- Big Endian io accessors fix [Lada]
- Spellos fixes [Adam]
- Fix for DW GMAC breakage [Alexey]
- Making DMA API 64-bit ready
- Shutting up -Wmaybe-uninitialized noise for ARC
- Other minor fixes here and there, comments update
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW738lAAoJEGnX8d3iisJeProP/icm32aIHY0QXmJCBXCmQfLa
HHzfBeJ2KsG8pIRgrvraK3FJkmFr+WxZ7x6b5hPNYeHIT3c179/GZ3DlssM1md0u
sa50o5jmwd/J4o5jCKpUB/hx7wiAjpC2CYb6qIg39A2Nq5JhOFJV30XMbCscXkLI
ae/o8oATi1502cf1OQ2EqNWKfME4ogG1KsEUNrSzcd+1P8LZxsnEVBmXuPHVdHLw
kTHVgmCELsEchaV/QY9pY+uHkm9Y4vV18v0vqbklwED+cHkjmXQ2UysP3/J8KXKN
PVSqmtUJIS2vxDGK5mWvz6jkWmU8gRXoT14ZqdmMARmhVhp3+JTm2fQ53NUwZ+b2
JpPNGWVQRi86AaiUE8Fm+eWjC242CAm+lsBfx+mvqWpEvFGMlnRKw8oZiyeJhhIw
3M1yrulQG7QbTSuQrgQwfGqtrhl2nnq+X0uoMJXYHupNDQ42QK8wmJ9bT7cmutD0
K3Tmi84qoiSnN/HhWK/D9d60bLGvUY4RKiLjAcJz7lbMjtRhT/rpFFcFYCIhJyZs
y//jOZK67o1ecDXBTaUcvT+edOrQVsmatn3w0p9VwATe8OiKHsLA/0UD34gwiECy
o9g/i4tc2GfOLFoLv66czXTU9IuoKDh3HrTJgET7r1Re/+FKgJ+2+GX6AbiJzbhY
9jsAAI/ZpsS6qMhvSz3d
=n0fk
-----END PGP SIGNATURE-----
Merge tag 'arc-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC architecture updates from Vineet Gupta:
- Big Endian io accessors fix [Lada]
- Spellos fixes [Adam]
- Fix for DW GMAC breakage [Alexey]
- Making DMA API 64-bit ready
- Shutting up -Wmaybe-uninitialized noise for ARC
- Other minor fixes here and there, comments update
* tag 'arc-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc: (21 commits)
ARCv2: ioremap: Support dynamic peripheral address space
ARC: dma: reintroduce platform specific dma<->phys
ARC: dma: ioremap: use phys_addr_t consistenctly in code paths
ARC: dma: pass_phys() not sg_virt() to cache ops
ARC: dma: non-coherent pages need V-P mapping if in HIGHMEM
ARC: dma: Use struct page based page allocator helpers
ARC: build: Turn off -Wmaybe-uninitialized for ARC gcc 4.8
ARC: [plat-axs10x] add Ethernet PHY description in .dts
arc: use of_platform_default_populate() to populate default bus
ARC: thp: unbork !CONFIG_TRANSPARENT_HUGEPAGE build
arc: [plat-nsimosci*] use ezchip network driver
ARCv2: LLSC: software backoff is NOT needed starting HS2.1c
ARC: mm: Use virt_to_pfn() for addr >> PAGE_SHIFT pattern
ARC: [plat-nsim] document ranges
ARC: build: Better way to detect ISA compatible toolchain
ARCv2: Allow enabling PAE40 w/o HIGHMEM
ARC: [BE] readl()/writel() to work in Big Endian CPU configuration
ARC: [*defconfig] No need to specify CONFIG_CROSS_COMPILE
ARC: [BE] Select correct CROSS_COMPILE prefix
ARC: bitops: Remove non relevant comments
...
Pull networking updates from David Miller:
"Highlights:
1) Support more Realtek wireless chips, from Jes Sorenson.
2) New BPF types for per-cpu hash and arrap maps, from Alexei
Starovoitov.
3) Make several TCP sysctls per-namespace, from Nikolay Borisov.
4) Allow the use of SO_REUSEPORT in order to do per-thread processing
of incoming TCP/UDP connections. The muxing can be done using a
BPF program which hashes the incoming packet. From Craig Gallek.
5) Add a multiplexer for TCP streams, to provide a messaged based
interface. BPF programs can be used to determine the message
boundaries. From Tom Herbert.
6) Add 802.1AE MACSEC support, from Sabrina Dubroca.
7) Avoid factorial complexity when taking down an inetdev interface
with lots of configured addresses. We were doing things like
traversing the entire address less for each address removed, and
flushing the entire netfilter conntrack table for every address as
well.
8) Add and use SKB bulk free infrastructure, from Jesper Brouer.
9) Allow offloading u32 classifiers to hardware, and implement for
ixgbe, from John Fastabend.
10) Allow configuring IRQ coalescing parameters on a per-queue basis,
from Kan Liang.
11) Extend ethtool so that larger link mode masks can be supported.
From David Decotigny.
12) Introduce devlink, which can be used to configure port link types
(ethernet vs Infiniband, etc.), port splitting, and switch device
level attributes as a whole. From Jiri Pirko.
13) Hardware offload support for flower classifiers, from Amir Vadai.
14) Add "Local Checksum Offload". Basically, for a tunneled packet
the checksum of the outer header is 'constant' (because with the
checksum field filled into the inner protocol header, the payload
of the outer frame checksums to 'zero'), and we can take advantage
of that in various ways. From Edward Cree"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1548 commits)
bonding: fix bond_get_stats()
net: bcmgenet: fix dma api length mismatch
net/mlx4_core: Fix backward compatibility on VFs
phy: mdio-thunder: Fix some Kconfig typos
lan78xx: add ndo_get_stats64
lan78xx: handle statistics counter rollover
RDS: TCP: Remove unused constant
RDS: TCP: Add sysctl tunables for sndbuf/rcvbuf on rds-tcp socket
net: smc911x: convert pxa dma to dmaengine
team: remove duplicate set of flag IFF_MULTICAST
bonding: remove duplicate set of flag IFF_MULTICAST
net: fix a comment typo
ethernet: micrel: fix some error codes
ip_tunnels, bpf: define IP_TUNNEL_OPTS_MAX and use it
bpf, dst: add and use dst_tclassid helper
bpf: make skb->tc_classid also readable
net: mvneta: bm: clarify dependencies
cls_bpf: reset class and reuse major in da
ldmvsw: Checkpatch sunvnet.c and sunvnet_common.c
ldmvsw: Add ldmvsw.c driver code
...
The peripheral address space is architectural address window which is
uncached and typically used to wire up peripherals.
For ARC700 cores (ARCompact ISA based) this was fixed to 1GB region
0xC000_0000 - 0xFFFF_FFFF.
For ARCv2 based HS38 cores the start address is flexible and can be
0xC, 0xD, 0xE, 0xF 000_000 by programming AUX_NON_VOLATILE_LIMIT reg
(typically done in bootloader)
Further in cas of PAE, the physical address can extend beyond 4GB so
need to confine this check, otherwise all pages beyond 4GB will be
treated as uncached
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
With THP refcounting work, no need to mark PMDs splitting.
(ARC got missed under the sweeping arch change as THP support was likely
not present in orig baseline)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
linux-next for 4.6-rc1 timeline reported ARC build failures !THP
| arch/arc/include/asm/tlbflush.h:29:0: warning: "flush_pmd_tlb_range" redefined [enabled by default]
| arch/arc/include/asm/tlbflush.h:29:0: warning: "flush_pmd_tlb_range" redefined [enabled by default]
| arch/arc/include/asm/tlbflush.h:29:0: warning: "flush_pmd_tlb_range" redefined [enabled by default]
Turns out that commit ("mm/thp/migration: switch from flush_tlb_range
to flush_pmd_tlb_range") triggered the issue while the problem was in
ARC code where THP specific helpers were not guarded with #ifdef.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This patch updates all instances of csum_tcpudp_magic and
csum_tcpudp_nofold to reflect the types that are usually used as the source
inputs. For example the protocol field is populated based on nexthdr which
is actually an unsigned 8 bit value. The length is usually populated based
on skb->len which is an unsigned integer.
This addresses an issue in which the IPv6 function csum_ipv6_magic was
generating a checksum using the full 32b of skb->len while
csum_tcpudp_magic was only using the lower 16 bits. As a result we could
run into issues when attempting to adjust the checksum as there was no
protocol agnostic way to update it.
With this change the value is still truncated as many architectures use
"(len + proto) << 8", however this truncation only occurs for values
greater than 16776960 in length and as such is unlikely to occur as we stop
the inner headers at ~64K in size.
I did have to make a few minor changes in the arm, mn10300, nios2, and
score versions of the function in order to support these changes as they
were either using things such as an OR to combine the protocol and length,
or were using ntohs to convert the length which would have truncated the
value.
I also updated a few spots in terms of whitespace and type differences for
the addresses. Most of this was just to make sure all of the definitions
were in sync going forward.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ARC architecture has 2 instruction sets: ARCompact/ARCv2.
While same gcc supports compiling for either (using appropriate toggles),
we can't use the same toolchain to build kernel because libgcc needs
to be unique and the toolchian (uClibc based) is not multilibed.
uClibc toolchain is convenient since it allows all userspace and
kernel to be built with a single install for an ISA.
This however means 2 gnu installs (with same triplet prefix) are needed
for building for 2 ISA and need to be in PATH.
As developers we keep switching the builds, but would occassionally fail
to update the PATH leading to usage of wrong tools. And this would only
show up at the end of kernel build when linking incompatible libgcc.
So the initial solution was to have gcc define a special preprocessor macro
DEFAULT_CPU_xxx which is unique for default toolchain configuration.
Claudiu proposed using grep for an existing preprocessor macro which is
again uniquely defined per ISA.
Cc: Michal Marek <mmarek@suse.cz>
Suggested-by: Claudiu Zissulescu <claziss@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
read{l,w}() write{l,w}() primitives should use le{16,32}_to_cpu() and
cpu_to_le{16,32}() respectively to ensure device registers are read
correctly in Big Endian CPU configuration.
Per Arnd Bergmann
| Most drivers using readl() or readl_relaxed() expect those to perform byte
| swaps on big-endian architectures, as the registers tend to be fixed endian
This was needed for getting UART to work correctly on a Big Endian ARC.
The ARC accessors originally were fine, and the bug got introduced
inadventently by commit b8a0330239 ("ARCv2: barriers")
Fixes: b8a0330239 ("ARCv2: barriers")
Link: http://lkml.kernel.org/r/201603100845.30602.arnd@arndb.de
Cc: Alexey Brodkin <abrodkin@synopsys.com>
Cc: stable@vger.kernel.org [4.2+]
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Lada Trimasova <ltrimas@synopsys.com>
[vgupta: beefed up changelog, added Fixes/stable tags]
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
commit 80f420842f removed the ARC bitops microoptimization but failed
to prune the comments to same effect
Fixes: 80f420842f ("ARC: Make ARC bitops "safer" (add anti-optimization)")
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Add PCI support to ARC and update drivers/pci Makefile enabling the ARC
arch to use the generic PCI setup functions.
[bhelgaas: fold in Joao's pci-dma-compat.h & pci-bridge.h build fix (I
should have caught this myself, sorry]
Signed-off-by: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
They are not symmetric with each other, neither are used in real world
(can not be found by grep command in source code root directory), so
remove them.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
There is no real ARC700 based SMP SoC so remove IPI definition.
EZChip's SMP ARC700 is going to use a different intc and IPI provider
anyways.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARConnect/MCIP Inter-Core-Interrupt module can't send interrupt to
local core. So use core intc capability to trigger software
interrupt to self, using an unsued IRQ #21.
This showed up as csd deadlock with LTP trace_sched on a dual core
system. This test acts as scheduler fuzzer, triggering all sorts of
schedulting activity. Trouble starts with IPI to self, which doesn't get
delivered (effectively lost due to H/w capability), but the msg intended
to be sent remain enqueued in per-cpu @ipi_data.
All subsequent IPIs to this core from other cores get elided due to the
IPI coalescing optimization in ipi_send_msg_one() where a pending msg
implies an IPI already sent and assumes other core is yet to ack it.
After the elided IPI, other core simply goes into csd_lock_wait()
but never comes out as this core never sees the interrupt.
Fixes STAR 9001008624
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> [4.2]
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- ARCv2 uses a seperate BCR for {I,D}CCM base address:
ARCompact encoded both base/size in same BCR
- Size encoding in common BCR is different for ARCompact/ARCv2
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- Corner case of returning to delay slot from interrupt
- Changing default interrupt prioiry level
- Kconfig'ize support for super pages
- Other minor fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWvxdUAAoJEGnX8d3iisJeRkYP/2HZAt4J6c5MPk/NSy8rabVX
2bB1m5jYXlBmJAIsmWm+WcDL72MdrB1Owtc5tEN+hIoQQa2QQpxolp32IslHg0o8
C9CCzmF+iR8wz3caVk3javpsbze23XbHho/kdx/l2Ed3Fi+syI/9jF1GiboydRtR
X22an1lslA6Y44pYxFmSFcMCv7XclFkJNe1ltxsgN9/QapnNrE/HWqUIy+SMr2Oo
Tpo3m/Dc+IfMMejYyupc3keyAhyeux69lJXPuOzYiurgGUIyXz15Un2mQ9gZWf0u
W56L/55VpQVuah46qrp5CBTLmdJA5cBqr0F8RqmZAqrEYLgn5SD4IhDjamo1qsP/
FfFh0cG955SoEyCsUOPILWUFR5TeS4rJK+ZJjErUb+dwEC1BWZR0/Dn1s9KJN8b7
GgGV8yXruDACFlFnCqnlxVs1TKOPOUqD2NZRAdsKunp+ywNrvGdD43xWONcriyvr
2KW0nb+mH3RRk8HQzKjfqsVhLMoR7n1MD/+tg8ME8usLn1ik0hBerT56CX0Wh/yQ
VnOUX6xqlaRydeJJgCUyByz3+jJVvj8sk/VZbr19F0p9id6wpiPQeNus2AcoHFKW
OyvWcfxzqKegXrYtMsy8IoFzx73zJaXV3ht0I09rhAj3JkdF7vFEIUpKIhsWqxAK
yWKKqLcVKga/2Yc8jduI
=FNDd
-----END PGP SIGNATURE-----
Merge tag 'arc-4.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC fixes from Vineet Gupta:
"I've been sitting on some of these fixes for a while.
- Corner case of returning to delay slot from interrupt
- Changing default interrupt prioiry level
- Kconfig'ize support for super pages
- Other minor fixes"
* tag 'arc-4.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
ARC: mm: Introduce explicit super page size support
ARCv2: intc: Allow interruption by lowest priority interrupt
ARCv2: Check for LL-SC livelock only if LLSC is enabled
ARC: shrink cpuinfo by not saving full timer BCR
ARCv2: clocksource: Rename GRTC -> GFRC ...
ARCv2: STAR 9000950267: Handle return from intr to Delay Slot #2
MMUv4 supports 2 concurrent page sizes: Normal and Super [4K to 16M]
So far Linux supported a single super page size for a given Normal page,
depending on the software page walking address split.
e.g. we had 11:8:13 address split for 8K page, which meant super page
was 2 ^(8+13) = 2M (given that THP size has to be PMD_SHIFT)
Now we turn this around, by allowing multiple Super Pages in Kconfig
(currently 2M and 16M only) and forcing page walker address split to
PGDIR_SHIFT and PAGE_SHIFT
For configs without Super page, things are same as before and
PGDIR_SHIFT can be hacked to get non default address split
The motivation for this change is a customer who needs 16M super page
and a 8K Normal page combo.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARC HS Cores support configurable multiple interrupt priorities of upto
16 levels.
There is processor "interrupt preemption threshhold" in STATUS32.E[4:1]
And several places need to set this up:
1. seed value as kernel is booting
2. seed value for user space programs
3. Arg to SLEEP instruction in idle task (what interrupt prio can wake)
4. Per-IRQ line prioirty (i.e. what is the priority of interrupt
raised by a peripheral or timer or perf counter...
Currently above sites use the highest priority 0. This can be potential
problem when multiple priorities are supported. e.g. user space could
only be interrupted by P0 interrupt, not others...
So turn this over and instead make default interruption level to be
the lowest priority possible 15. This should be fine even if there are
fewer priority levels configured (say two: P0 HIGH, P1 LOW)
This feature also effectively disables FIRQ feature if present in
hardware config. With old code, a P0 interrupt would be FIRQ, needing
special handling (ISR or Register Banks) which is NOT supported yet.
Now it not be P0 (P15 or whatever is lowest prio) so FIRQ is not
triggered.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Move the generic implementation to <linux/dma-mapping.h> now that all
architectures support it and remove the HAVE_DMA_ATTR Kconfig symbol now
that everyone supports them.
[valentinrothberg@gmail.com: remove leftovers in Kconfig]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Helge Deller <deller@gmx.de>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Valentin Rothberg <valentinrothberg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARC700 cores with MMU v2 don't have IC_PTAG AUX register and so we only
define ARC_REG_IC_PTAG for MMU versions >= 3.
But current implementation of cache_line_loop_vX() routines assumes
availability of all of them (v2, v3 and v4) simultaneously.
And given undefined ARC_REG_IC_PTAG if CONFIG_MMU_VER=2 we're seeing
compilation problem:
---------------------------------->8-------------------------------
CC arch/arc/mm/cache.o
arch/arc/mm/cache.c: In function '__cache_line_loop_v3':
arch/arc/mm/cache.c:270:13: error: 'ARC_REG_IC_PTAG' undeclared (first use in this function)
aux_tag = ARC_REG_IC_PTAG;
^
arch/arc/mm/cache.c:270:13: note: each undeclared identifier is reported only once for each function it appears in
scripts/Makefile.build:258: recipe for target 'arch/arc/mm/cache.o' failed
---------------------------------->8-------------------------------
The simples fix is to have ARC_REG_IC_PTAG defined regardless MMU
version being used.
We don't use it in cache_line_loop_v2() anyways so who cares.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This will better reflect its description i.e. "any needed setup..."
and not just do an "IPI request".
Signed-off-by: Noam Camus <noamc@ezchip.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The fix which removed linear searching of dwarf (because binary lookup
data always exists) missed out on the fact that modules don't get the
binary lookup tables info. This caused unwinding out of modules to stop
working.
So add binary lookup header setup (equivalent of eh_frame_hdr setup) to
modules as well.
While at it, confine the header setup to within unwinder code,
reducing one API exposed out of unwinder code.
Fixes: 2e22502c08 ARC: dw2 unwind: Remove falllback linear search thru FDE entries
Cc: <stable@vger.kernel.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Although kernel doesn't support the multiple IRQ priority levels provided
by HS38x core intc yet, ensure that the default prio value is used
anyways by relevant code.
SLEEP insn needs to be provided the IRQ priority level which can
interrupt it. This needs to be the default level which maynot
necessarily be 0 as assumed by current code.
This change allows a kernel with ARCV2_IRQ_DEF_PRIO = 1 to boot fine.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- A bunch of brown paper bag bugs (MAINTAINERS list email, SMP build failure)
- cpu_relax() now compiler barrier for UP as well
- Handling of userspace Bus Errors for ARCompact builds
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWRucxAAoJEGnX8d3iisJehaMP/RBYry4TGSSYDC7DqkbpTDlv
Wd/HE3HDNC0r6hqLXMO2MBLWLvK22pJPcGzXkXtw8kqwTYtKWjZ0IE3R72Lgfw4P
xlWKdjeI4RXkzJKOZhh6/7HVTkOSto4cUAcdwFcq4ec8asJBAwl/zWoM2Rw8PdfG
A11iAZTHUSavj/QkFpuqhtvRMRUe76cK41RvdoJfOtB9MjRF3XD0+ceXeDTYuoRb
aETH42JS5XjRvGShcvaUOCKDZcxlsPyd9LZZAzrLLIoepb7pBluh+YVJH3wJXBcl
ECjXSprv6GUR1C8R7G3lMtGwIt2tBINTuxH/ZVQp2pUKIUW/TL8MXEQGvWfrosXL
SbgsIYQSTuc9aO5c5qZ7MSEWz+hLDVlrgWZzs7FsNH7wxREQgl0hjsr382X0Y4n0
tWPVMr0Hvu7rLdH0gvxIXA3rF92Q9kfLTXj2flaiwXgCxoOoeQj/CtqhUs1xbzed
qJXf9bwWsjhexxwvHi9CJpyYaVFDp2kkxMoJvzvsLT9cOUGC0XKHnCT4Q96VE5Ms
9bVBngAugeZRNqB8vKi/84oU8A1Sq+KoTk6b87Z/wpzkh06tmsMQrOEbzoZQsDh9
6yPW7hgYb794apY9oKwTshHZzXDPg8J/+SVzKht8f84YtSbzS476K70PqnFeoUkD
2W7IeYKaUolgt3n3BoOO
=isVd
-----END PGP SIGNATURE-----
Merge tag 'arc-4.4-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC fixes from Vineet Gupta:
"Found a couple of brown paper bag bugs with the prev pull request
(including a SMP build breakage report from Guenter). Since these are
urgent I also decided to send over a bunch of other pending fixes
which could have otherwise waited an rc or two.
Summary:
- A bunch of brown paper bag bugs (MAINTAINERS list email, SMP build
failure)
- cpu_relax() now compiler barrier for UP as well
- handling of userspace Bus Errors for ARCompact builds"
* tag 'arc-4.4-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
ARC: Fix silly typo in MAINTAINERS file
ARC: cpu_relax() to be compiler barrier even for UP
ARC: use ASL assembler mnemonic
ARC: [arcompact] Handle bus error from userspace as Interrupt not exception
ARC: remove extraneous header include
ARCv2: lib: memcpy: use local symbols
cpu_relax() on ARC has been barrier only for SMP (and no-op for UP). Per
recent discussions, it is safer to make it a compiler barrier
unconditionally.
Link: http://lkml.kernel.org/r/53A7D3AA.9020100@synopsys.com
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Pull locking changes from Ingo Molnar:
"The main changes in this cycle were:
- More gradual enhancements to atomic ops: new atomic*_read_ctrl()
ops, synchronize atomic_{read,set}() ordering requirements between
architectures, add atomic_long_t bitops. (Peter Zijlstra)
- Add _{relaxed|acquire|release}() variants for inc/dec atomics and
use them in various locking primitives: mutex, rtmutex, mcs, rwsem.
This enables weakly ordered architectures (such as arm64) to make
use of more locking related optimizations. (Davidlohr Bueso)
- Implement atomic[64]_{inc,dec}_relaxed() on ARM. (Will Deacon)
- Futex kernel data cache footprint micro-optimization. (Rasmus
Villemoes)
- pvqspinlock runtime overhead micro-optimization. (Waiman Long)
- misc smaller fixlets"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ARM, locking/atomics: Implement _relaxed variants of atomic[64]_{inc,dec}
locking/rwsem: Use acquire/release semantics
locking/mcs: Use acquire/release semantics
locking/rtmutex: Use acquire/release semantics
locking/mutex: Use acquire/release semantics
locking/asm-generic: Add _{relaxed|acquire|release}() variants for inc/dec atomics
atomic: Implement atomic_read_ctrl()
atomic, arch: Audit atomic_{read,set}()
atomic: Add atomic_long_t bitops
futex: Force hot variables into a single cache line
locking/pvqspinlock: Kick the PV CPU unconditionally when _Q_SLOW_VAL
locking/osq: Relax atomic semantics
locking/qrwlock: Rename ->lock to ->wait_lock
locking/Documentation/lockstat: Fix typo - lokcing -> locking
locking/atomics, cmpxchg: Privatize the inclusion of asm/cmpxchg.h
This is the first working implementation of 40-bit physical address
extension on ARCv2.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
That way a single flip of phys_addr_t to 64 bit ensures all places
dealing with physical addresses get correct data
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Implement kmap* API for ARC.
This enables
- permanent kernel maps (pkmaps): :kmap() API
- fixmap : kmap_atomic()
We use a very simple/uniform approach for both (unlike some of the other
arches). So fixmap doesn't use the customary compile time address stuff.
The important semantic is sleep'ability (pkmap) vs. not (fixmap) which
the API guarantees.
Note that this patch only enables highmem for subsequent PAE40 support
as there is no real highmem for ARC in pure 32-bit paradigm as explained
below.
ARC has 2:2 address split of the 32-bit address space with lower half
being translated (virtual) while upper half unstranslated
(0x8000_0000 to 0xFFFF_FFFF). kernel itself is linked at base of
unstranslated space (i.e. 0x8000_0000 onwards), which is mapped to say
DDR 0x0 by external Bus Glue logic (outside the core). So kernel can
potentially access 1.75G worth of memory directly w/o need for highmem.
(the top 256M is taken by uncached peripheral space from 0xF000_0000 to
0xFFFF_FFFF)
In PAE40, hardware can address memory beyond 4G (0x1_0000_0000) while
the logical/virtual addresses remain 32-bits. Thus highmem is required
for kernel proper to be able to access these pages for it's own purposes
(user space is agnostic to this anyways).
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Before we plug in highmem support, some of code needs to be ready for it
- copy_user_highpage() needs to be using the kmap_atomic API
- mk_pte() can't assume page_address()
- do_page_fault() can't assume VMALLOC_END is end of kernel vaddr space
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
MCIP now registers it's own per cpu setup routine (for IPI IRQ request)
using smp_ops.init_irq_cpu().
So no need for platforms to do that. This now completely decouples
platforms from MCIP.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Note this is not part of platform owned static machine_desc,
but more of device owned plat_smp_ops (rather misnamed) which a IPI
provider or some such typically defines.
This will help us seperate out the IPI registration from platform
specific init_cpu_smp() into device specific init_irq_cpu()
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
MCIP now registers it's own probe callback with smp_ops.init_early_smp()
which is called by ARC common code, so no need for platforms to do that.
This decouples the platforms and MCIP and helps confine MCIP details
to it's own file.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This adds a platform agnostic early SMP init hook which is called on
Master core before calling setup_processor()
setup_arch()
smp_init_cpus()
smp_ops.init_early_smp()
...
setup_processor()
How this helps:
- Used for one time init of certain SMP centric IP blocks, before
calling setup_processor() which probes various bits of core,
possibly including this block
- Currently platforms need to call this IP block init from their
init routines, which doesn't make sense as this is specific to ARC
core and not platform and otherwise requires copy/paste in all
(and hence a possible point of failure)
e.g. MCIP init is called from 2 platforms currently (axs10x and sim)
which will go away once we have this.
This change only adds the hooks but they are empty for now. Next commit
will populate them and remove the explicit init calls from platforms.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
These are not in use for ARC platforms. Moreover DT mechanims exist to
probe them w/o explicit platform calls.
- clocksource drivers can use CLOCKSOURCE_OF_DECLARE()
- intc IRQCHIP_DECLARE() calls + cascading inside DT allows external
intc to be probed automatically
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The reason this was not done so far was lack of genuine IPI_IRQ for
ARC700, as we don't have a SMP version of core yet (which might change
soon thx to EZChip). Nevertheles to increase the build coverage, we
need to allow CONFIG_SMP for ARC700 and still be able to run it on a
UP platform (nsim or AXS101) with a UP Device Tree (SMP-on-UP)
The build itself requires some define for IPI_IRQ and even a dummy
value is fine since that code won't run anyways.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This frees up some bits to hold more high level info such as PAE being
present, w/o increasing the size of already bloated cpuinfo struct
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The requirement is to
- Reenable Exceptions (AE cleared)
- Reenable Interrupts (E1/E2 set)
We need to do wiggle these bits into ERSTATUS and call RTIE.
Prev version used the pre-exception STATUS32 as starting point for what
goes into ERSTATUS. This required explicit fixups of U/DE/L bits.
Instead, use the current (in-exception) STATUS32 as starting point.
Being in exception handler U/DE/L can be safely assumed to be correct.
Only AE/E1/E2 need to be fixed.
So the new implementation is slightly better
-Avoids read form memory
-Is 4 bytes smaller for the typical 1 level of intr configuration
-Depicts the semantics more clearly
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Historically this was done by ARC IDE driver, which is long gone.
IRQ core is pretty robust now and already checks if IRQs are enabled
in hard ISRs. Thus no point in checking this in arch code, for every
call of irq enabled.
Further if some driver does do that - let it bring down the system so we
notice/fix this sooner than covering up for sucker
This makes local_irq_enable() - for L1 only case atleast simple enough
so we can inline it.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Implement the TLB flush routine to evict a sepcific Super TLB entry,
vs. moving to a new ASID on every such flush.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
support.
Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
new bit "SZ" in TLB page desciptor to distinguish between them.
Super Page size is configurable in hardware (4K to 16M), but fixed once
RTL builds.
The exact THP size a Linx configuration will support is a function of:
- MMU page size (typical 8K, RTL fixed)
- software page walker address split between PGD:PTE:PFN (typical
11:8:13, but can be changed with 1 line)
So for above default, THP size supported is 8K * 256 = 2M
Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
reduces to 1 level (as PTE is folded into PGD and canonically referred
to as PMD).
Thus thp PMD accessors are implemented in terms of PTE (just like sparc)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARC is the only arch with unsigned long type (vs. struct page *).
Historically this was done to avoid the page_address() calls in various
arch hooks which need to get the virtual/logical address of the table.
Some arches alternately define it as pte_t *, and is as efficient as
unsigned long (generated code doesn't change)
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Pull strscpy string copy function implementation from Chris Metcalf.
Chris sent this during the merge window, but I waffled back and forth on
the pull request, which is why it's going in only now.
The new "strscpy()" function is definitely easier to use and more secure
than either strncpy() or strlcpy(), both of which are horrible nasty
interfaces that have serious and irredeemable problems.
strncpy() has a useless return value, and doesn't NUL-terminate an
overlong result. To make matters worse, it pads a short result with
zeroes, which is a performance disaster if you have big buffers.
strlcpy(), by contrast, is a mis-designed "fix" for strlcpy(), lacking
the insane NUL padding, but having a differently broken return value
which returns the original length of the source string. Which means
that it will read characters past the count from the source buffer, and
you have to trust the source to be properly terminated. It also makes
error handling fragile, since the test for overflow is unnecessarily
subtle.
strscpy() avoids both these problems, guaranteeing the NUL termination
(but not excessive padding) if the destination size wasn't zero, and
making the overflow condition very obvious by returning -E2BIG. It also
doesn't read past the size of the source, and can thus be used for
untrusted source data too.
So why did I waffle about this for so long?
Every time we introduce a new-and-improved interface, people start doing
these interminable series of trivial conversion patches.
And every time that happens, somebody does some silly mistake, and the
conversion patch to the improved interface actually makes things worse.
Because the patch is mindnumbing and trivial, nobody has the attention
span to look at it carefully, and it's usually done over large swatches
of source code which means that not every conversion gets tested.
So I'm pulling the strscpy() support because it *is* a better interface.
But I will refuse to pull mindless conversion patches. Use this in
places where it makes sense, but don't do trivial patches to fix things
that aren't actually known to be broken.
* 'strscpy' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile:
tile: use global strscpy() rather than private copy
string: provide strscpy()
Make asm/word-at-a-time.h available on all architectures
This patch makes sure that atomic_{read,set}() are at least
{READ,WRITE}_ONCE().
We already had the 'requirement' that atomic_read() should use
ACCESS_ONCE(), and most archs had this, but a few were lacking.
All are now converted to use READ_ONCE().
And, by a symmetry and general paranoia argument, upgrade atomic_set()
to use WRITE_ONCE().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: james.hogan@imgtec.com
Cc: linux-kernel@vger.kernel.org
Cc: oleg@redhat.com
Cc: will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull locking and atomic updates from Ingo Molnar:
"Main changes in this cycle are:
- Extend atomic primitives with coherent logic op primitives
(atomic_{or,and,xor}()) and deprecate the old partial APIs
(atomic_{set,clear}_mask())
The old ops were incoherent with incompatible signatures across
architectures and with incomplete support. Now every architecture
supports the primitives consistently (by Peter Zijlstra)
- Generic support for 'relaxed atomics':
- _acquire/release/relaxed() flavours of xchg(), cmpxchg() and {add,sub}_return()
- atomic_read_acquire()
- atomic_set_release()
This came out of porting qwrlock code to arm64 (by Will Deacon)
- Clean up the fragile static_key APIs that were causing repeat bugs,
by introducing a new one:
DEFINE_STATIC_KEY_TRUE(name);
DEFINE_STATIC_KEY_FALSE(name);
which define a key of different types with an initial true/false
value.
Then allow:
static_branch_likely()
static_branch_unlikely()
to take a key of either type and emit the right instruction for the
case. To be able to know the 'type' of the static key we encode it
in the jump entry (by Peter Zijlstra)
- Static key self-tests (by Jason Baron)
- qrwlock optimizations (by Waiman Long)
- small futex enhancements (by Davidlohr Bueso)
- ... and misc other changes"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits)
jump_label/x86: Work around asm build bug on older/backported GCCs
locking, ARM, atomics: Define our SMP atomics in terms of _relaxed() operations
locking, include/llist: Use linux/atomic.h instead of asm/cmpxchg.h
locking/qrwlock: Make use of _{acquire|release|relaxed}() atomics
locking/qrwlock: Implement queue_write_unlock() using smp_store_release()
locking/lockref: Remove homebrew cmpxchg64_relaxed() macro definition
locking, asm-generic: Add _{relaxed|acquire|release}() variants for 'atomic_long_t'
locking, asm-generic: Rework atomic-long.h to avoid bulk code duplication
locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations
locking, compiler.h: Cast away attributes in the WRITE_ONCE() magic
locking/static_keys: Make verify_keys() static
jump label, locking/static_keys: Update docs
locking/static_keys: Provide a selftest
jump_label: Provide a self-test
s390/uaccess, locking/static_keys: employ static_branch_likely()
x86, tsc, locking/static_keys: Employ static_branch_likely()
locking/static_keys: Add selftest
locking/static_keys: Add a new static_key interface
locking/static_keys: Rework update logic
locking/static_keys: Add static_key_{en,dis}able() helpers
...
With all features in place, the ARC HS pct block can now be effectively
allowed to be probed/used
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
In times of ARC 700 performance counters didn't have support of
interrupt an so for ARC we only had support of non-sampling events.
Put simply only "perf stat" was functional.
Now with ARC HS we have support of interrupts in performance counters
which this change introduces support of.
ARC performance counters act in the following way in regard of
interrupts generation.
[1] A counter counts starting from value set in PCT_COUNT register pair
[2] Once counter reaches value set in PCT_INT_CNT interrupt is raised
Basic setup look like this:
[1] PCT_COUNT = 0;
[2] PCT_INT_CNT = __limit_value__;
[3] Enable interrupts for that counter and let it run
[4] Let counter reach its limit
[5] Handle interrupt when it happens
Note that PCT HW block is build in CPU core and so ints interrupt
line (which is basically OR of all counters IRQs) is wired directly to
top-level IRQC. That means do de-assert PCT interrupt it's required to
reset IRQs from all counters that have reached their limit values.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The number of counters in PCT can never be more than 32 (while
countable conditions could be 100+) for both ARCompact and ARCv2
And while at it update copyright dates.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
When kernel's binary becomes large enough (32M and more) errors
may occur during the final linkage stage. It happens because
the build system uses short relocations for ARC by default.
This problem may be easily resolved by passing -mlong-calls
option to GCC to use long absolute jumps (j) instead of short
relative branchs (b).
But there are fragments of pure assembler code exist which use
branchs in inappropriate places and cause a linkage error because
of relocations overflow.
First of these fragments is .fixup insertion in futex.h and
unaligned.c. It inserts a code in the separate section (.fixup)
with branch instruction. It leads to the linkage error when
kernel becomes large.
Second of these fragments is calling scheduler's functions
(common kernel code) from entry.S of ARC's code. When kernel's
binary becomes large it may lead to the linkage error because
scheduler may occur far enough from ARC's code in the final
binary.
Signed-off-by: Yuriy Kolerov <yuriy.kolerov@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
W/o hardware assisted atomic r-m-w the best we can do is to disable
preemption.
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michel Lespinasse <walken@google.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Callers of cmpxchg_futex_value_locked() in futex code expect bimodal
return value:
!0 (essentially -EFAULT as failure)
0 (success)
Before this patch, the success return value was old value of futex,
which could very well be non zero, causing caller to possibly take the
failure path erroneously.
Fix that by returning 0 for success
(This fix was done back in 2011 for all upstream arches, which ARC
obviously missed)
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michel Lespinasse <walken@google.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The atomic ops on futex need to provide the full barrier just like
regular atomics in kernel.
Also remove pagefault_enable/disable in futex_atomic_cmpxchg_inatomic()
as core code already does that
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michel Lespinasse <walken@google.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
In case of ARCv2 CPU there're could be following configurations
that affect cache handling for data exchanged with peripherals
via DMA:
[1] Only L1 cache exists
[2] Both L1 and L2 exist, but no IO coherency unit
[3] L1, L2 caches and IO coherency unit exist
Current implementation takes care of [1] and [2].
Moreover support of [2] is implemented with run-time check
for SLC existence which is not super optimal.
This patch introduces support of [3] and rework of DMA ops
usage. Instead of doing run-time check every time a particular
DMA op is executed we'll have 3 different implementations of
DMA ops and select appropriate one during init.
As for IOC support for it we need:
[a] Implement empty DMA ops because IOC takes care of cache
coherency with DMAed data
[b] Route dma_alloc_coherent() via dma_alloc_noncoherent()
This is required to make IOC work in first place and also
serves as optimization as LD/ST to coherent buffers can be
srviced from caches w/o going all the way to memory
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
[vgupta:
-Added some comments about IOC gains
-Marked dma ops as static,
-Massaged changelog a bit]
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The increment of delay counter was 2 instructions:
Arithmatic Shfit Left (ASL) + set to 1 on overflow
This can be done in 1 using ROtate Left (ROL)
Suggested-by: Nigel Topham <ntopham@synopsys.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
KGDB fails to build after f51e2f1911 ("ARC: make sure instruction_pointer()
returns unsigned value")
The hack to force one specific reg to unsigned backfired. There's no
reason to keep the regs signed after all.
| CC arch/arc/kernel/kgdb.o
|../arch/arc/kernel/kgdb.c: In function 'kgdb_trap':
| ../arch/arc/kernel/kgdb.c:180:29: error: lvalue required as left operand of assignment
| instruction_pointer(regs) -= BREAK_INSTR_SIZE;
Reported-by: Yuriy Kolerov <yuriy.kolerov@synopsys.com>
Fixes: f51e2f1911 ("ARC: make sure instruction_pointer() returns unsigned value")
Cc: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The previous commit for delayed retry of SCOND needs some fine tuning
for spin locks.
The backoff from delayed retry in conjunction with spin looping of lock
itself can potentially cause the delay counter to reach high values.
So to provide fairness to any lock operation, after a lock "seems"
available (i.e. just before first SCOND try0, reset the delay counter
back to starting value of 1
Essentially reset delay to 1 for a new spin-wait-loop-acquire cycle.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This is to workaround the llock/scond livelock
HS38x4 could get into a LLOCK/SCOND livelock in case of multiple overlapping
coherency transactions in the SCU. The exclusive line state keeps rotating
among contenting cores leading to a never ending cycle. So break the cycle
by deferring the retry of failed exclusive access (SCOND). The actual delay
needed is function of number of contending cores as well as the unrelated
coherency traffic from other cores. To keep the code simple, start off with
small delay of 1 which would suffice most cases and in case of contention
double the delay. Eventually the delay is sufficient such that the coherency
pipeline is drained, thus a subsequent exclusive access would succeed.
Link: http://lkml.kernel.org/r/1438612568-28265-1-git-send-email-vgupta@synopsys.com
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
With LLOCK/SCOND, the rwlock counter can be atomically updated w/o need
for a guarding spin lock.
This in turn elides the EXchange instruction based spinning which causes
the cacheline transition to exclusive state and concurrent spinning
across cores would cause the line to keep bouncing around.
LLOCK/SCOND based implementation is superior as spinning on LLOCK keeps
the cacheline in shared state.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Current spin_lock uses EXchange instruction to implement the atomic test
and set of lock location (reads orig value and ST 1). This however forces
the cacheline into exclusive state (because of the ST) and concurrent
loops in multiple cores will bounce the line around between cores.
Instead, use LLOCK/SCOND to implement the atomic test and set which is
better as line is in shared state while lock is spinning on LLOCK
The real motivation of this change however is to make way for future
changes in atomics to implement delayed retry (with backoff).
Initial experiment with delayed retry in atomics combined with orig
EX based spinlock was a total disaster (broke even LMBench) as
struct sock has a cache line sharing an atomic_t and spinlock. The
tight spinning on lock, caused the atomic retry to keep backing off
such that it would never finish.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This reduces the diff in forth-coming patches and also helps understand
better the incremental changes to inline asm.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Extended testing of quad core configuration revealed that this fix was
insufficient. Specifically LTP open posix shm_op/23-1 would cause the
hardware livelock in llock/scond loop in update_cpu_load_active()
So remove this and make way for a proper workaround
This reverts commit a5c8b52abe.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
With HS 2.1 release, the peripheral space register no longer contains
the uncached space specifics, causing the kernel to panic early on.
So read the newer NON VOLATILE AUX register to get that info.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Move the now generic definitions of atomic_{set,clear}_mask() into
linux/atomic.h to avoid endless and pointless repetition.
Also, provide an atomic_andnot() wrapper for those few archs that can
implement that.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Implement atomic logic ops -- atomic_{or,xor,and}.
These will replace the atomic_{set,clear}_mask functions that are
available on some archs.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Implement atomic logic ops -- atomic_{or,xor,and}.
These will replace the atomic_{set,clear}_mask functions that are
available on some archs.
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit 2ae416b142 ("mm: new mm hook framework") introduced an empty
header file (mm-arch-hooks.h) for every architecture, even those which
doesn't need to define mm hooks.
As suggested by Geert Uytterhoeven, this could be cleaned through the use
of a generic header file included via each per architecture
asm/include/Kbuild file.
The PowerPC architecture is not impacted here since this architecture has
to defined the arch_remap MM hook.
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Suggested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently instruction_pointer() returns pt_regs->ret and so return value
is of type "long", which implicitly stands for "signed long".
While that's perfectly fine when dealing with 32-bit values if return
value of instruction_pointer() gets assigned to 64-bit variable sign
extension may happen.
And at least in one real use-case it happens already.
In perf_prepare_sample() return value of perf_instruction_pointer()
(which is an alias to instruction_pointer() in case of ARC) is assigned
to (struct perf_sample_data)->ip (which type is "u64").
And what we see if instuction pointer points to user-space application
that in case of ARC lays below 0x8000_0000 "ip" gets set properly with
leading 32 zeros. But if instruction pointer points to kernel address
space that starts from 0x8000_0000 then "ip" is set with 32 leadig
"f"-s. I.e. id instruction_pointer() returns 0x8100_0000, "ip" will be
assigned with 0xffff_ffff__8100_0000. Which is obviously wrong.
In particular that issuse broke output of perf, because perf was unable
to associate addresses like 0xffff_ffff__8100_0000 with anything from
/proc/kallsyms.
That's what we used to see:
----------->8----------
6.27% ls [unknown] [k] 0xffffffff8046c5cc
2.96% ls libuClibc-0.9.34-git.so [.] memcpy
2.25% ls libuClibc-0.9.34-git.so [.] memset
1.66% ls [unknown] [k] 0xffffffff80666536
1.54% ls libuClibc-0.9.34-git.so [.] 0x000224d6
1.18% ls libuClibc-0.9.34-git.so [.] 0x00022472
----------->8----------
With that change perf output looks much better now:
----------->8----------
8.21% ls [kernel.kallsyms] [k] memset
3.52% ls libuClibc-0.9.34-git.so [.] memcpy
2.11% ls libuClibc-0.9.34-git.so [.] malloc
1.88% ls libuClibc-0.9.34-git.so [.] memset
1.64% ls [kernel.kallsyms] [k] _raw_spin_unlock_irqrestore
1.41% ls [kernel.kallsyms] [k] __d_lookup_rcu
----------->8----------
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Cc: arc-linux-dev@synopsys.com
Cc: stable@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARCompact/ARCv2 ISA provide that any instructions which deals with
bitpos/count operand ASL, LSL, BSET, BCLR, BMSK .... will only consider
lower 5 bits. i.e. auto-clamp the pos to 0-31.
ARC Linux bitops exploited this fact by NOT explicitly masking out upper
bits for @nr operand in general, saving a bunch of AND/BMSK instructions
in generated code around bitops.
While this micro-optimization has worked well over years it is NOT safe
as shifting a number with a value, greater than native size is
"undefined" per "C" spec.
So as it turns outm EZChip ran into this eventually, in their massive
muti-core SMP build with 64 cpus. There was a test_bit() inside a loop
from 63 to 0 and gcc was weirdly optimizing away the first iteration
(so it was really adhering to standard by implementing undefined behaviour
vs. removing all the iterations which were phony i.e. (1 << [63..32])
| for i = 63 to 0
| X = ( 1 << i )
| if X == 0
| continue
So fix the code to do the explicit masking at the expense of generating
additional instructions. Fortunately, this can be mitigated to a large
extent as gcc has SHIFT_COUNT_TRUNCATED which allows combiner to fold
masking into shift operation itself. It is currently not enabled in ARC
gcc backend, but could be done after a bit of testing.
Fixes STAR 9000866918 ("unsafe "undefined behavior" code in kernel")
Reported-by: Noam Camus <noamc@ezchip.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Added the x86 implementation of word-at-a-time to the
generic version, which previously only supported big-endian.
Omitted the x86-specific load_unaligned_zeropad(), which in
any case is also not present for the existing BE-only
implementation of a word-at-a-time, and is only used under
CONFIG_DCACHE_WORD_ACCESS.
Added as a "generic-y" to the Kbuilds of all architectures
that didn't previously have it.
Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
Merge third patchbomb from Andrew Morton:
- the rest of MM
- scripts/gdb updates
- ipc/ updates
- lib/ updates
- MAINTAINERS updates
- various other misc things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (67 commits)
genalloc: rename of_get_named_gen_pool() to of_gen_pool_get()
genalloc: rename dev_get_gen_pool() to gen_pool_get()
x86: opt into HAVE_COPY_THREAD_TLS, for both 32-bit and 64-bit
MAINTAINERS: add zpool
MAINTAINERS: BCACHE: Kent Overstreet has changed email address
MAINTAINERS: move Jens Osterkamp to CREDITS
MAINTAINERS: remove unused nbd.h pattern
MAINTAINERS: update brcm gpio filename pattern
MAINTAINERS: update brcm dts pattern
MAINTAINERS: update sound soc intel patterns
MAINTAINERS: remove website for paride
MAINTAINERS: update Emulex ocrdma email addresses
bcache: use kvfree() in various places
libcxgbi: use kvfree() in cxgbi_free_big_mem()
target: use kvfree() in session alloc and free
IB/ehca: use kvfree() in ipz_queue_{cd}tor()
drm/nouveau/gem: use kvfree() in u_free()
drm: use kvfree() in drm_free_large()
cxgb4: use kvfree() in t4_free_mem()
cxgb3: use kvfree() in cxgb_free_mem()
...
ARCv2 is the next generation ISA from Synopsys and basis for the
HS3{4,6,8} families of processors which retain the traditional ARC mantra of
low power and configurability and are now more performant and feature rich.
HS38x is a 10 stage pipeline core which supports MMU (with huge pages) and
SMP (upto 4 cores) among other features.
+ www.synopsys.com/dw/ipdir.php?ds=arc-hs38-processor
+ http://news.synopsys.com/2014-10-14-New-DesignWare-ARC-HS38-Processor-Doubles-Performance-for-Embedded-Linux-Applications
+ http://www.embedded.com/electronics-news/4435975/Synopsys-ARC-HS38-core-gives-2X-boost-to-Linux-based-apps
- Support for ARC SDP (Software Development platform): Main Board + CPU Cards
= AXS101: CPU Card with ARC700 in silicon @ 700 MHz
= AXS103: CPU Card with HS38x in FPGA
- Refactoring of ARCompact port to accomodate new ARCv2 ISA
- Miscll updates/cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVk0g8AAoJEGnX8d3iisJecqsQAI6gvBC4GSNYDrmgGJJK1uLQ
uf6ZXQRLBtyxwa6VMvaNFe91i5XV5WvEXDuNBQX4FdYbp7Fs+Jz5VK79xFtbVEdU
H6mgKcs9HBwQvrHBxl54XxxXfX7kD1kxrlV7cL4b7bXTEX0XyH5ROUj600/YP+B4
8t+XdYcfgFK0HpeFGXVP+Xmv/e+hBbzCpOjOd2ZFqEwymvSpZDc4KZ2yDvV2+Ybn
JNZ421urQOrxR27njvvPvtpeN7uuJKfRYq7IuIR8+Ad72S19EDdw+DZHp2XoUMXA
wgydWrrOaX2Dr2CmXHGA1C4nWEG7+Yo9I1WitjJct0tkOQyDR2OIDGmvKGBd1uoS
QsihtoKBRvns+2gpXBEOmOHmF6ggpHNN0ppIwCp+AK5kX3fmxBtyUekyYmVpg8oQ
xgFIuJgmiAvW7QB7xIO6SFFt18De2ifDRrKWJwVauvfW/PvUIwuUBEcbh0OHAn54
ebUUWu2ZdVNe0XCsZOAQGwYHZRWBk8Bn3bhFpNnOliRiF77e9GsKeGYeIswYFy7I
42Gp35ftEj1pLLFZ1vIsAo72N6ErmHwPOcJkaBYaTbPGPcTEO2aR6b8WOcCjsPxK
DUeUV3H2HV+6V4jw/96lnsaRqsaj4TsJxEAFRR3wT1DLoRudCIDubaXTdvvDie77
RgKn4ZdxgmXD97+deBqc
=KwNo
-----END PGP SIGNATURE-----
Merge tag 'arc-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC architecture updates from Vineet Gupta:
- support for HS38 cores based on ARCv2 ISA
ARCv2 is the next generation ISA from Synopsys and basis for the
HS3{4,6,8} families of processors which retain the traditional ARC mantra of
low power and configurability and are now more performant and feature rich.
HS38x is a 10 stage pipeline core which supports MMU (with huge pages) and
SMP (upto 4 cores) among other features.
+ www.synopsys.com/dw/ipdir.php?ds=arc-hs38-processor
+ http://news.synopsys.com/2014-10-14-New-DesignWare-ARC-HS38-Processor-Doubles-Performance-for-Embedded-Linux-Applications
+ http://www.embedded.com/electronics-news/4435975/Synopsys-ARC-HS38-core-gives-2X-boost-to-Linux-based-apps
- support for ARC SDP (Software Development platform): Main Board + CPU Cards
= AXS101: CPU Card with ARC700 in silicon @ 700 MHz
= AXS103: CPU Card with HS38x in FPGA
- refactoring of ARCompact port to accomodate new ARCv2 ISA
- misc updates/cleanups
* tag 'arc-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc: (72 commits)
ARC: Fix build failures for ARCompact in linux-next after ARCv2 support
ARCv2: Allow older gcc to cope with new regime of ARCv2/ARCompact support
ARCv2: [vdk] dts files and defconfig for HS38 VDK
ARCv2: [axs103] Support ARC SDP FPGA platform for HS38x cores
ARC: [axs101] Prepare for AXS103
ARCv2: [nsim*hs*] Support simulation platforms for HS38x cores
ARCv2: All bits in place, allow ARCv2 builds
ARCv2: SLC: Handle explcit flush for DMA ops (w/o IO-coherency)
ARCv2: STAR 9000837815 workaround hardware exclusive transactions livelock
ARC: Reduce bitops lines of code using macros
ARCv2: barriers
arch: conditionally define smp_{mb,rmb,wmb}
ARC: add smp barriers around atomics per Documentation/atomic_ops.txt
ARC: add compiler barrier to LLSC based cmpxchg
ARCv2: SMP: intc: IDU 2nd level intc for dynamic IRQ distribution
ARCv2: SMP: clocksource: Enable Global Real Time counter
ARCv2: SMP: ARConnect debug/robustness
ARCv2: SMP: Support ARConnect (MCIP) for Inter-Core-Interrupts et al
ARC: make plat_smp_ops weak to allow over-rides
ARCv2: clocksource: Introduce 64bit local RTC counter
...
This replaces the plain loop over the sglist array with for_each_sg()
macro which consists of sg_next() function calls. Since arc doesn't
select ARCH_HAS_SG_CHAIN, it is not necessary to use for_each_sg() in
order to loop over each sg element. But this can help find problems with
drivers that do not properly initialize their sg tables when
CONFIG_DEBUG_SG is enabled.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull asm/scatterlist.h removal from Jens Axboe:
"We don't have any specific arch scatterlist anymore, since parisc
finally switched over. Kill the include"
* 'for-4.2/sg' of git://git.kernel.dk/linux-block:
remove scatterlist.h generation from arch Kbuild files
remove <asm/scatterlist.h>
CRIU is recreating the process memory layout by remapping the checkpointee
memory area on top of the current process (criu). This includes remapping
the vDSO to the place it has at checkpoint time.
However some architectures like powerpc are keeping a reference to the
vDSO base address to build the signal return stack frame by calling the
vDSO sigreturn service. So once the vDSO has been moved, this reference
is no more valid and the signal frame built later are not usable.
This patch serie is introducing a new mm hook framework, and a new
arch_remap hook which is called when mremap is done and the mm lock still
hold. The next patch is adding the vDSO remap and unmap tracking to the
powerpc architecture.
This patch (of 3):
This patch introduces a new set of header file to manage mm hooks:
- per architecture empty header file (arch/x/include/asm/mm-arch-hooks.h)
- a generic header (include/linux/mm-arch-hooks.h)
The architecture which need to overwrite a hook as to redefine it in its
header file, while architecture which doesn't need have nothing to do.
The default hooks are defined in the generic header and are used in the
case the architecture is not defining it.
In a next step, mm hooks defined in include/asm-generic/mm_hooks.h should
be moved here.
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
L2 cache on ARCHS processors is called SLC (System Level Cache)
For working DMA (in absence of hardware assisted IO Coherency) we need
to manage SLC explicitly when buffers transition between cpu and
controllers.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
A quad core SMP build could get into hardware livelock with concurrent
LLOCK/SCOND. Workaround that by adding a PREFETCHW which is serialized by
SCU (System Coherency Unit). It brings the cache line in Exclusive state
and makes others invalidate their lines. This gives enough time for
winner to complete the LLOCK/SCOND, before others can get the line back.
The prefetchw in the ll/sc loop is not nice but this is the only
software workaround for current version of RTL.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>