We only allow unwritten extents on data, so the toplevel
ocfs2_mark_extent_written() can use an inode all it wants. But the
subfunction isn't even using the inode argument.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_insert_extent() wants to insert a record into the extent map if
it's an inode data extent. But since many btrees can call that
function, let's make it an op on ocfs2_extent_tree. Other tree types
can leave it empty.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_remove_extent() wants to truncate the extent map if it's
truncating an inode data extent. But since many btrees can call that
function, let's make it an op on ocfs2_extent_tree. Other tree types
can leave it empty.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_grow_branch() not really using it other than to pass it to the
subfunctions ocfs2_shift_tree_depth(), ocfs2_find_branch_target(), and
ocfs2_add_branch(). The first two weren't it either, so they drop the
argument. ocfs2_add_branch() only passed it to
ocfs2_adjust_rightmost_branch(), which drops the inode argument and uses
the ocfs2_extent_tree as well.
ocfs2_append_rec_to_path() can be take an ocfs2_extent_tree instead of
the inode. The function ocfs2_adjust_rightmost_records() goes along for
the ride.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
It already gets ocfs2_extent_tree, so we can just use that. This chains
to the same modification for ocfs2_remove_rightmost_path() and
ocfs2_rotate_rightmost_leaf_left().
Signed-off-by: Joel Becker <joel.becker@oracle.com>
It already has struct ocfs2_extent_tree, which has the caching info. So
we don't need to pass it struct inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
It already has struct ocfs2_extent_tree, which has the caching info. So
we don't need to pass it struct inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Get rid of the inode argument. Use extent_tree instead. This means a
few more functions have to pass an extent_tree around.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Pass the ocfs2_extent_list down through ocfs2_rotate_tree_right() and
get rid of struct inode in ocfs2_rotate_subtree_root_right().
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Pass struct ocfs2_extent_tree into ocfs2_create_new_meta_bhs(). It no
longer needs struct inode or ocfs2_super.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_find_path and ocfs2_find_leaf() walk our btrees, reading extent
blocks. They need struct ocfs2_caching_info for that, but not struct
inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
extent blocks belong to btrees on more than just inodes, so we want to
pass the ocfs2_caching_info structure directly to
ocfs2_read_extent_block(). A number of places in alloc.c can now drop
struct inode from their argument list.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
What do we cache? Metadata blocks. What are most of our non-inode metadata
blocks? Extent blocks for our btrees. struct ocfs2_extent_tree is the
main structure for managing those. So let's store the associated
ocfs2_caching_info there.
This means that ocfs2_et_root_journal_access() doesn't need struct inode
anymore, and any place that has an et can refer to et->et_ci instead of
INODE_CACHE(inode).
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The next step in divorcing metadata I/O management from struct inode is
to pass struct ocfs2_caching_info to the journal functions. Thus the
journal locks a metadata cache with the cache io_lock function. It also
can compare ci_last_trans and ci_created_trans directly.
This is a large patch because of all the places we change
ocfs2_journal_access..(handle, inode, ...) to
ocfs2_journal_access..(handle, INODE_CACHE(inode), ...).
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Similar ip_last_trans, ip_created_trans tracks the creation of a journal
managed inode. This specifically tracks what transaction created the
inode. This is so the code can know if the inode has ever been written
to disk.
This behavior is desirable for any journal managed object. We move it
to struct ocfs2_caching_info as ci_created_trans so that any object
using ocfs2_caching_info can rely on this behavior.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We have the read side of metadata caching isolated to struct
ocfs2_caching_info, now we need the write side. This means the journal
functions. The journal only does a couple of things with struct inode.
This change moves the ip_last_trans field onto struct
ocfs2_caching_info as ci_last_trans. This field tells the journal
whether a pending journal flush is required.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We are really passing the inode into the ocfs2_read/write_blocks()
functions to get at the metadata cache. This commit passes the cache
directly into the metadata block functions, divorcing them from the
inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We don't really want to cart around too many new fields on the
ocfs2_caching_info structure. So let's wrap all our access of the
parent object in a set of operations. One pointer on caching_info, and
more flexibility to boot.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We want to use the ocfs2_caching_info structure in places that are not
inodes. To do that, it can no longer rely on referencing the inode
directly.
This patch moves the flags to ocfs2_caching_info->ci_flags, stores
pointers to the parent's locks on the ocfs2_caching_info, and renames
the constants and flags to reflect its independant state.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Bug introduced by mainline commit e7432675f8
The bug causes ocfs2_write_begin_nolock() to oops when len=0.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Cc: stable@kernel.org
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In commit a5a0a63092, when
ocfs2_attch_dentry_lock fails, we call an extra iput and reset
dentry->d_fsdata to NULL. This resolve a bug, but it isn't
completed and the dentry is still there. When we want to use
it again, ocfs2_dentry_revalidate doesn't catch it and return
true. That make future ocfs2_dentry_lock panic out.
One bug is http://oss.oracle.com/bugzilla/show_bug.cgi?id=1162.
The resolution is to add a check for dentry->d_fsdata in
revalidate process and return false if dentry->d_fsdata is NULL,
so that a new ocfs2_lookup will be called again.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In case a downconvert is queued, and a flock receives a signal,
BUG_ON(lockres->l_action != OCFS2_AST_INVALID) is triggered
because a lock cancel triggers a dlmunlock while an AST is
scheduled.
To avoid this, allow a LKM_CANCEL to pass through, and let it
wait on __dlm_wait_on_lockres().
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
Acked-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
There is missing name for NFSSync cluster lock. This makes lockdep unhappy
because we end up passing NULL to lockdep when initializing lock key. Fix it.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
If we fail to mount the filesystem, we have to be careful not to dereference
uninitialized structures in ocfs2_kill_sb.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2_do_truncate, we forget to release last_eb_bh which
will cause memleak. So call brelse in the end.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_read_virt_blocks() does BUG when we try to read a block from a file
beyond its end. Since this can happen due to filesystem corruption, it
is not really an appropriate answer. Make ocfs2_read_quota_block() check
the condition and handle it by calling ocfs2_error() and returning EIO.
[ Modified to print ip_blkno in the error - Joel ]
Reported-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In OCFS2, allocator locks rank above transaction start. Thus we
cannot extend quota file from inside a transaction less we could
deadlock.
We solve the problem by starting transaction not already in
ocfs2_acquire_dquot() but only in ocfs2_local_read_dquot() and
ocfs2_global_read_dquot() and we allocate blocks to quota files before starting
the transaction. In case we crash, quota files will just have a few blocks
more but that's no problem since we just use them next time we extend the
quota file.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Do not exceed array status_map[]
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In a non-sparse extend, we correctly allocate (and zero) the clusters between
the old_i_size and pos, but we don't zero the portions of the cluster we're
writing to outside of pos<->len.
It handles clustersize > pagesize and blocksize < pagesize.
[Cleaned up by Joel Becker.]
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>