. This avoids the infinite needless RCU_SOFTIRQ
handlers while still keeping all accesses to ->core_needs_qs local to
the corresponding CPU.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In some cases, tracing shows that need_heavy_qs is still set even though
urgent_qs was cleared upon reporting of a quiescent state. One such
case is when the softirq reports that a CPU has passed quiescent state.
Commit 671a63517c ("rcu: Avoid unnecessary softirq when system is
idle") fixed a bug where core_needs_qs was not being cleared. In order
to avoid running into similar situations with the urgent-grace-period
flags, this commit causes rcu_disable_urgency_upon_qs(), previously
rcu_disable_tick_upon_qs(), to clear the urgency hints, ->rcu_urgent_qs
and ->rcu_need_heavy_qs. Note that it is possible for CPUs to go
offline with these urgency hints still set. This is handled because
rcu_disable_urgency_upon_qs() is also invoked during the online process.
Because these hints can be cleared both by the corresponding CPU and by
the grace-period kthread, this commit also adds a number of READ_ONCE()
and WRITE_ONCE() calls.
Tested overnight with rcutorture running for 60 minutes on all
configurations of RCU.
Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
[ paulmck: Clear urgency flags in rcu_disable_urgency_upon_qs(). ]
[ paulmck: Remove ->core_needs_qs from the set cleared at quiescent state. ]
[ paulmck: Make rcu_disable_urgency_upon_qs static per kbuild test robot. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
There is interrupt-exit code that forces on the tick for nohz_full CPUs
failing to respond to the current grace period in a timely fashion.
However, this code must compare ->dynticks_nmi_nesting to the value 2
in the interrupt-exit fastpath. This commit therefore moves this code
to the interrupt-entry fastpath, where a lighter-weight comparison to
zero may be used.
Reported-by: Joel Fernandes <joel@joelfernandes.org>
[ paulmck: Apply Joel Fernandes TICK_DEP_MASK_RCU->TICK_DEP_BIT_RCU fix. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
CPUs running for long time periods in the kernel in nohz_full mode
might leave the scheduling-clock interrupt disabled for then full
duration of their in-kernel execution. This can (among other things)
delay grace periods. This commit therefore forces the tick back on
for any nohz_full CPU that is failing to pass through a quiescent state
upon return from interrupt, which the resched_cpu() will induce.
Reported-by: Joel Fernandes <joel@joelfernandes.org>
[ paulmck: Clear ->rcu_forced_tick as reported by Joel Fernandes testing. ]
[ paulmck: Apply Joel Fernandes TICK_DEP_MASK_RCU->TICK_DEP_BIT_RCU fix. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
During an actual call_rcu() flood, there would be frequent trips to
userspace (in-kernel call_rcu() floods must be otherwise housebroken).
Userspace execution on nohz_full CPUs implies an RCU dyntick idle/not-idle
transition pair, so this commit adds emulation of that pair.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
CPU-hotplug removal operations run the multi_cpu_stop() function, which
relies on the scheduler to gain control from whatever is running on the
various online CPUs, including any nohz_full CPUs running long loops in
kernel-mode code. Lack of the scheduler-clock interrupt on such CPUs
can delay multi_cpu_stop() for several minutes and can also result in
RCU CPU stall warnings. This commit therefore causes CPU-hotplug removal
operations to enable the scheduler-clock interrupt on all online CPUs.
[ paulmck: Apply Joel Fernandes TICK_DEP_MASK_RCU->TICK_DEP_BIT_RCU fix. ]
[ paulmck: Apply simplifications suggested by Frederic Weisbecker. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When multi_cpu_stop() loops waiting for other tasks, it can trigger an RCU
CPU stall warning. This can be misleading because what is instead needed
is information on whatever task is blocking multi_cpu_stop(). This commit
therefore inserts an RCU quiescent state into the multi_cpu_stop()
function's waitloop.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Callback invocation can run for a significant time period, and within
CONFIG_NO_HZ_FULL=y kernels, this period will be devoid of scheduler-clock
interrupts. In-kernel execution without such interrupts can cause all
manner of malfunction, with RCU CPU stall warnings being but one result.
This commit therefore forces scheduling-clock interrupts on whenever more
than a few RCU callbacks are invoked. Because offloaded callback invocation
can be preempted, this forcing is withdrawn on each context switch. This
in turn requires that the loop invoking RCU callbacks reiterate the forcing
periodically.
[ paulmck: Apply Joel Fernandes TICK_DEP_MASK_RCU->TICK_DEP_BIT_RCU fix. ]
[ paulmck: Remove NO_HZ_FULL check per Frederic Weisbecker feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
Bimodal behavior of rcu_do_batch() is not really suited to Google
applications like gfe servers.
When a process with millions of sockets exits, closing all files
queues two rcu callbacks per socket.
This eventually reaches the point where RCU enters an emergency
mode, where rcu_do_batch() do not return until whole queue is flushed.
Each rcu callback lasts at least 70 nsec, so with millions of
elements, we easily spend more than 100 msec without rescheduling.
Goal of this patch is to avoid the infamous message like following
"need_resched set for > 51999388 ns (52 ticks) without schedule"
We dynamically adjust the number of elements we process, instead
of 10 / INFINITE choices, we use a floor of ~1 % of current entries.
If the number is above 1000, we switch to a time based limit of 3 msec
per batch, adjustable with /sys/module/rcutree/parameters/rcu_resched_ns
Signed-off-by: Eric Dumazet <edumazet@google.com>
[ paulmck: Forward-port and remove debug statements. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcutree_migrate_callbacks() invokes rcu_advance_cbs() on both the
offlined CPU's ->cblist and that of the surviving CPU, then merges
them. However, after the merge, and of the offlined CPU's callbacks
that were not ready to be invoked will no longer be associated with a
grace-period number. This commit therefore invokes rcu_advance_cbs()
one more time on the merged ->cblist in order to assign a grace-period
number to these callbacks.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Use of the rcu_data structure's segmented ->cblist for no-CBs CPUs
takes advantage of unrelated grace periods, thus reducing the memory
footprint in the face of floods of call_rcu() invocations. However,
the ->cblist field is a more-complex rcu_segcblist structure which must
be protected via locking. Even though there are only three entities
which can acquire this lock (the CPU invoking call_rcu(), the no-CBs
grace-period kthread, and the no-CBs callbacks kthread), the contention
on this lock is excessive under heavy stress.
This commit therefore greatly reduces contention by provisioning
an rcu_cblist structure field named ->nocb_bypass within the
rcu_data structure. Each no-CBs CPU is permitted only a limited
number of enqueues onto the ->cblist per jiffy, controlled by a new
nocb_nobypass_lim_per_jiffy kernel boot parameter that defaults to
about 16 enqueues per millisecond (16 * 1000 / HZ). When that limit is
exceeded, the CPU instead enqueues onto the new ->nocb_bypass.
The ->nocb_bypass is flushed into the ->cblist every jiffy or when
the number of callbacks on ->nocb_bypass exceeds qhimark, whichever
happens first. During call_rcu() floods, this flushing is carried out
by the CPU during the course of its call_rcu() invocations. However,
a CPU could simply stop invoking call_rcu() at any time. The no-CBs
grace-period kthread therefore carries out less-aggressive flushing
(every few jiffies or when the number of callbacks on ->nocb_bypass
exceeds (2 * qhimark), whichever comes first). This means that the
no-CBs grace-period kthread cannot be permitted to do unbounded waits
while there are callbacks on ->nocb_bypass. A ->nocb_bypass_timer is
used to provide the needed wakeups.
[ paulmck: Apply Coverity feedback reported by Colin Ian King. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Currently, __call_rcu_nocb_wake() conditionally acquires the leaf rcu_node
structure's ->lock, and only afterwards does rcu_advance_cbs_nowake()
check to see if it is possible to advance callbacks without potentially
needing to awaken the grace-period kthread. Given that the no-awaken
check can be done locklessly, this commit reverses the order, so that
rcu_advance_cbs_nowake() is invoked without holding the leaf rcu_node
structure's ->lock and rcu_advance_cbs_nowake() checks the grace-period
state before conditionally acquiring that lock, thus reducing the number
of needless acquistions of the leaf rcu_node structure's ->lock.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Currently, the code provides an extra wakeup for the no-CBs grace-period
kthread if one of its CPUs is generating excessive numbers of callbacks.
But satisfying though it is to wake something up when things are going
south, unless the thing being awakened can actually help solve the
problem, that extra wakeup does nothing but consume additional CPU time,
which is exactly what you don't want during a call_rcu() flood.
This commit therefore avoids doing anything if the corresponding
no-CBs callback kthread is going full tilt. Otherwise, if advancing
callbacks immediately might help and if the leaf rcu_node structure's
lock is immediately available, this commit invokes a new variant of
rcu_advance_cbs() that advances callbacks only if doing so won't require
awakening the grace-period kthread (not to be confused with any of the
no-CBs grace-period kthreads).
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Currently, rcu_pending() invokes rcu_segcblist_is_offloaded() even
in CONFIG_RCU_NOCB_CPU=n kernels, which cannot possibly be offloaded.
Given that rcu_pending() is on a fastpath, it makes sense to check for
CONFIG_RCU_NOCB_CPU=y before invoking rcu_segcblist_is_offloaded().
This commit therefore makes this change.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Currently, rcu_core() invokes rcu_segcblist_is_offloaded() each time it
needs to know whether the current CPU is a no-CBs CPU. Given that it is
not possible to change the no-CBs status of a CPU after boot, and given
that it is not possible to even have no-CBs CPUs in CONFIG_RCU_NOCB_CPU=n
kernels, this repeated runtime invocation wastes CPU. This commit
therefore created a const on-stack variable to allow this check to be
done only once per rcu_core() invocation.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Currently, rcu_do_batch() invokes rcu_segcblist_is_offloaded() each time
it needs to know whether the current CPU is a no-CBs CPU. Given that it
is not possible to change the no-CBs status of a CPU after boot, and given
that it is not possible to even have no-CBs CPUs in CONFIG_RCU_NOCB_CPU=n
kernels, this per-callback invocation wastes CPU. This commit therefore
created a const on-stack variable to allow this check to be done only
once per rcu_do_batch() invocation.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit removes the obsolete nocb_q_count and nocb_q_count_lazy
fields, also removing rcu_get_n_cbs_nocb_cpu(), adjusting
rcu_get_n_cbs_cpu(), and making rcutree_migrate_callbacks() once again
disable the ->cblist fields of offline CPUs.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Currently the RCU callbacks for no-CBs CPUs are queued on a series of
ad-hoc linked lists, which means that these callbacks cannot benefit
from "drive-by" grace periods, thus suffering needless delays prior
to invocation. In addition, the no-CBs grace-period kthreads first
wait for callbacks to appear and later wait for a new grace period,
which means that callbacks appearing during a grace-period wait can
be delayed. These delays increase memory footprint, and could even
result in an out-of-memory condition.
This commit therefore enqueues RCU callbacks from no-CBs CPUs on the
rcu_segcblist structure that is already used by non-no-CBs CPUs. It also
restructures the no-CBs grace-period kthread to be checking for incoming
callbacks while waiting for grace periods. Also, instead of waiting
for a new grace period, it waits for the closest grace period that will
cause some of the callbacks to be safe to invoke. All of these changes
reduce callback latency and thus the number of outstanding callbacks,
in turn reducing the probability of an out-of-memory condition.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
As a first step towards making no-CBs CPUs use the ->cblist, this commit
leaves the ->cblist enabled for these CPUs. The main reason to make
no-CBs CPUs use ->cblist is to take advantage of callback numbering,
which will reduce the effects of missed grace periods which in turn will
reduce forward-progress problems for no-CBs CPUs.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
In theory, a timer is used to defer wakeups of no-CBs grace-period
kthreads when the wakeup cannot be done safely directly from the
call_rcu(). In practice, the one-jiffy delay is not always consistent
with timely callback invocation under heavy call_rcu() loads. Therefore,
there are a number of checks for a pending deferred wakeup, including
from the scheduling-clock interrupt. Unfortunately, this check follows
the rcu_nohz_full_cpu() early exit, which renders it useless on such CPUs.
This commit therefore moves the check for the pending deferred no-CB
wakeup to precede the rcu_nohz_full_cpu() early exit.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Because rcutree_migrate_callbacks() is invoked infrequently and because
an exact snapshot of the grace-period state might save some callbacks a
second trip through a grace period, this function has used the root
rcu_node structure. However, this safe-second-trip optimization
happens only if rcutree_migrate_callbacks() races with grace-period
initialization, so it is not worth the added mental load. This commit
therefore makes rcutree_migrate_callbacks() start with the leaf rcu_node
structures, as is done elsewhere.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit is a preparatory patch for offloaded callbacks using the
same ->cblist structure used by non-offloaded callbacks. It therefore
adds rcu_segcblist_is_offloaded() calls where they will be needed when
!rcu_segcblist_is_enabled() no longer flags the offloaded case. It also
adds checks in rcu_do_batch() to ensure that there are no missed checks:
Currently, it should not be possible for offloaded execution to reach
rcu_do_batch(), though this will change later in this series.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
RCU callback processing currently uses rcu_is_nocb_cpu() to determine
whether or not the current CPU's callbacks are to be offloaded.
This works, but it is not so good for cache locality. Plus use of
->cblist for offloaded callbacks will greatly increase the frequency
of these checks. This commit therefore adds a ->offloaded flag to the
rcu_segcblist structure to provide a more flexible and cache-friendly
means of checking for callback offloading.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
A rather embarrasing mistake had us call sched_setscheduler() before
initializing the parameters passed to it.
Fixes: 1a763fd7c6 ("rcu/tree: Call setschedule() gp ktread to SCHED_FIFO outside of atomic region")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.
Switch the conditionals in RCU to use CONFIG_PREEMPTION.
That's the first step towards RCU on RT. The further tweaks are work in
progress. This neither touches the selftest bits which need a closer look
by Paul.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.210156346@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, if a CPU has more than 10,000 callbacks pending, it will
increase rdp->blimit to LONG_MAX. If you are lucky, LONG_MAX is only
about two billion, but this is still a bit too many callbacks to invoke
back-to-back while otherwise ignoring the world.
This commit therefore sets a maximum limit of DEFAULT_MAX_RCU_BLIMIT,
which is set to 10,000, for rdp->blimit.
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
It would be good to combine the dynticks and dynticks_nesting counters
in order to simplify the code. Unfortunately, there are concerns
about usermode upcalls appearing to RCU as half of an interrupt, as
Byungchul learned [1]. The "half" in "half interrupt" is due to an
unpaired rcu_irq_enter(): Normally, each rcu_irq_enter() has a later
call to rcu_irq_exit().
Out of an abundance of caution, Paul added warnings [2] in the RCU
code which if not fired by 2021 will be interpreted as meaning that
this half-interrupt scenario cannot happen any more, thus permitting
simplification of this code.
In the meantime, this commit makes the following changes:
(1) Combining these two counters requires that rcu_rrupt_from_idle()
is invoked only from hard-interrupt contexts as discussed here [3].
This commit therefore adds the required lockdep_assert_in_irq()
to check this constraint.
(2) Furthermore, rcu_rrupt_from_idle() is not explicit about how it
is using the counters which can lead to weird future bugs. This
commit therefore adds comments indicating the meaning and use of
each counter.
(3) Lastly, this commit checks for counter underflows as another check
that half interrupts don't occur. (Previously, the function would
simply return true upon underflow.)
All these checks checks are NOOPs if PROVE_LOCKING (and thus PROVE_RCU)
are disabled.
[1] https://lore.kernel.org/patchwork/patch/952349/
[2] Commit e11ec65cc8 ("rcu: Add warning to detect half-interrupts")
[3] https://lore.kernel.org/lkml/20190312150514.GB249405@google.com/
Cc: byungchul.park@lge.com
Cc: kernel-team@android.com
Cc: rcu@vger.kernel.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit saves a few lines of code by inlining invoke_rcu_callbacks()
into its sole remaining caller.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Some workloads need to change kthread priority for RCU core processing
without affecting other softirq work. This commit therefore introduces
the rcutree.use_softirq kernel boot parameter, which moves the RCU core
work from softirq to a per-CPU SCHED_OTHER kthread named rcuc. Use of
SCHED_OTHER approach avoids the scalability problems that appeared
with the earlier attempt to move RCU core processing to from softirq
to kthreads. That said, kernels built with RCU_BOOST=y will run the
rcuc kthreads at the RCU-boosting priority.
Note that rcutree.use_softirq=0 must be specified to move RCU core
processing to the rcuc kthreads: rcutree.use_softirq=1 is the default.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
[ paulmck: Adjust for invoke_rcu_callbacks() only ever being invoked
from RCU core processing, in contrast to softirq->rcuc transition
in old mainline RCU priority boosting. ]
[ paulmck: Avoid wakeups when scheduler might have invoked rcu_read_unlock()
while holding rq or pi locks, also possibly fixing a pre-existing latent
bug involving raise_softirq()-induced wakeups. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
- Removing of non-DYNAMIC_FTRACE from 32bit x86
- Removing of mcount support from x86
- Emulating a call from int3 on x86_64, fixes live kernel patching
- Consolidated Tracing Error logs file
Minor updates:
- Removal of klp_check_compiler_support()
- kdb ftrace dumping output changes
- Accessing and creating ftrace instances from inside the kernel
- Clean up of #define if macro
- Introduction of TRACE_EVENT_NOP() to disable trace events based on config
options
And other minor fixes and clean ups
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXNxMZxQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qq4PAP44kP6VbwL8CHyI2A3xuJ6Hwxd+2Z2r
ip66RtzyJ+2iCgEA2QCuWUlEt2bLpF9a8IQ4N9tWenSeW2i7gunPb+tioQw=
=RVQo
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The major changes in this tracing update includes:
- Removal of non-DYNAMIC_FTRACE from 32bit x86
- Removal of mcount support from x86
- Emulating a call from int3 on x86_64, fixes live kernel patching
- Consolidated Tracing Error logs file
Minor updates:
- Removal of klp_check_compiler_support()
- kdb ftrace dumping output changes
- Accessing and creating ftrace instances from inside the kernel
- Clean up of #define if macro
- Introduction of TRACE_EVENT_NOP() to disable trace events based on
config options
And other minor fixes and clean ups"
* tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits)
x86: Hide the int3_emulate_call/jmp functions from UML
livepatch: Remove klp_check_compiler_support()
ftrace/x86: Remove mcount support
ftrace/x86_32: Remove support for non DYNAMIC_FTRACE
tracing: Simplify "if" macro code
tracing: Fix documentation about disabling options using trace_options
tracing: Replace kzalloc with kcalloc
tracing: Fix partial reading of trace event's id file
tracing: Allow RCU to run between postponed startup tests
tracing: Fix white space issues in parse_pred() function
tracing: Eliminate const char[] auto variables
ring-buffer: Fix mispelling of Calculate
tracing: probeevent: Fix to make the type of $comm string
tracing: probeevent: Do not accumulate on ret variable
tracing: uprobes: Re-enable $comm support for uprobe events
ftrace/x86_64: Emulate call function while updating in breakpoint handler
x86_64: Allow breakpoints to emulate call instructions
x86_64: Add gap to int3 to allow for call emulation
tracing: kdb: Allow ftdump to skip all but the last few entries
tracing: Add trace_total_entries() / trace_total_entries_cpu()
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAlzP8nQACgkQUqAMR0iA
lPK79A/+NkRouqA9ihAZhUbgW0DHzOAFvUJSBgX11HQAZbGjngakuoyYFvwUx0T0
m80SUTCysxQrWl+xLdccPZ9ZrhP2KFQrEBEdeYHZ6ymcYcl83+3bOIBS7VwdZAbO
EzB8u/58uU/sI6ABL4lF7ZF/+R+U4CXveEUoVUF04bxdPOxZkRX4PT8u3DzCc+RK
r4yhwQUXGcKrHa2GrRL3GXKsDxcnRdFef/nzq4RFSZsi0bpskzEj34WrvctV6j+k
FH/R3kEcZrtKIMPOCoDMMWq07yNqK/QKj0MJlGoAlwfK4INgcrSXLOx+pAmr6BNq
uMKpkxCFhnkZVKgA/GbKEGzFf+ZGz9+2trSFka9LD2Ig6DIstwXqpAgiUK8JFQYj
lq1mTaJZD3DfF2vnGHGeAfBFG3XETv+mIT/ow6BcZi3NyNSVIaqa5GAR+lMc6xkR
waNkcMDkzLFuP1r0p7ZizXOksk9dFkMP3M6KqJomRtApwbSNmtt+O2jvyLPvB3+w
wRyN9WT7IJZYo4v0rrD5Bl6BjV15ZeCPRSFZRYofX+vhcqJQsFX1M9DeoNqokh55
Cri8f6MxGzBVjE1G70y2/cAFFvKEKJud0NUIMEuIbcy+xNrEAWPF8JhiwpKKnU10
c0u674iqHJ2HeVsYWZF0zqzqQ6E1Idhg/PrXfuVuhAaL5jIOnYY=
=WZfC
-----END PGP SIGNATURE-----
Merge tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk
Pull printk updates from Petr Mladek:
- Allow state reset of printk_once() calls.
- Prevent crashes when dereferencing invalid pointers in vsprintf().
Only the first byte is checked for simplicity.
- Make vsprintf warnings consistent and inlined.
- Treewide conversion of obsolete %pf, %pF to %ps, %pF printf
modifiers.
- Some clean up of vsprintf and test_printf code.
* tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk:
lib/vsprintf: Make function pointer_string static
vsprintf: Limit the length of inlined error messages
vsprintf: Avoid confusion between invalid address and value
vsprintf: Prevent crash when dereferencing invalid pointers
vsprintf: Consolidate handling of unknown pointer specifiers
vsprintf: Factor out %pO handler as kobject_string()
vsprintf: Factor out %pV handler as va_format()
vsprintf: Factor out %p[iI] handler as ip_addr_string()
vsprintf: Do not check address of well-known strings
vsprintf: Consistent %pK handling for kptr_restrict == 0
vsprintf: Shuffle restricted_pointer()
printk: Tie printk_once / printk_deferred_once into .data.once for reset
treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively
lib/test_printf: Switch to bitmap_zalloc()
When CONFIG_RCU_TRACE is not set, all these tracepoints are defined as
do-nothing macro.
We'd better make those inline functions that take proper arguments.
As RCU_TRACE() is defined as do-nothing marco as well when
CONFIG_RCU_TRACE is not set, so we can clean it up.
Link: http://lkml.kernel.org/r/1553602391-11926-4-git-send-email-laoar.shao@gmail.com
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This commit further consolidates stall-warning functionality by moving
forward-progress checkers into kernel/rcu/tree_stall.h, updating a
comment or two while in the area. More specifically, this commit moves
show_rcu_gp_kthreads(), rcu_check_gp_start_stall(), rcu_fwd_progress_check(),
sysrq_rcu, sysrq_show_rcu(), sysrq_rcudump_op, and rcu_sysrq_init() from
kernel/rcu/tree.c to kernel/rcu/tree_stall.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcu_iw_handler() function's sole purpose in life is to indicate
whether a stalled CPU had interrupts disabled, so it belongs in
kernel/rcu/tree_stall.h. This commit therefore makes that move,
clarifying its header comment while in the area.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit completes the process of consolidating the code for RCU CPU
stall warnings for normal grace periods by moving the remaining such
code from kernel/rcu/tree.c to kernel/rcu/tree_stall.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The RCU CPU stall-warning code for normal grace periods is currently
scattered across three files, due to earlier Tiny RCU support for RCU
CPU stall warnings and for old Kconfig options that have long since
been retired. Given that it is hard for the lead RCU maintainer to
find relevant stall-warning code, it would be good to consolidate it.
This commit starts this process by moving stall-warning code from
kernel/rcu/update.c to a new kernel/rcu/tree_stall.h file.
Note that the definitions of rcu_cpu_stall_suppress and
rcu_cpu_stall_timeout must remain in kernel/rcu/update.h to provide
compatibility for kernel boot parameter lists.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Previously, threads blocked on offlining CPUS were migrated to the
root rcu_node structure, thus requiring RCU priority boosting on this
structure. However, since commit d19fb8d1f3 ("rcu: Don't migrate
blocked tasks even if all corresponding CPUs offline"), RCU does not
migrate blocked tasks. Consequently, RCU no longer does RCU priority
boosting on the root rcu_node structure as of commit 1be0085b51 ("rcu:
Don't initiate RCU priority boosting on root rcu_node").
This commit therefore brings comments for the force_qs_rnp() function's
header comment in line with this new no-root-boosting reality.
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
[ paulmck: Also remove obsolete comment on suppressing new grace periods. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit better documents the jiffies_to_sched_qs default-value
strategy used by adjust_jiffies_till_sched_qs()
Reported-by: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The current code only calls adjust_jiffies_till_sched_qs() if
jiffies_till_sched_qs is left at its default value, so when the
jiffies_till_sched_qs kernel-boot parameter actually is specified,
jiffies_to_sched_qs will be left with the value zero, which
will result in useless slowdowns of cond_resched(). This commit
therefore changes rcu_init_geometry() to unconditionally invoke
adjust_jiffies_till_sched_qs(), which ensures that jiffies_to_sched_qs
will be initialized in all cases, thus maintaining good cond_resched()
performance.
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The current rcu_gp_kthread_wake() function uses in_interrupt()
and thus does a self-wakeup from all interrupt contexts, including
the pointless case where the GP kthread happens to be running with
bottom halves disabled, along with the impossible case where the GP
kthread is running within an NMI handler (you are not supposed to invoke
rcu_gp_kthread_wake() from within an NMI handler. This commit therefore
replaces the in_interrupt() with in_irq(), so that the self-wakeups
happen only from handlers for hardware interrupts and softirqs.
This also makes the code match the comment.
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As the result of recent addition of "rdp->core_needs_qs = false;" in
the "if" block, now both branches of the if-else have the same
assignment.
Factor it out and reduce line count.
Signed-off-by: Akira Yokosawa <akiyks@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The rcutree.kthread_prio kernel-boot parameter is used to set the
priority for boost (rcub), per-CPU (rcuc), and grace-period (rcu_preempt
or rcu_sched) kthreads. It is also used by rcutorture to check whether
it is possible to meaningfully test RCU priority boosting. However,
all of these cases will either ignore or be confused by any post-boot
changes to rcutree.kthread_prio.
Note that the user really can change the priorities of all of these
kthreads using chrt, given sufficient privileges. Therefore, the
read-write nature of sysfs access to rcutree.kthread_prio is thus at
best an attractive nuisance.
This commit therefore changes sysfs access to rcutree.kthread_prio to
be read-only.
Signed-off-by: Liu Song <liu.song11@zte.com.cn>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
When there are no callbacks pending on an idle system, I noticed that
RCU softirq is continuously firing. During this the cpu_no_qs is set to
false, and core_needs_qs is set to true indefinitely. This causes
rcu_process_callbacks to be repeatedly called, even though the node
corresponding to the CPU has that CPU's mask bit cleared and the system
is idle. I believe the race is when such mask clearing is done during
idle CPU scan of the quiescent state forcing stage in the kthread
instead of the softirq. Since the rnp mask is cleared, but the flags on
the CPU's rdp are not cleared, the CPU thinks it still needs to report
to core RCU.
Cure this by clearing the core_needs_qs flag when the CPU detects that
its node is already updated which will avoid the unwanted softirq raises
to the benefit of real-time systems.
Test: Ran rcutorture for various tree RCU configs.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcu_pm_notify() function refuses to switch to/from expedited grace
periods on systems with more than 256 CPUs due to the serialized
initialization of expedited grace periods. However, expedited grace
periods are now initialized in parallel, removing this concern.
This commit therefore removes the checks from rcu_pm_notify(), so that
expedited grace periods are used unconditionally during suspend/resume
and hibernate/wake operations.
As always, real-time workloads wishing to completely avoid expedited
grace periods can use the rcupdate.rcu_normal= kernel parameter.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Pull perf updates from Ingo Molnar:
"Lots of tooling updates - too many to list, here's a few highlights:
- Various subcommand updates to 'perf trace', 'perf report', 'perf
record', 'perf annotate', 'perf script', 'perf test', etc.
- CPU and NUMA topology and affinity handling improvements,
- HW tracing and HW support updates:
- Intel PT updates
- ARM CoreSight updates
- vendor HW event updates
- BPF updates
- Tons of infrastructure updates, both on the build system and the
library support side
- Documentation updates.
- ... and lots of other changes, see the changelog for details.
Kernel side updates:
- Tighten up kprobes blacklist handling, reduce the number of places
where developers can install a kprobe and hang/crash the system.
- Fix/enhance vma address filter handling.
- Various PMU driver updates, small fixes and additions.
- refcount_t conversions
- BPF updates
- error code propagation enhancements
- misc other changes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (238 commits)
perf script python: Add Python3 support to syscall-counts-by-pid.py
perf script python: Add Python3 support to syscall-counts.py
perf script python: Add Python3 support to stat-cpi.py
perf script python: Add Python3 support to stackcollapse.py
perf script python: Add Python3 support to sctop.py
perf script python: Add Python3 support to powerpc-hcalls.py
perf script python: Add Python3 support to net_dropmonitor.py
perf script python: Add Python3 support to mem-phys-addr.py
perf script python: Add Python3 support to failed-syscalls-by-pid.py
perf script python: Add Python3 support to netdev-times.py
perf tools: Add perf_exe() helper to find perf binary
perf script: Handle missing fields with -F +..
perf data: Add perf_data__open_dir_data function
perf data: Add perf_data__(create_dir|close_dir) functions
perf data: Fail check_backup in case of error
perf data: Make check_backup work over directories
perf tools: Add rm_rf_perf_data function
perf tools: Add pattern name checking to rm_rf
perf tools: Add depth checking to rm_rf
perf data: Add global path holder
...
Prohibit probing on the functions called before kprobe_int3_handler()
in do_int3(). More specifically, ftrace_int3_handler(),
poke_int3_handler(), and ist_enter(). And since rcu_nmi_enter() is
called by ist_enter(), it also should be marked as NOKPROBE_SYMBOL.
Since those are handled before kprobe_int3_handler(), probing those
functions can cause a breakpoint recursion and crash the kernel.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrea Righi <righi.andrea@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/154998793571.31052.11301258949601150994.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace the license boiler plate with a SPDX license identifier.
While in the area, update an email address.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
[ paulmck: Update .h file SPDX comment format per Joe Perches. ]
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
srcu_queue_delayed_work_on() disables preemption (and therefore CPU
hotplug in RCU's case) and then checks based on its own accounting if a
CPU is online. If the CPU is online it uses queue_delayed_work_on()
otherwise it fallbacks to queue_delayed_work().
The problem here is that queue_work() on -RT does not work with disabled
preemption.
queue_work_on() works also on an offlined CPU. queue_delayed_work_on()
has the problem that it is possible to program a timer on an offlined
CPU. This timer will fire once the CPU is online again. But until then,
the timer remains programmed and nothing will happen.
Add a local timer which will fire (as requested per delay) on the local
CPU and then enqueue the work on the specific CPU.
RCUtorture testing with SRCU-P for 24h showed no problems.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit removes the "@irq" argument from the rcu_nmi_exit() docbook
header, given that this function now has no arguments.
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Although the name rcu_process_callbacks() still makes sense for Tiny
RCU, where most of what it does is invoke callbacks, it no longer makes
much sense for Tree RCU, especially given that the actually callback
invocation is relegated to rcu_do_batch(), or, for no-CBs CPUs, to the
rcuo kthreads. Especially in the latter case, rcu_process_callbacks()
has very little to do with actual callbacks. A better description of
this function is that it performs RCU's core processing.
This commit therefore changes the name of Tree RCU's rcu_process_callbacks()
function to rcu_core(), which also has the virtue of being consistent with
the existing invoke_rcu_core() function.
While in the area, the header comment is reworked.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The name rcu_check_callbacks() arguably made sense back in the early
2000s when RCU was quite a bit simpler than it is today, but it has
become quite misleading, especially with the advent of dyntick-idle
and NO_HZ_FULL. The rcu_check_callbacks() function is RCU's hook into
the scheduling-clock interrupt, and is now but one of many ways that
callbacks get promoted to invocable state.
This commit therefore changes the name to rcu_sched_clock_irq(),
which is the same number of characters and clearly indicates this
function's relation to the rest of the Linux kernel. In addition, for
the sake of consistency, rcu_flavor_check_callbacks() is also renamed
to rcu_flavor_sched_clock_irq().
While in the area, the header comments for both functions are reworked.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Currently, __note_gp_changes() checks to see if the rcu_node structure's
->gp_seq_needed is greater than or equal to that of the rcu_data
structure, and if so, updates the rcu_data structure's ->gp_seq_needed
field. This results in a useless store in the case where the two fields
are equal.
This commit therefore carries out this store only in the case where the
rcu_node structure's ->gp_seq_needed is strictly greater than that of
the rcu_data structure.
Signed-off-by: "Zhang, Jun" <jun.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Link: https://lkml.kernel.org/r/88DC34334CA3444C85D647DBFA962C2735AD5F77@SHSMSX104.ccr.corp.intel.com
The rcu_gp_kthread_wake() function is invoked when it might be necessary
to wake the RCU grace-period kthread. Because self-wakeups are normally
a useless waste of CPU cycles, if rcu_gp_kthread_wake() is invoked from
this kthread, it naturally refuses to do the wakeup.
Unfortunately, natural though it might be, this heuristic fails when
rcu_gp_kthread_wake() is invoked from an interrupt or softirq handler
that interrupted the grace-period kthread just after the final check of
the wait-event condition but just before the schedule() call. In this
case, a wakeup is required, even though the call to rcu_gp_kthread_wake()
is within the RCU grace-period kthread's context. Failing to provide
this wakeup can result in grace periods failing to start, which in turn
results in out-of-memory conditions.
This race window is quite narrow, but it actually did happen during real
testing. It would of course need to be fixed even if it was strictly
theoretical in nature.
This patch does not Cc stable because it does not apply cleanly to
earlier kernel versions.
Fixes: 48a7639ce8 ("rcu: Make callers awaken grace-period kthread")
Reported-by: "He, Bo" <bo.he@intel.com>
Co-developed-by: "Zhang, Jun" <jun.zhang@intel.com>
Co-developed-by: "He, Bo" <bo.he@intel.com>
Co-developed-by: "xiao, jin" <jin.xiao@intel.com>
Co-developed-by: Bai, Jie A <jie.a.bai@intel.com>
Signed-off: "Zhang, Jun" <jun.zhang@intel.com>
Signed-off: "He, Bo" <bo.he@intel.com>
Signed-off: "xiao, jin" <jin.xiao@intel.com>
Signed-off: Bai, Jie A <jie.a.bai@intel.com>
Signed-off-by: "Zhang, Jun" <jun.zhang@intel.com>
[ paulmck: Switch from !in_softirq() to "!in_interrupt() &&
!in_serving_softirq() to avoid redundant wakeups and to also handle the
interrupt-handler scenario as well as the softirq-handler scenario that
actually occurred in testing. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Link: https://lkml.kernel.org/r/CD6925E8781EFD4D8E11882D20FC406D52A11F61@SHSMSX104.ccr.corp.intel.com
Life is hard if RCU manages to get stuck without triggering RCU CPU
stall warnings or triggering the rcu_check_gp_start_stall() checks
for failing to start a grace period. This commit therefore adds a
boot-time-selectable sysrq key (commandeering "y") that allows manually
dumping Tree RCU state. The new rcutree.sysrq_rcu kernel boot parameter
must be set for this sysrq to be available.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcu_check_gp_kthread_starvation() function can be invoked without
holding locks, so the access to the rcu_state structure's ->gp_flags
field must be protected with READ_ONCE(). This commit therefore adds
this protection.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
If a grace period fails to start (for example, because you commented
out the last two lines of rcu_accelerate_cbs_unlocked()), rcu_core()
will invoke rcu_check_gp_start_stall(), which will notice and complain.
However, this complaint is lacking crucial debugging information such
as when the last wakeup executed and what the value of ->gp_seq was at
that time. This commit therefore removes the current pr_alert() from
rcu_check_gp_start_stall(), instead invoking show_rcu_gp_kthreads(),
which has been updated to print the needed information, which is collected
by rcu_gp_kthread_wake().
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
It is perfectly fine to set the rcutree.jiffies_till_first_fqs boot
parameter to zero, in fact, this can be useful on specialty systems that
usually have at least one idle CPU and that need fast grace periods.
This is because this setting causes the RCU grace-period kthread to
scan for idle threads immediately after grace-period initialization,
as opposed to waiting several jiffies to do so.
It is also perfectly fine to set the rcutree.rcu_kick_kthreads kernel
parameter, which gives the RCU grace-period kthread an extra wakeup
if it doesn't make progress for a period of three times the setting of
the rcutree.jiffies_till_first_fqs boot parameter. This is of course
problematic when the value of this parameter is zero, as it can result
in unnecessary wakeup IPIs along with unnecessary WARN_ONCE() invocations.
This commit therefore defers kthread kicking for at least two jiffies,
regardless of the setting of rcutree.jiffies_till_first_fqs.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Back when there were multiple flavors of RCU, it was necessary to
separately count lazy and non-lazy callbacks for each CPU. These counts
were used in CONFIG_RCU_FAST_NO_HZ kernels to determine how long a newly
idle CPU should be allowed to sleep before handling its RCU callbacks.
But now that there is only one flavor, the callback counts for a given
CPU's sole rcu_data structure are the counts for that CPU.
This commit therefore removes the rcu_data structure's ->nonlazy_posted
and ->nonlazy_posted_snap fields, the rcu_idle_count_callbacks_posted()
and rcu_cpu_has_callbacks() functions, repurposes the rcu_data structure's
->all_lazy field to record the laziness state at the beginning of the
latest idle sojourn, and modifies CONFIG_RCU_FAST_NO_HZ RCU CPU stall
warnings accordingly.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Now that rcu_blocking_is_gp() makes the correct immediate-return
decision for both PREEMPT and !PREEMPT, a single implementation of
synchronize_rcu() will work correctly under both configurations.
This commit therefore eliminates a few lines of code by consolidating
the two implementations of synchronize_rcu().
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Now that the RCU flavors have been consolidated, RCU_BH_FLAVOR and
RCU_SCHED_FLAVOR are no longer used. This commit therefore saves a
few lines by removing them.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Given that rcu_force_quiescent_state() is a simple wrapper around
force_quiescent_state(), this commit saves a few lines of code by
inlining force_quiescent_state() into rcu_force_quiescent_state(),
and changing all references to force_quiescent_state() to instead
invoke rcu_force_quiescent_state().
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Given RCU flavor consolidation, the name rcu_spawn_all_nocb_kthreads()
is quite misleading. It no longer ever creates more than one kthread,
and it does so only for the specified CPU. This commit therefore changes
this name to the more descriptive rcu_spawn_cpu_nocb_kthread(), and also
fixes up a similar issue in its header comment while in the area.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
If rcutorture's forward-progress tests fail while a grace period is not
in progress, it is useful to print the time since the last grace period
ended as a way to detect failure to launch a new grace period. This
commit therefore makes this change.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit prints out the non-zero per-CPU callback counts when a
forware-progress error (OOM event) occurs.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
[ paulmck: Fix a pair of uninitialized locals spotted by kbuild test robot. ]
The RCU CPU stall warnings print an estimate of the total number of
RCU callbacks queued in the system, but this estimate leaves out
the callbacks queued for nocbs CPUs. This commit therefore introduces
rcu_get_n_cbs_cpu(), which gives an accurate callback estimate for
both nocbs and normal CPUs, and uses this new function as needed.
This commit also introduces a rcu_get_n_cbs_nocb_cpu() helper function
that returns the number of callbacks for nocbs CPUs or zero otherwise,
and also uses this function in place of direct access to ->nocb_q_count
while in the area (fewer characters, you see).
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit adds an OOM notifier during rcutorture forward-progress
testing. If this notifier is invoked, it dumps out some grace-period
state to help debug the forward-progress problem.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
bug.2018.11.12a: Get rid of BUG_ON() and friends
consolidate.2018.12.01a: Continued RCU flavor-consolidation cleanup
doc.2018.11.12a: Documentation updates
fixes.2018.11.12a: Miscellaneous fixes
initrd.2018.11.08b: Automate creation of rcutorture initrd
sil.2018.11.12a: Remove more spin_unlock_wait() calls
Currently, rcu_gp_cleanup() traces the end of the old grace period after
the old grace period has officially ended. This might make intuitive
sense, but it also makes for confusing event-trace output because the
"end" trace displays not the old but instead the new grace-period number.
This commit therefore traces the end of an old grace period just before
that grace period officially ends.
Reported-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Because RCU avoids interrupting idle CPUs, rcu_is_watching() is used to
test whether or not it is currently legal to run RCU read-side critical
sections on this CPU. However, the first sentence and last sentences
of current comment for rcu_is_watching have opposite meaning of what
is expected. This commit therefore fixes this header comment.
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit adds a printout of the number of jiffies since the last time
that the RCU grace-period kthread did any processing. This can be useful
when tracking down forward-progress issues.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit adds the name of the RCU grace-period state to
the show_rcu_gp_kthreads() output in order to ease debugging.
This commit also moves gp_state_getname() up in the code so that
show_rcu_gp_kthreads() can use it.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
In order to debug forward-progress stalls, it is necessary to check
for excessively delayed grace-period starts. This is currently done
for RCU CPU stall warnings by rcu_check_gp_start_stall(), which checks
to see if the start of a requested grace period has been delayed by an
RCU CPU stall warning period. Because rcutorture will need to check
for the time consumed by an RCU forward-progress delay, this commit
promotes gpssdelay from a local variable to a formal parameter. It is
not necessary to export rcu_check_gp_start_stall() because rcutorture
will access it via a wrapper function.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcu_check_gp_start_stall() function multiplies the return value
from rcu_jiffies_till_stall_check() by HZ, but the units are already
in jiffies. This commit therefore avoids the need for introduction of
a jiffies-squared unit by removing the extraneous multiplication.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The tree.c file has a number of calls to BUG_ON(), which panics the
kernel, which is not a good strategy for devices (like embedded) that
don't have a way to capture console output. This commit therefore
converts these BUG_ON() calls to WARN_ON_ONCE() and WARN_ONCE().
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Event tracing is moving to SRCU in order to take advantage of the fact
that SRCU may be safely used from idle and even offline CPUs. However,
event tracing can invoke call_srcu() very early in the boot process,
even before workqueue_init_early() is invoked (let alone rcu_init()).
Therefore, call_srcu()'s attempts to queue work fail miserably.
This commit therefore detects this situation, and refrains from attempting
to queue work before rcu_init() time, but does everything else that it
would have done, and in addition, adds the srcu_struct to a global list.
The rcu_init() function now invokes a new srcu_init() function, which
is empty if CONFIG_SRCU=n. Otherwise, srcu_init() queues work for
each srcu_struct on the list. This all happens early enough in boot
that there is but a single CPU with interrupts disabled, which allows
synchronization to be dispensed with.
Of course, the queued work won't actually be invoked until after
workqueue_init() is invoked, which happens shortly after the scheduler
is up and running. This means that although call_srcu() may be invoked
any time after per-CPU variables have been set up, there is still a very
narrow window when synchronize_srcu() won't work, and this window
extends from the time that the scheduler starts until the time that
workqueue_init() returns. This can be fixed in a manner similar to
the fix for synchronize_rcu_expedited() and friends, but until someone
actually needs to use synchronize_srcu() during this window, this fix
is added churn for no benefit.
Finally, note that Tree SRCU's new srcu_init() function invokes
queue_work() rather than the queue_delayed_work() function that is
invoked post-boot. The reason is that queue_delayed_work() will (as you
would expect) post a timer, and timers have not yet been initialized.
So use of queue_work() avoids the complaints about use of uninitialized
spinlocks that would otherwise result. Besides, some delay is already
provide by the aforementioned fact that the queued work won't actually
be invoked until after the scheduler is up and running.
Requested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
1e64b15a4b ("rcu: Fix grace-period hangs due to race with CPU offline")
added spinlock_t ofl_lock to the rcu_state structure, then takes it with
preemption disabled during CPU offline, which gives the -rt patchset's
sleeping spinlock heartburn.
This commit therefore converts ->ofl_lock to raw_spinlock_t.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
The rcu_data structure's ->dynticks_fqs is incremented but never
accesses. Its ->cond_resched_completed field isn't used at all.
This commit therefore removes both fields.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit move ->dynticks from the rcu_dynticks structure to the
rcu_data structure, replacing the field of the same name. It also updates
the code to access ->dynticks from the rcu_data structure and to use the
rcu_data structure rather than following to now-gone ->dynticks field
to the now-gone rcu_dynticks structure. While in the area, this commit
also fixes up comments.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit removes ->dynticks_nesting and ->dynticks_nmi_nesting from
the rcu_dynticks structure and updates the code to access them from the
rcu_data structure.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit removes ->rcu_need_heavy_qs and ->rcu_urgent_qs from the
rcu_dynticks structure and updates the code to access them from the
rcu_data structure.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The resched_cpu() interface is quite handy, but it does acquire the
specified CPU's runqueue lock, which does not come for free. This
commit therefore substitutes the following when directing resched_cpu()
at the current CPU:
set_tsk_need_resched(current);
set_preempt_need_resched();
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Because nohz_full CPUs can leave the scheduler-clock interrupt disabled
even when in kernel mode, RCU cannot rely on rcu_check_callbacks() to
enlist the scheduler's aid in extracting a quiescent state from such CPUs.
This commit therefore more aggressively uses resched_cpu() on nohz_full
CPUs that fail to pass through a quiescent state in a timely manner.
By default, the resched_cpu() beating starts 300 milliseconds into the
quiescent state.
While in the neighborhood, add a ->last_fqs_resched field to the rcu_data
structure in order to rate-limit resched_cpu() calls from the RCU
grace-period kthread.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The ->rcu_qs_ctr counter was intended to allow providing a lightweight
report of a quiescent state to all RCU flavors. But now that there is
only one flavor of RCU in any one running kernel, there is no point in
having this feature. This commit therefore removes the ->rcu_qs_ctr
field from the rcu_dynticks structure and the ->rcu_qs_ctr_snap field
from the rcu_data structure. This results in the "rqc" option to the
rcu_fqs trace event no longer being used, so this commit also removes the
"rqc" description from the header comment.
While in the neighborhood, this commit also causes the forward-progress
request .rcu_need_heavy_qs be set one jiffies_till_sched_qs interval
later in the grace period than the first setting of .rcu_urgent_qs.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The patch making need_resched() respond to urgent RCU-QS needs used
is_idle_task(current) to detect an interrupt from idle, which does work
reasonably, but is (in theory at least) vulnerable to loops containing
need_resched() invoked from within RCU_NONIDLE() or its tracepoint
equivalent. This commit therefore moves rcu_is_cpu_rrupt_from_idle()
to a place from which rcu_check_callbacks() can invoke it and replaces
the is_idle_task(current) with rcu_is_cpu_rrupt_from_idle().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The per-CPU rcu_dynticks.rcu_urgent_qs variable communicates an urgent
need for an RCU quiescent state from the force-quiescent-state processing
within the grace-period kthread to context switches and to cond_resched().
Unfortunately, such urgent needs are not communicated to need_resched(),
which is sometimes used to decide when to invoke cond_resched(), for
but one example, within the KVM vcpu_run() function. As of v4.15, this
can result in synchronize_sched() being delayed by up to ten seconds,
which can be problematic, to say nothing of annoying.
This commit therefore checks rcu_dynticks.rcu_urgent_qs from within
rcu_check_callbacks(), which is invoked from the scheduling-clock
interrupt handler. If the current task is not an idle task and is
not executing in usermode, a context switch is forced, and either way,
the rcu_dynticks.rcu_urgent_qs variable is set to false. If the current
task is an idle task, then RCU's dyntick-idle code will detect the
quiescent state, so no further action is required. Similarly, if the
task is executing in usermode, other code in rcu_check_callbacks() and
its called functions will report the corresponding quiescent state.
Reported-by: Marius Hillenbrand <mhillenb@amazon.de>
Reported-by: David Woodhouse <dwmw2@infradead.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because rcu_barrier() is a one-line wrapper function for _rcu_barrier()
and because nothing else calls _rcu_barrier(), this commit inlines
_rcu_barrier() into rcu_barrier().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that rcu_all_qs() is used only in !PREEMPT builds, move it to
tree_plugin.h so that it is defined only in those builds. This in
turn means that rcu_momentary_dyntick_idle() is only used in !PREEMPT
builds, but it is simply marked __maybe_unused in order to keep it
near the rest of the dyntick-idle code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit removes rcu_sched_get_gp_seq(), rcu_bh_get_gp_seq(),
rcu_exp_batches_completed_sched(), rcu_sched_force_quiescent_state(),
and rcu_bh_force_quiescent_state(), which are no longer used because
rcutorture no longer does "rcu_bh" and "rcu_sched" torture types.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit saves a few lines by consolidating the RCU-sched function
definitions at the end of include/linux/rcupdate.h. This consolidation
also makes it easier to remove them all when the time comes.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>