This patch:
- fixes typos in comments and clarifies the text
- renames obscure p4_event_alias::original and ::alter members to
::original and ::alternative as appropriate
- drops parenthesis from the return of p4_get_alias_event()
No functional changes.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Link: http://lkml.kernel.org/r/20110721160625.GX7492@sun
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix the printk_once() so that it actually prints (didn't print before
due to a stray comma.)
[ hpa: changed to an incremental patch and adjusted the description
accordingly. ]
Signed-off-by: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1107151732480.18606@x980
Cc: <table@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Instead of hw_nmi_watchdog_set_attr() weak function
and appropriate x86_pmu::hw_watchdog_set_attr() call
we introduce even alias mechanism which allow us
to drop this routines completely and isolate quirks
of Netburst architecture inside P4 PMU code only.
The main idea remains the same though -- to allow
nmi-watchdog and perf top run simultaneously.
Note the aliasing mechanism applies to generic
PERF_COUNT_HW_CPU_CYCLES event only because arbitrary
event (say passed as RAW initially) might have some
additional bits set inside ESCR register changing
the behaviour of event and we can't guarantee anymore
that alias event will give the same result.
P.S. Thanks a huge to Don and Steven for for testing
and early review.
Acked-by: Don Zickus <dzickus@redhat.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Ingo Molnar <mingo@elte.hu>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Stephane Eranian <eranian@google.com>
CC: Lin Ming <ming.m.lin@intel.com>
CC: Arnaldo Carvalho de Melo <acme@redhat.com>
CC: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20110708201712.GS23657@sun
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Since 2.6.36 (23016bf0d2), Linux prints the existence of "epb" in /proc/cpuinfo,
Since 2.6.38 (d5532ee7b4), the x86_energy_perf_policy(8) utility has
been available in-tree to update MSR_IA32_ENERGY_PERF_BIAS.
However, the typical BIOS fails to initialize the MSR, presumably
because this is handled by high-volume shrink-wrap operating systems...
Linux distros, on the other hand, do not yet invoke x86_energy_perf_policy(8).
As a result, WSM-EP, SNB, and later hardware from Intel will run in its
default hardware power-on state (performance), which assumes that users
care for performance at all costs and not for energy efficiency.
While that is fine for performance benchmarks, the hardware's intended default
operating point is "normal" mode...
Initialize the MSR to the "normal" by default during kernel boot.
x86_energy_perf_policy(8) is available to change the default after boot,
should the user have a different preference.
Signed-off-by: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1107140051020.18606@x980
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@kernel.org>
Detect Xen before HyperV because in Viridian compatibility mode Xen
presents itself as HyperV. Move Xen to the top since it seems more
likely that Xen would emulate VMware than vice versa.
Signed-off-by: Anupam Chanda <achanda@nicira.com>
Link: http://lkml.kernel.org/r/1310150570-26810-1-git-send-email-achanda@nicira.com
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Yaozu (Eddie) Dong <eddie.dong@intel.com>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This code uses PCI_CLASS_REVISION instead of PCI_REVISION_ID, so
it wasn't converted by commit 44c10138fd ("PCI: Change all
drivers to use pci_device->revision") before being moved to
arch/x86/...
Do it now at last -- and save one level of indentation...
Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/201107012242.08347.sshtylyov@ru.mvista.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The v1 PMU does not have any fixed counters. Using the v2 constraints,
which do have fixed counters, causes an additional choice to be present
in the weight calculation, but not when actually scheduling the event,
leading to an event being not scheduled at all.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1309362157-6596-3-git-send-email-avi@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add a NODE level to the generic cache events which is used to measure
local vs remote memory accesses. Like all other cache events, an
ACCESS is HIT+MISS, if there is no way to distinguish between reads
and writes do reads only etc..
The below needs filling out for !x86 (which I filled out with
unsupported events).
I'm fairly sure ARM can leave it like that since it doesn't strike me as
an architecture that even has NUMA support. SH might have something since
it does appear to have some NUMA bits.
Sparc64, PowerPC and MIPS certainly want a good look there since they
clearly are NUMA capable.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Miller <davem@davemloft.net>
Cc: Anton Blanchard <anton@samba.org>
Cc: David Daney <ddaney@caviumnetworks.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/r/1303508226.4865.8.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the OFFCORE registers are fully symmetric, try the other one
when the specified one is already in use.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1306141897.18455.8.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds Intel Sandy Bridge offcore_response support by
providing the low-level constraint table for those events.
On Sandy Bridge, there are two offcore_response events. Each uses
its own dedictated extra register. But those registers are NOT shared
between sibling CPUs when HT is on unlike Nehalem/Westmere. They are
always private to each CPU. But they still need to be controlled within
an event group. All events within an event group must use the same
value for the extra MSR. That's not controlled by the second patch in
this series.
Furthermore on Sandy Bridge, the offcore_response events have NO
counter constraints contrary to what the official documentation
indicates, so drop the events from the contraint table.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110606145712.GA7304@quad
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The validate_group() function needs to validate events with
extra shared regs. Within an event group, only events with
the same value for the extra reg can co-exist. This was not
checked by validate_group() because it was missing the
shared_regs logic.
This patch changes the allocation of the fake cpuc used for
validation to also point to a fake shared_regs structure such
that group events be properly testing.
It modifies __intel_shared_reg_get_constraints() to use
spin_lock_irqsave() to avoid lockdep issues.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110606145708.GA7279@quad
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch improves the code managing the extra shared registers
used for offcore_response events on Intel Nehalem/Westmere. The
idea is to use static allocation instead of dynamic allocation.
This simplifies greatly the get and put constraint routines for
those events.
The patch also renames per_core to shared_regs because the same
data structure gets used whether or not HT is on. When HT is
off, those events still need to coordination because they use
a extra MSR that has to be shared within an event group.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110606145703.GA7258@quad
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since only samples call perf_output_sample() its much saner (and more
correct) to put the sample logic in there than in the
perf_output_begin()/perf_output_end() pair.
Saves a useless argument, reduces conditionals and shrinks
struct perf_output_handle, win!
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-2crpvsx3cqu67q3zqjbnlpsc@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.
For the various event classes:
- hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
the PMI-tail (ARM etc.)
- tracepoint: nmi=0; since tracepoint could be from NMI context.
- software: nmi=[0,1]; some, like the schedule thing cannot
perform wakeups, and hence need 0.
As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).
The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Due to restriction and specifics of Netburst PMU we need a separated
event for NMI watchdog. In particular every Netburst event
consumes not just a counter and a config register, but also an
additional ESCR register.
Since ESCR registers are grouped upon counters (i.e. if ESCR is occupied
for some event there is no room for another event to enter until its
released) we need to pick up the "least" used ESCR (or the most available
one) for nmi-watchdog purposes -- so MSR_P4_CRU_ESCR2/3 was chosen.
With this patch nmi-watchdog and perf top should be able to run simultaneously.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Lin Ming <ming.m.lin@intel.com>
CC: Arnaldo Carvalho de Melo <acme@redhat.com>
CC: Frederic Weisbecker <fweisbec@gmail.com>
Tested-and-reviewed-by: Don Zickus <dzickus@redhat.com>
Tested-and-reviewed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110623124918.GC13050@sun
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Before check_fpu() is called, we have cr0.TS bit set and hence the floating
point code to check the FDIV bug was generating a DNA exception.
Use kernel_fpu_begin()/kernel_fpu_end() around the floating point
code to avoid this unnecessary device not available exception during
boot.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1309479572.2665.1372.camel@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
MTRR rendezvous sequence is not implemened using stop_machine() before, as this
gets called both from the process context aswell as the cpu online paths
(where the cpu has not come online and the interrupts are disabled etc).
Now that we have a new stop_machine_from_inactive_cpu() API, use it for
rendezvous during mtrr init of a logical processor that is coming online.
For the rest (runtime MTRR modification, system boot, resume paths), use
stop_machine() to implement the rendezvous sequence. This will consolidate and
cleanup the code.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/20110623182057.076997177@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
MTRR rendezvous sequence using stop_one_cpu_nowait() can potentially
happen in parallel with another system wide rendezvous using
stop_machine(). This can lead to deadlock (The order in which
works are queued can be different on different cpu's. Some cpu's
will be running the first rendezvous handler and others will be running
the second rendezvous handler. Each set waiting for the other set to join
for the system wide rendezvous, leading to a deadlock).
MTRR rendezvous sequence is not implemented using stop_machine() as this
gets called both from the process context aswell as the cpu online paths
(where the cpu has not come online and the interrupts are disabled etc).
stop_machine() works with only online cpus.
For now, take the stop_machine mutex in the MTRR rendezvous sequence that
gets called from an online cpu (here we are in the process context
and can potentially sleep while taking the mutex). And the MTRR rendezvous
that gets triggered during cpu online doesn't need to take this stop_machine
lock (as the stop_machine() already ensures that there is no cpu hotplug
going on in parallel by doing get_online_cpus())
TBD: Pursue a cleaner solution of extending the stop_machine()
infrastructure to handle the case where the calling cpu is
still not online and use this for MTRR rendezvous sequence.
fixes: https://bugzilla.novell.com/show_bug.cgi?id=672008
Reported-by: Vadim Kotelnikov <vadimuzzz@inbox.ru>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/20110623182056.807230326@sbsiddha-MOBL3.sc.intel.com
Cc: stable@kernel.org # 2.6.35+, backport a week or two after this gets more testing in mainline
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
There are many functions named mce_* so use a new prefix for the subset
of functions related to sysfs support.
And since f3c6ea1b06 introduces
syscore_ops, use the prefix mce_syscore for some functions related to
power management which were in sysdev_class before.
Before: After:
mce_device mce_sysdev
mce_sysclass mce_sysdev_class
mce_attrs mce_sysdev_attrs
mce_dev_initialized mce_sysdev_initialized
mce_create_device mce_sysdev_create
mce_remove_device mce_sysdev_remove
mce_suspend mce_syscore_suspend
mce_shutdown mce_syscore_shutdown
mce_resume mce_syscore_resume
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED81B.8020506@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
There are many functions named mce_* so use a new prefix for the subset
of functions dealing with the character device /dev/mcelog.
This change doesn't impact the mce-inject module because the exported
symbol mce_chrdev_ops already has the prefix, therefore it is left
unchanged.
Before: After:
mce_wait mce_chrdev_wait
mce_state_lock mce_chrdev_state_lock
open_count mce_chrdev_open_count
open_exclu mce_chrdev_open_exclu
mce_open mce_chrdev_open
mce_release mce_chrdev_release
mce_read_mutex mce_chrdev_read_mutex
mce_read mce_chrdev_read
mce_poll mce_chrdev_poll
mce_ioctl mce_chrdev_ioctl
mce_log_device mce_chrdev_device
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED7CD.3040500@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Use a temporary local variable m to simplify the code. No change in
logic.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED7A8.8020307@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Use temporary local variable sysdev to simplify the code. No change in
logic.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED777.7080205@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Because "ancient CPUs" like p5 and winchip don't have X86_FEATURE_MCA
(I suppose so), mcheck_cpu_init() on such CPUs will return at check of
mce_available() after __mcheck_cpu_ancient_init().
It is hard to know this implicit behavior without knowing the CPUs
well. So make it clear that we leave mcheck_cpu_init() when the CPU is
initialized in __mcheck_cpu_ancient_init().
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED74B.20502@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
This patch introduces mce_gather_info() which is to be called at the
beginning of error handling and gathers minimum error information from
proper error registers (and saved registers).
As the result of mce_get_rip() is integrated, unnecessary zeroing
is removed. This also takes care of saving RIP which is required to
make some decision about error severity for SRAR errors, instead of
retrieving it later in the handler.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED71A.1060906@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
The MCE handler uses a special vector for self IPI to invoke
post-emergency processing in an interrupt context, e.g. call an
NMI-unsafe function, wakeup loggers, schedule time-consuming work for
recovery, etc.
This mechanism is now generalized by the following commit:
> e360adbe29
> Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
> Date: Thu Oct 14 14:01:34 2010 +0800
>
> irq_work: Add generic hardirq context callbacks
>
> Provide a mechanism that allows running code in IRQ context. It is
> most useful for NMI code that needs to interact with the rest of the
> system -- like wakeup a task to drain buffers.
:
So change to use provided generic mechanism.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED6B2.6080005@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
More specifically:
- sort bits in the macros
- use BITCLR/BITSET
- coordinate message pattern
- use m for struct mce
- cleanup for severities_debugfs_init()
No functional change.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED679.9090503@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
The current format of an item in this table is:
condition(param, ..., level, message [, condition2 ...])
So we have to check both an item's head and tail to find the conditions
which match the item.
Format them in a more straight forward manner:
item(level, message, condition [, condition2 ...])
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED61F.5010502@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
The table looks very complicated and hard to read for people other than
skilled developers. So let's clean it up a bit. At first, change format
to ease reading elements in the table.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4DEED5EB.6050400@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
The "Spurious not enabled" entry is redundant: the "Not enabled" entry
earlier in the table will cover this case.
The "Action required; unknown MCACOD" entry shouldn't specify MCACOD in
the .mask field. Current code will only match for mcacod==0 rather than
all AR=1 entries.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Link: http://lkml.kernel.org/r/4DEED5BC.8030703@jp.fujitsu.com
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
* 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-idle-2.6:
x86 idle: deprecate mwait_idle() and "idle=mwait" cmdline param
x86 idle: deprecate "no-hlt" cmdline param
x86 idle APM: deprecate CONFIG_APM_CPU_IDLE
x86 idle floppy: deprecate disable_hlt()
x86 idle: EXPORT_SYMBOL(default_idle, pm_idle) only when APM demands it
x86 idle: clarify AMD erratum 400 workaround
idle governor: Avoid lock acquisition to read pm_qos before entering idle
cpuidle: menu: fixed wrapping timers at 4.294 seconds
We'd rather that modern machines not check if HLT works on
every entry into idle, for the benefit of machines that had
marginal electricals 15-years ago. If those machines are still running
the upstream kernel, they can use "idle=poll". The only difference
will be that they'll now invoke HLT in machine_hlt().
cc: x86@kernel.org # .39.x
Signed-off-by: Len Brown <len.brown@intel.com>
The workaround for AMD erratum 400 uses the term "c1e" falsely suggesting:
1. Intel C1E is somehow involved
2. All AMD processors with C1E are involved
Use the string "amd_c1e" instead of simply "c1e" to clarify that
this workaround is specific to AMD's version of C1E.
Use the string "e400" to clarify that the workaround is specific
to AMD processors with Erratum 400.
This patch is text-substitution only, with no functional change.
cc: x86@kernel.org
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Commit b87cf80af3 added support for
ARAT (Always Running APIC timer) on AMD processors that are not
affected by erratum 400. This erratum is present on certain processor
families and prevents APIC timer from waking up the CPU when it
is in a deep C state, including C1E state.
Determining whether a processor is affected by this erratum may
have some corner cases and handling these cases is somewhat
complicated. In the interest of simplicity we won't claim ARAT
support on processor families below 0x12 and will go back to
broadcasting timer when going idle.
Signed-off-by: Boris Ostrovsky <ostr@amd64.org>
Link: http://lkml.kernel.org/r/1306423192-19774-1-git-send-email-ostr@amd64.org
Tested-by: Boris Petkov <borislav.petkov@amd.com>
Cc: Hans Rosenfeld <Hans.Rosenfeld@amd.com>
Cc: Andreas Herrmann <Andreas.Herrmann3@amd.com>
Cc: Chuck Ebbert <cebbert@redhat.com>
Cc: stable@kernel.org # 32.x, 38.x, 39.x
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This patch removes a check that causes incorrect scheduler
domain setup (SMP instead of SMT) and bootlog warning messages
when cpuid extensions for topology enumeration are not supported
and the number of processors reported to the OS is smaller than
smp_num_siblings.
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Nikhil P Rao <nikhil.rao@intel.com>
Link: http://lkml.kernel.org/r/1306343921.19325.1.camel@fedora13
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The workaround for Bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=33012
introduced a read and a write to the MC4 mask msr.
Unfortunatly this MSR is not emulated by the KVM hypervisor
so that the kernel will get a #GP and crashes when applying
this workaround when running inside KVM.
This issue was reported as:
https://bugzilla.kernel.org/show_bug.cgi?id=35132
and is fixed with this patch. The change just let the kernel
ignore any #GP it gets while accessing this MSR by using the
_safe msr access methods.
Reported-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@kernel.org> # .39.x
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (50 commits)
x86, mm: Allow ZONE_DMA to be configurable
x86, NUMA: Trim numa meminfo with max_pfn in a separate loop
x86, NUMA: Rename setup_node_bootmem() to setup_node_data()
x86, NUMA: Enable emulation on 32bit too
x86, NUMA: Enable CONFIG_AMD_NUMA on 32bit too
x86, NUMA: Rename amdtopology_64.c to amdtopology.c
x86, NUMA: Make numa_init_array() static
x86, NUMA: Make 32bit use common NUMA init path
x86, NUMA: Initialize and use remap allocator from setup_node_bootmem()
x86-32, NUMA: Add @start and @end to init_alloc_remap()
x86, NUMA: Remove long 64bit assumption from numa.c
x86, NUMA: Enable build of generic NUMA init code on 32bit
x86, NUMA: Move NUMA init logic from numa_64.c to numa.c
x86-32, NUMA: Update numaq to use new NUMA init protocol
x86-32, NUMA: Replace srat_32.c with srat.c
x86-32, NUMA: implement temporary NUMA init shims
x86, NUMA: Move numa_nodes_parsed to numa.[hc]
x86-32, NUMA: Move get_memcfg_numa() into numa_32.c
x86, NUMA: make srat.c 32bit safe
x86, NUMA: rename srat_64.c to srat.c
...
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, efi: Ensure that the entirity of a region is mapped
x86, efi: Pass a minimal map to SetVirtualAddressMap()
x86, efi: Merge contiguous memory regions of the same type and attribute
x86, efi: Consolidate EFI nx control
x86, efi: Remove virtual-mode SetVirtualAddressMap call
* 'x86-gart-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, gart: Don't enforce GART aperture lower-bound by alignment
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Don't unmask disabled irqs when migrating them
x86: Skip migrating IRQF_PER_CPU irqs in fixup_irqs()
* 'x86-mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mce: Drop the default decoding notifier
x86, MCE: Do not taint when handling correctable errors
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, cpu: Fix detection of Celeron Covington stepping A1 and B0
Documentation, ABI: Update L3 cache index disable text
x86, AMD, cacheinfo: Fix L3 cache index disable checks
x86, AMD, cacheinfo: Fix fallout caused by max3 conversion
x86, cpu: Change NOP selection for certain Intel CPUs
x86, cpu: Clean up and unify the NOP selection infrastructure
x86, percpu: Use ASM_NOP4 instead of hardcoding P6_NOP4
x86, cpu: Move AMD Elan Kconfig under "Processor family"
Fix up trivial conflicts in alternative handling (commit dc326fca2b
"x86, cpu: Clean up and unify the NOP selection infrastructure" removed
some hacky 5-byte instruction stuff, while commit d430d3d7e6 "jump
label: Introduce static_branch() interface" renamed HAVE_JUMP_LABEL to
CONFIG_JUMP_LABEL in the code that went away)
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (107 commits)
perf stat: Add more cache-miss percentage printouts
perf stat: Add -d -d and -d -d -d options to show more CPU events
ftrace/kbuild: Add recordmcount files to force full build
ftrace: Add self-tests for multiple function trace users
ftrace: Modify ftrace_set_filter/notrace to take ops
ftrace: Allow dynamically allocated function tracers
ftrace: Implement separate user function filtering
ftrace: Free hash with call_rcu_sched()
ftrace: Have global_ops store the functions that are to be traced
ftrace: Add ops parameter to ftrace_startup/shutdown functions
ftrace: Add enabled_functions file
ftrace: Use counters to enable functions to trace
ftrace: Separate hash allocation and assignment
ftrace: Create a global_ops to hold the filter and notrace hashes
ftrace: Use hash instead for FTRACE_FL_FILTER
ftrace: Replace FTRACE_FL_NOTRACE flag with a hash of ignored functions
perf bench, x86: Add alternatives-asm.h wrapper
x86, 64-bit: Fix copy_[to/from]_user() checks for the userspace address limit
x86, mem: memset_64.S: Optimize memset by enhanced REP MOVSB/STOSB
x86, mem: memmove_64.S: Optimize memmove by enhanced REP MOVSB/STOSB
...
Enable/disable newly documented SMEP (Supervisor Mode Execution Protection) CPU
feature in kernel. CR4.SMEP (bit 20) is 0 at power-on. If the feature is
supported by CPU (X86_FEATURE_SMEP), enable SMEP by setting CR4.SMEP. New kernel
option nosmep disables the feature even if the feature is supported by CPU.
[ hpa: moved the call to setup_smep() until after the vendor-specific
initialization; that ensures that CPUID features are unmasked. We
will still run it before we have userspace (never mind uncontrolled
userspace). ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
LKML-Reference: <1305157865-31727-1-git-send-email-fenghua.yu@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If kernel intends to use enhanced REP MOVSB/STOSB, it must ensure
IA32_MISC_ENABLE.Fast_String_Enable (bit 0) is set and CPUID.(EAX=07H, ECX=0H):
EBX[bit 9] also reports 1.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1305671358-14478-3-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
CPUID leaf 7, subleaf 0 returns the maximum subleaf in EAX, not the
number of subleaves. Since so far only subleaf 0 is defined (and only
the EBX bitfield) we do not need to qualify the test.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1305660806-17519-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@kernel.org> 2.6.36..39
Trying to enable the local APIC timer on early K8 revisions
uncovers a number of other issues with it, in conjunction with
the C1E enter path on AMD. Fixing those causes much more churn
and troubles than the benefit of using that timer brings so
don't enable it on K8 at all, falling back to the original
functionality the kernel had wrt to that.
Reported-and-bisected-by: Nick Bowler <nbowler@elliptictech.com>
Cc: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Nick Bowler <nbowler@elliptictech.com>
Cc: Joerg-Volker-Peetz <jvpeetz@web.de>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1305636919-31165-3-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This reverts commit e20a2d205c, as it crashes
certain boxes with specific AMD CPU models.
Moving the lower endpoint of the Erratum 400 check to accomodate
earlier K8 revisions (A-E) opens a can of worms which is simply
not worth to fix properly by tweaking the errata checking
framework:
* missing IntPenging MSR on revisions < CG cause #GP:
http://marc.info/?l=linux-kernel&m=130541471818831
* makes earlier revisions use the LAPIC timer instead of the C1E
idle routine which switches to HPET, thus not waking up in
deeper C-states:
http://lkml.org/lkml/2011/4/24/20
Therefore, leave the original boundary starting with K8-revF.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Steppings A1 and B0 of Celeron Covington are currently misdetected as
Pentium II (Dixon). Fix it by removing the stepping check.
[ hpa: this fixes this specific bug... the CPUID documentation
specifies that the L2 cache size can disambiguate additional CPUs;
this patch does not fix that. ]
Signed-off-by: Ondrej Zary <linux@rainbow-software.org>
Link: http://lkml.kernel.org/r/201105162138.15416.linux@rainbow-software.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We provide two slots to disable cache indices, and have a check to
prevent both slots to be used for the same index.
If the user disables the same index on different subcaches, both slots
will hold the same index, e.g.
$ echo 2047 > /sys/devices/system/cpu/cpu0/cache/index3/cache_disable_0
$ cat /sys/devices/system/cpu/cpu0/cache/index3/cache_disable_0
2047
$ echo 1050623 > /sys/devices/system/cpu/cpu0/cache/index3/cache_disable_1
$ cat /sys/devices/system/cpu/cpu0/cache/index3/cache_disable_1
2047
due to the fact that the check was looking only at index bits [11:0]
and was ignoring writes to bits outside that range. The more correct
fix is to simply check whether the index is within the bounds of
[0..l3->indices].
While at it, cleanup comments and drop now-unused local macros.
Signed-off-by: Frank Arnold <frank.arnold@amd.com>
Link: http://lkml.kernel.org/r/1305553188-21061-3-git-send-email-bp@amd64.org
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
732eacc054 converted code around the
kernel using nested max() macros to use the new max3 macro but forgot to
remove the old line in intel_cacheinfo.c. Fix it.
Cc: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: Frank Arnold <farnold@amd64.org>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1305553188-21061-2-git-send-email-bp@amd64.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This patch fixes a bug reported by a customer, who found
that many unreasonable error interrupts reported on all
non-boot CPUs (APs) during the system boot stage.
According to Chapter 10 of Intel Software Developer Manual
Volume 3A, Local APIC may signal an illegal vector error when
an LVT entry is set as an illegal vector value (0~15) under
FIXED delivery mode (bits 8-11 is 0), regardless of whether
the mask bit is set or an interrupt actually happen. These
errors are seen as error interrupts.
The initial value of thermal LVT entries on all APs always reads
0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI
sequence to them and LVT registers are reset to 0s except for
the mask bits which are set to 1s when APs receive INIT IPI.
When the BIOS takes over the thermal throttling interrupt,
the LVT thermal deliver mode should be SMI and it is required
from the kernel to keep AP's LVT thermal monitoring register
programmed as such as well.
This issue happens when BIOS does not take over thermal throttling
interrupt, AP's LVT thermal monitor register will be restored to
0x10000 which means vector 0 and fixed deliver mode, so all APs will
signal illegal vector error interrupts.
This patch check if interrupt delivery mode is not fixed mode before
restoring AP's LVT thermal monitor register.
Signed-off-by: Youquan Song <youquan.song@intel.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Yong Wang <yong.y.wang@intel.com>
Cc: hpa@linux.intel.com
Cc: joe@perches.com
Cc: jbaron@redhat.com
Cc: trenn@suse.de
Cc: kent.liu@intel.com
Cc: chaohong.guo@intel.com
Cc: <stable@kernel.org> # As far back as possible
Link: http://lkml.kernel.org/r/1303402963-17738-1-git-send-email-youquan.song@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
b may be added to a list, but is not removed before being freed
in the case of an error. This is done in the corresponding
deallocation function, so the code here has been changed to
follow that.
The sematic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression E,E1,E2;
identifier l;
@@
*list_add(&E->l,E1);
... when != E1
when != list_del(&E->l)
when != list_del_init(&E->l)
when != E = E2
*kfree(E);// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1305294731-12127-1-git-send-email-julia@diku.dk
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Both warning and warning_symbol are nowhere used.
Let's get rid of them.
Signed-off-by: Richard Weinberger <richard@nod.at>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Soeren Sandmann Pedersen <ssp@redhat.com>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: x86 <x86@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Link: http://lkml.kernel.org/r/1305205872-10321-2-git-send-email-richard@nod.at
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The Intel Nehalem offcore bits implemented in:
e994d7d23a0b: perf: Fix LLC-* events on Intel Nehalem/Westmere
... are wrong: they implemented _ACCESS as _HIT and counted OTHER_CORE_HIT* as
MISS even though its clearly documented as an L3 hit ...
Fix them and the Westmere definitions as well.
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1299119690-13991-3-git-send-email-ming.m.lin@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extend the Intel SandyBridge PMU driver with definitions
for generic front-end and back-end stall events.
( As commit 3011203 "perf events, x86: Add Westmere stalled-cycles-frontend/backend
events" says, these are only approximations. )
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1304666042-17577-1-git-send-email-ming.m.lin@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With dynamic debug having gained the capability to report debug messages
also during the boot process, it offers a far superior interface for
debug messages than the custom cpufreq infrastructure. As a first step,
remove the old cpufreq_debug_printk() function and replace it with a call
to the generic pr_debug() function.
How can dynamic debug be used on cpufreq? You need a kernel which has
CONFIG_DYNAMIC_DEBUG enabled.
To enabled debugging during runtime, mount debugfs and
$ echo -n 'module cpufreq +p' > /sys/kernel/debug/dynamic_debug/control
for debugging the complete "cpufreq" module. To achieve the same goal during
boot, append
ddebug_query="module cpufreq +p"
as a boot parameter to the kernel of your choice.
For more detailled instructions, please see
Documentation/dynamic-debug-howto.txt
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Dave Jones <davej@redhat.com>
UUID needs to be written out the way it is described in
Sec 18.5.124 of ACPI 4.0a Specification.
Platform firmware's use of this UUID/_OSC is optional, which is
why we didn't notice this bug earlier.
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Cc: stable@kernel.org
Merge reason: Pick up the following two fix commits.
2be19102b7: x86, NUMA: Fix empty memblk detection in numa_cleanup_meminfo()
765af22da8: x86-32, NUMA: Fix ACPI NUMA init broken by recent x86-64 change
Scheduled NUMA init 32/64bit unification changes depend on these.
Signed-off-by: Tejun Heo <tj@kernel.org>
Older AMD K8 processors (Revisions A-E) are affected by erratum
400 (APIC timer interrupts don't occur in C states greater than
C1). This, for example, means that X86_FEATURE_ARAT flag should
not be set for these parts.
This addresses regression introduced by commit
b87cf80af3 ("x86, AMD: Set ARAT
feature on AMD processors") where the system may become
unresponsive until external interrupt (such as keyboard input)
occurs. This results, for example, in time not being reported
correctly, lack of progress on the system and other lockups.
Reported-by: Joerg-Volker Peetz <jvpeetz@web.de>
Tested-by: Joerg-Volker Peetz <jvpeetz@web.de>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1304113663-6586-1-git-send-email-ostr@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extend the Intel Westmere PMU driver with definitions for generic front-end and
back-end stall events.
( These are only approximations. )
Reported-by: David Ahern <dsahern@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n008io7hjpn1dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extend the Intel and AMD event definitions with generic front-end and
back-end stall events.
( These are only approximations - suggestions are welcome for better events. )
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n001io7hjpn1dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add two generic hardware events: front-end and back-end stalled cycles.
These events measure conditions when the CPU is executing code but its
capabilities are not fully utilized. Understanding such situations and
analyzing them is an important sub-task of code optimization workflows.
Both events limit performance: most front end stalls tend to be caused
by branch misprediction or instruction fetch cachemisses, backend
stalls can be caused by various resource shortages or inefficient
instruction scheduling.
Front-end stalls are the more important ones: code cannot run fast
if the instruction stream is not being kept up.
An over-utilized back-end can cause front-end stalls and thus
has to be kept an eye on as well.
The exact composition is very program logic and instruction mix
dependent.
We use the terms 'stall', 'front-end' and 'back-end' loosely and
try to use the best available events from specific CPUs that
approximate these concepts.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n000io7hjpn1dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the UOPS_EXECUTED.*,c=1,i=1 event on Intel CPUs - it is a rather
good indicator of CPU execution stalls, more sensitive and more inclusive
than the 0xa2 resource stalls event (which does not count nearly as many
stall types).
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n1eqio7hjpn2dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It was noticed that P4 machines were generating double NMIs for
each perf event. These extra NMIs lead to 'Dazed and confused'
messages on the screen.
I tracked this down to a P4 quirk that said the overflow bit had
to be cleared before re-enabling the apic LVT mask. My first
attempt was to move the un-masking inside the perf nmi handler
from before the chipset NMI handler to after.
This broke Nehalem boxes that seem to like the unmasking before
the counters themselves are re-enabled.
In order to keep this change simple for 2.6.39, I decided to
just simply move the apic LVT un-masking to the beginning of all
the chipset NMI handlers, with the exception of Pentium4's to
fix the double NMI issue.
Later on we can move the un-masking to later in the handlers to
save a number of 'extra' NMIs on those particular chipsets.
I tested this change on a P4 machine, an AMD machine, a Nehalem
box, and a core2quad box. 'perf top' worked correctly along
with various other small 'perf record' runs. Anything high
stress breaks all the machines but that is a different problem.
Thanks to various people for testing different versions of this
patch.
Reported-and-tested-by: Shaun Ruffell <sruffell@digium.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Link: http://lkml.kernel.org/r/1303900353-10242-1-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
CC: Cyrill Gorcunov <gorcunov@gmail.com>
The new PERF_COUNT_HW_STALLED_CYCLES event tries to approximate
cycles the CPU does nothing useful, because it is stalled on a
cache-miss or some other condition.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-fue11vymwqsoo5to72jxxjyl@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Nehalem CPUs the retired branch-misses event can be completely bogus,
when there are no branch-misses occuring. When there are a lot of branch
misses then the count is pretty accurate. Still, this leaves us with an
event that over-counts a lot.
Detect this erratum and work it around by using BR_MISP_EXEC.ANY events.
These will also count speculated branches but still it's a lot more
precise in practice than the architectural event.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-yyfg0bxo9jsqxd6a0ovfny27@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently the x86 backend incorrectly assumes that any BRANCH_INSN
with sample_period==1 is a BTS request. This is not true when we do
frequency driven profiling such as 'perf record -e branches'.
Solves this error:
$ perf record -e branches ./array
Error: sys_perf_event_open() syscall returned with 95 (Operation not supported).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: Ingo Molnar <mingo@elte.hu>
Cc: "Metzger, Markus T" <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-rd2y4ct71hjawzz6fpvsy9hg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's not enough to simply disable event on overflow the
cpuc->active_mask should be cleared as well otherwise counter
may stall in "active" even in real being already disabled (which
potentially may lead to the situation that user may not use this
counter further).
Don pointed out that:
" I also noticed this patch fixed some unknown NMIs
on a P4 when I stressed the box".
Tested-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Link: http://lkml.kernel.org/r/1303398203-2918-3-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Andi Kleen pointed out that the Intel offcore support patches were merged
without user-space tool support to the functionality:
|
| The offcore_msr perf kernel code was merged into 2.6.39-rc*, but the
| user space bits were not. This made it impossible to set the extra mask
| and actually do the OFFCORE profiling
|
Andi submitted a preliminary patch for user-space support, as an
extension to perf's raw event syntax:
|
| Some raw events -- like the Intel OFFCORE events -- support additional
| parameters. These can be appended after a ':'.
|
| For example on a multi socket Intel Nehalem:
|
| perf stat -e r1b7:20ff -a sleep 1
|
| Profile the OFFCORE_RESPONSE.ANY_REQUEST with event mask REMOTE_DRAM_0
| that measures any access to DRAM on another socket.
|
But this kind of usability is absolutely unacceptable - users should not
be expected to type in magic, CPU and model specific incantations to get
access to useful hardware functionality.
The proper solution is to expose useful offcore functionality via
generalized events - that way users do not have to care which specific
CPU model they are using, they can use the conceptual event and not some
model specific quirky hexa number.
We already have such generalization in place for CPU cache events,
and it's all very extensible.
"Offcore" events measure general DRAM access patters along various
parameters. They are particularly useful in NUMA systems.
We want to support them via generalized DRAM events: either as the
fourth level of cache (after the last-level cache), or as a separate
generalization category.
That way user-space support would be very obvious, memory access
profiling could be done via self-explanatory commands like:
perf record -e dram ./myapp
perf record -e dram-remote ./myapp
... to measure DRAM accesses or more expensive cross-node NUMA DRAM
accesses.
These generalized events would work on all CPUs and architectures that
have comparable PMU features.
( Note, these are just examples: actual implementation could have more
sophistication and more parameter - as long as they center around
similarly simple usecases. )
Now we do not want to revert *all* of the current offcore bits, as they
are still somewhat useful for generic last-level-cache events, implemented
in this commit:
e994d7d23a0b: perf: Fix LLC-* events on Intel Nehalem/Westmere
But we definitely do not yet want to expose the unstructured raw events
to user-space, until better generalization and usability is implemented
for these hardware event features.
( Note: after generalization has been implemented raw offcore events can be
supported as well: there can always be an odd event that is marginally
useful but not useful enough to generalize. DRAM profiling is definitely
*not* such a category so generalization must be done first. )
Furthermore, PERF_TYPE_RAW access to these registers was not intended
to go upstream without proper support - it was a side-effect of the above
e994d7d23a commit, not mentioned in the changelog.
As v2.6.39 is nearing release we go for the simplest approach: disable
the PERF_TYPE_RAW offcore hack for now, before it escapes into a released
kernel and becomes an ABI.
Once proper structure is implemented for these hardware events and users
are offered usable solutions we can revisit this issue.
Reported-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1302658203-4239-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The default notifier doesn't make a lot of sense to call in the
correctable errors case. Drop it and emit the mcelog decoding
hint only in the uncorrectable errors case and when no notifier
is registered. Also, limit issuing the "mcelog --ascii" message
in the rare case when we dump unreported CEs before panicking.
While at it, remove unused old x86_mce_decode_callback from the
header.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Nagananda Chumbalkar <Nagananda.Chumbalkar@hp.com>
Cc: Russ Anderson <rja@sgi.com>
Link: http://lkml.kernel.org/r/20110420102349.GB1361@aftab
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf, x86: Fix AMD family 15h FPU event constraints
perf, x86: Fix pre-defined cache-misses event for AMD family 15h cpus
perf evsel: Fix use of inherit
perf hists browser: Fix seg fault when annotate null symbol
Correctable errors are considered something rather normal on
modern hardware these days. Even more importantly, correctable
errors mean exactly that - they've been corrected by the
hardware - and there's no need to taint the kernel since
execution hasn't been compromised so far.
Also, drop tainting in the thermal throttling code for a similar
reason: crossing a thermal threshold does not mean corruption.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Acked-by: Nagananda Chumbalkar <Nagananda.Chumbalkar@hp.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1303135222-17118-1-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Using ALTERNATIVE() when checking for X86_FEATURE_PERFCTR_CORE avoids
an extra pointer chase and data cache hit.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1302913676-14352-4-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Depending on the unit mask settings some FPU events may be scheduled
only on cpu counter #3. This patch fixes this.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@googlemail.com>
Link: http://lkml.kernel.org/r/1302913676-14352-3-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With AMD cpu family 15h a unit mask was introduced for the Data Cache
Miss event (0x041/L1-dcache-load-misses). We need to enable bit 0
(first data cache miss or streaming store to a 64 B cache line) of
this mask to proper count data cache misses.
Now we set this bit for all families and models. In case a PMU does
not implement a unit mask for event 0x041 the bit is ignored.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1302913676-14352-2-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch disables GartTlbWlk errors on AMD Fam10h CPUs if
the BIOS forgets to do is (or is just too old). Letting
these errors enabled can cause a sync-flood on the CPU
causing a reboot.
The AMD BKDG recommends disabling GART TLB Wlk Error completely.
This patch is the fix for
https://bugzilla.kernel.org/show_bug.cgi?id=33012
on my machine.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/20110415131152.GJ18463@8bytes.org
Tested-by: Alexandre Demers <alexandre.f.demers@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently the option resides under X86_EXTENDED_PLATFORM due to historical
nonstandard A20M# handling. However that is no longer the case and so Elan can
be treated as part of the standard processor choice Kconfig option.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Link: http://lkml.kernel.org/r/1302245177.31620.47.camel@localhost.localdomain
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, UV: Fix kdump reboot
x86, amd-nb: Rename CPU PCI id define for F4
sound: Add delay.h to sound/soc/codecs/sn95031.c
x86, mtrr, pat: Fix one cpu getting out of sync during resume
x86, microcode: Unregister syscore_ops after microcode unloaded
x86: Stop including <linux/delay.h> in two asm header files
The MCE subsystem needs to sample an RCU-protected index outside of
any protection for that index. If this was a pointer, we would use
rcu_access_pointer(), but there is no corresponding rcu_access_index().
This commit therefore creates an rcu_access_index() and applies it
to MCE.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Zdenek Kabelac <zkabelac@redhat.com>
On laptops with core i5/i7, there were reports that after resume
graphics workloads were performing poorly on a specific AP, while
the other cpu's were ok. This was observed on a 32bit kernel
specifically.
Debug showed that the PAT init was not happening on that AP
during resume and hence it contributing to the poor workload
performance on that cpu.
On this system, resume flow looked like this:
1. BP starts the resume sequence and we reinit BP's MTRR's/PAT
early on using mtrr_bp_restore()
2. Resume sequence brings all AP's online
3. Resume sequence now kicks off the MTRR reinit on all the AP's.
4. For some reason, between point 2 and 3, we moved from BP
to one of the AP's. My guess is that printk() during resume
sequence is contributing to this. We don't see similar
behavior with the 64bit kernel but there is no guarantee that
at this point the remaining resume sequence (after AP's bringup)
has to happen on BP.
5. set_mtrr() was assuming that we are still on BP and skipped the
MTRR/PAT init on that cpu (because of 1 above)
6. But we were on an AP and this led to not reprogramming PAT
on this cpu leading to bad performance.
Fix this by doing unconditional mtrr_if->set_all() in set_mtrr()
during MTRR/PAT init. This might be unnecessary if we are still
running on BP. But it is of no harm and will guarantee that after
resume, all the cpu's will be in sync with respect to the
MTRR/PAT registers.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1301438292-28370-1-git-send-email-eric@anholt.net>
Signed-off-by: Eric Anholt <eric@anholt.net>
Tested-by: Keith Packard <keithp@keithp.com>
Cc: stable@kernel.org [v2.6.32+]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
It is more effective to use a segment prefix instead of calculating the
address of the current cpu area amd then testing flags.
Signed-off-by: Christoph Lameter <cl@linux.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
No change on the functional level, just align the table properly.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Lin Ming <ming.m.lin@intel.com>
LKML-Reference: <4D8FA213.5050108@openvz.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'syscore' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspend-2.6:
Introduce ARCH_NO_SYSDEV_OPS config option (v2)
cpufreq: Use syscore_ops for boot CPU suspend/resume (v2)
KVM: Use syscore_ops instead of sysdev class and sysdev
PCI / Intel IOMMU: Use syscore_ops instead of sysdev class and sysdev
timekeeping: Use syscore_ops instead of sysdev class and sysdev
x86: Use syscore_ops instead of sysdev classes and sysdevs
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf, x86: Complain louder about BIOSen corrupting CPU/PMU state and continue
perf, x86: P4 PMU - Read proper MSR register to catch unflagged overflows
perf symbols: Look at .dynsym again if .symtab not found
perf build-id: Add quirk to deal with perf.data file format breakage
perf session: Pass evsel in event_ops->sample()
perf: Better fit max unprivileged mlock pages for tools needs
perf_events: Fix stale ->cgrp pointer in update_cgrp_time_from_cpuctx()
perf top: Fix uninitialized 'counter' variable
tracing: Fix set_ftrace_filter probe function display
perf, x86: Fix Intel fixed counters base initialization
Eric Dumazet reported that hardware PMU events do not work on his
system, due to the BIOS corrupting PMU state:
Performance Events: PEBS fmt0+, Core2 events, Broken BIOS detected, using software events only.
[Firmware Bug]: the BIOS has corrupted hw-PMU resources (MSR 186 is 43003c)
Linus suggested that we continue in the face of such BIOS-induced CPU
state corruption:
http://lkml.org/lkml/2011/3/24/608
Such BIOSes will have to be fixed - Linux developers rely on a working and
fully capable PMU and the BIOS interfering with the CPU's PMU state is simply
not acceptable.
So this patch changes perf to continue when it detects such BIOS
interaction, some hardware events may be unreliable due to the BIOS
writing and re-writing them - there's not much the kernel can do
about that but to detect the corruption and report it.
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The read of a proper MSR register was missed and instead of
counter the configration register was tested (it has
ARCH_P4_UNFLAGGED_BIT always cleared) leading to unknown NMI
hitting the system. As result the user may obtain "Dazed and
confused, but trying to continue" message. Fix it by reading a
proper MSR register.
When an NMI happens on a P4, the perf nmi handler checks the
configuration register to see if the overflow bit is set or not
before taking appropriate action. Unfortunately, various P4
machines had a broken overflow bit, so a backup mechanism was
implemented. This mechanism checked to see if the counter
rolled over or not.
A previous commit that implemented this backup mechanism was
broken. Instead of reading the counter register, it used the
configuration register to determine if the counter rolled over
or not. Reading that bit would give incorrect results.
This would lead to 'Dazed and confused' messages for the end
user when using the perf tool (or if the nmi watchdog is
running).
The fix is to read the counter register before determining if
the counter rolled over or not.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Lin Ming <ming.m.lin@intel.com>
LKML-Reference: <4D8BAB49.3080701@openvz.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Some subsystems in the x86 tree need to carry out suspend/resume and
shutdown operations with one CPU on-line and interrupts disabled and
they define sysdev classes and sysdevs or sysdev drivers for this
purpose. This leads to unnecessarily complicated code and excessive
memory usage, so switch them to using struct syscore_ops objects for
this purpose instead.
Generally, there are three categories of subsystems that use
sysdevs for implementing PM operations: (1) subsystems whose
suspend/resume callbacks ignore their arguments entirely (the
majority), (2) subsystems whose suspend/resume callbacks use their
struct sys_device argument, but don't really need to do that,
because they can be implemented differently in an arguably simpler
way (io_apic.c), and (3) subsystems whose suspend/resume callbacks
use their struct sys_device argument, but the value of that argument
is always the same and could be ignored (microcode_core.c). In all
of these cases the subsystems in question may be readily converted to
using struct syscore_ops objects for power management and shutdown.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
APEI ERST firmware interface and implementation has no multiple users
in mind. For example, if there is four records in storage with ID: 1,
2, 3 and 4, if two ERST readers enumerate the records via
GET_NEXT_RECORD_ID as follow,
reader 1 reader 2
1
2
3
4
-1
-1
where -1 signals there is no more record ID.
Reader 1 has no chance to check record 2 and 4, while reader 2 has no
chance to check record 1 and 3. And any other GET_NEXT_RECORD_ID will
return -1, that is, other readers will has no chance to check any
record even they are not cleared by anyone.
This makes raw GET_NEXT_RECORD_ID not suitable for used by multiple
users.
To solve the issue, an in-memory ERST record ID cache is designed and
implemented. When enumerating record ID, the ID returned by
GET_NEXT_RECORD_ID is added into cache in addition to be returned to
caller. So other readers can check the cache to get all record ID
available.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The following patch solves the problems introduced by Robert's
commit 41bf498 and reported by Arun Sharma. This commit gets rid
of the base + index notation for reading and writing PMU msrs.
The problem is that for fixed counters, the new calculation for
the base did not take into account the fixed counter indexes,
thus all fixed counters were read/written from fixed counter 0.
Although all fixed counters share the same config MSR, they each
have their own counter register.
Without:
$ task -e unhalted_core_cycles -e instructions_retired -e baclears noploop 1 noploop for 1 seconds
242202299 unhalted_core_cycles (0.00% scaling, ena=1000790892, run=1000790892)
2389685946 instructions_retired (0.00% scaling, ena=1000790892, run=1000790892)
49473 baclears (0.00% scaling, ena=1000790892, run=1000790892)
With:
$ task -e unhalted_core_cycles -e instructions_retired -e baclears noploop 1 noploop for 1 seconds
2392703238 unhalted_core_cycles (0.00% scaling, ena=1000840809, run=1000840809)
2389793744 instructions_retired (0.00% scaling, ena=1000840809, run=1000840809)
47863 baclears (0.00% scaling, ena=1000840809, run=1000840809)
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: peterz@infradead.org
Cc: ming.m.lin@intel.com
Cc: robert.richter@amd.com
Cc: asharma@fb.com
Cc: perfmon2-devel@lists.sf.net
LKML-Reference: <20110319172005.GB4978@quad>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Flush TLB if PGD entry is changed in i386 PAE mode
x86, dumpstack: Correct stack dump info when frame pointer is available
x86: Clean up csum-copy_64.S a bit
x86: Fix common misspellings
x86: Fix misspelling and align params
x86: Use PentiumPro-optimized partial_csum() on VIA C7
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
trace, filters: Initialize the match variable in process_ops() properly
trace, documentation: Fix branch profiling location in debugfs
oprofile, s390: Cleanups
oprofile, s390: Remove hwsampler_files.c and merge it into init.c
perf: Fix tear-down of inherited group events
perf: Reorder & optimize perf_event_context to remove alignment padding on 64 bit builds
perf: Handle stopped state with tracepoints
perf: Fix the software events state check
perf, powerpc: Handle events that raise an exception without overflowing
perf, x86: Use INTEL_*_CONSTRAINT() for all PEBS event constraints
perf, x86: Clean up SandyBridge PEBS events
perf lock: Fix sorting by wait_min
perf tools: Version incorrect with some versions of grep
perf evlist: New command to list the names of events present in a perf.data file
perf script: Add support for H/W and S/W events
perf script: Add support for dumping symbols
perf script: Support custom field selection for output
perf script: Move printing of 'common' data from print_event and rename
perf tracing: Remove print_graph_cpu and print_graph_proc from trace-event-parse
perf script: Change process_event prototype
...
Current stack dump code scans entire stack and check each entry
contains a pointer to kernel code. If CONFIG_FRAME_POINTER=y it
could mark whether the pointer is valid or not based on value of
the frame pointer. Invalid entries could be preceded by '?' sign.
However this was not going to happen because scan start point
was always higher than the frame pointer so that they could not
meet.
Commit 9c0729dc80 ("x86: Eliminate bp argument from the stack
tracing routines") delayed bp acquisition point, so the bp was
read in lower frame, thus all of the entries were marked
invalid.
This patch fixes this by reverting above commit while retaining
stack_frame() helper as suggested by Frederic Weisbecker.
End result looks like below:
before:
[ 3.508329] Call Trace:
[ 3.508551] [<ffffffff814f35c9>] ? panic+0x91/0x199
[ 3.508662] [<ffffffff814f3739>] ? printk+0x68/0x6a
[ 3.508770] [<ffffffff81a981b2>] ? mount_block_root+0x257/0x26e
[ 3.508876] [<ffffffff81a9821f>] ? mount_root+0x56/0x5a
[ 3.508975] [<ffffffff81a98393>] ? prepare_namespace+0x170/0x1a9
[ 3.509216] [<ffffffff81a9772b>] ? kernel_init+0x1d2/0x1e2
[ 3.509335] [<ffffffff81003894>] ? kernel_thread_helper+0x4/0x10
[ 3.509442] [<ffffffff814f6880>] ? restore_args+0x0/0x30
[ 3.509542] [<ffffffff81a97559>] ? kernel_init+0x0/0x1e2
[ 3.509641] [<ffffffff81003890>] ? kernel_thread_helper+0x0/0x10
after:
[ 3.522991] Call Trace:
[ 3.523351] [<ffffffff814f35b9>] panic+0x91/0x199
[ 3.523468] [<ffffffff814f3729>] ? printk+0x68/0x6a
[ 3.523576] [<ffffffff81a981b2>] mount_block_root+0x257/0x26e
[ 3.523681] [<ffffffff81a9821f>] mount_root+0x56/0x5a
[ 3.523780] [<ffffffff81a98393>] prepare_namespace+0x170/0x1a9
[ 3.523885] [<ffffffff81a9772b>] kernel_init+0x1d2/0x1e2
[ 3.523987] [<ffffffff81003894>] kernel_thread_helper+0x4/0x10
[ 3.524228] [<ffffffff814f6880>] ? restore_args+0x0/0x30
[ 3.524345] [<ffffffff81a97559>] ? kernel_init+0x0/0x1e2
[ 3.524445] [<ffffffff81003890>] ? kernel_thread_helper+0x0/0x10
-v5:
* fix build breakage with oprofile
-v4:
* use 0 instead of regs->bp
* separate out printk changes
-v3:
* apply comment from Frederic
* add a couple of printk fixes
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Soren Sandmann <ssp@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1300416006-3163-1-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
They were generated by 'codespell' and then manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Cc: trivial@kernel.org
LKML-Reference: <1300389856-1099-3-git-send-email-lucas.demarchi@profusion.mobi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove a couple of assigment statements that appear twice.
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
Signed-off-by: Dave Jones <davej@redhat.com>
PEBS_EVENT_CONSTRAINT() is just a duplicate of INTEL_UEVENT_CONSTRAINT().
Remove it and use INTEL_UEVENT_CONSTRAINT() instead.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299684089-22835-3-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use INTEL_EVENT_CONSTRAINT() for the events where all umasks support PEBS.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299684089-22835-2-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Support for Always Running APIC timer (ARAT) was introduced in
commit db954b5898. This feature
allows us to avoid switching timers from LAPIC to something else
(e.g. HPET) and go into timer broadcasts when entering deep
C-states.
AMD processors don't provide a CPUID bit for that feature but
they also keep APIC timers running in deep C-states (except for
cases when the processor is affected by erratum 400). Therefore
we should set ARAT feature bit on AMD CPUs.
Tested-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Acked-by: Mark Langsdorf <mark.langsdorf@amd.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@amd.com>
LKML-Reference: <1300205624-4813-1-git-send-email-ostr@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (93 commits)
x86, tlb, UV: Do small micro-optimization for native_flush_tlb_others()
x86-64, NUMA: Don't call numa_set_distanc() for all possible node combinations during emulation
x86-64, NUMA: Don't assume phys node 0 is always online in numa_emulation()
x86-64, NUMA: Clean up initmem_init()
x86-64, NUMA: Fix numa_emulation code with node0 without RAM
x86-64, NUMA: Revert NUMA affine page table allocation
x86: Work around old gas bug
x86-64, NUMA: Better explain numa_distance handling
x86-64, NUMA: Fix distance table handling
mm: Move early_node_map[] reverse scan helpers under HAVE_MEMBLOCK
x86-64, NUMA: Fix size of numa_distance array
x86: Rename e820_table_* to pgt_buf_*
bootmem: Move __alloc_memory_core_early() to nobootmem.c
bootmem: Move contig_page_data definition to bootmem.c/nobootmem.c
bootmem: Separate out CONFIG_NO_BOOTMEM code into nobootmem.c
x86-64, NUMA: Seperate out numa_alloc_distance() from numa_set_distance()
x86-64, NUMA: Add proper function comments to global functions
x86-64, NUMA: Move NUMA emulation into numa_emulation.c
x86-64, NUMA: Prepare numa_emulation() for moving NUMA emulation into a separate file
x86-64, NUMA: Do not scan two times for setup_node_bootmem()
...
Fix up conflicts in arch/x86/kernel/smpboot.c
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix and clean up generic_processor_info()
x86: Don't copy per_cpu cpuinfo for BSP two times
x86: Move llc_shared_map out of cpu_info
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, binutils, xen: Fix another wrong size directive
x86: Remove dead config option X86_CPU
x86: Really print supported CPUs if PROCESSOR_SELECT=y
x86: Fix a bogus unwind annotation in lib/semaphore_32.S
um, x86-64: Fix UML build after adding CFI annotations to lib/rwsem_64.S
x86: Remove unused bits from lib/thunk_*.S
x86: Use {push,pop}_cfi in more places
x86-64: Add CFI annotations to lib/rwsem_64.S
x86, asm: Cleanup unnecssary macros in asm-offsets.c
x86, system.h: Drop unused __SAVE/__RESTORE macros
x86: Use bitmap library functions
x86: Partly unify asm-offsets_{32,64}.c
x86: Reduce back the alignment of the per-CPU data section
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (184 commits)
perf probe: Clean up probe_point_lazy_walker() return value
tracing: Fix irqoff selftest expanding max buffer
tracing: Align 4 byte ints together in struct tracer
tracing: Export trace_set_clr_event()
tracing: Explain about unstable clock on resume with ring buffer warning
ftrace/graph: Trace function entry before updating index
ftrace: Add .ref.text as one of the safe areas to trace
tracing: Adjust conditional expression latency formatting.
tracing: Fix event alignment: skb:kfree_skb
tracing: Fix event alignment: mce:mce_record
tracing: Fix event alignment: kvm:kvm_hv_hypercall
tracing: Fix event alignment: module:module_request
tracing: Fix event alignment: ftrace:context_switch and ftrace:wakeup
tracing: Remove lock_depth from event entry
perf header: Stop using 'self'
perf session: Use evlist/evsel for managing perf.data attributes
perf top: Don't let events to eat up whole header line
perf top: Fix events overflow in top command
ring-buffer: Remove unused #include <linux/trace_irq.h>
tracing: Add an 'overwrite' trace_option.
...
Return 0 on failure. This will cause the initialization of the driver
to fail and prevent the driver from loading if the BIOS cannot handle
the PCC interface command to "get frequency". Otherwise, the driver
will load and display a very high value like "4294967274" (which is
actually -EINVAL) for frequency:
# cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq
4294967274
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
CC: stable@kernel.org
Signed-off-by: Dave Jones <davej@redhat.com>
I'm sure it was a mere oversight that the CONFIG_ prefixes are
missing.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Dave Jones <davej@redhat.com>
LKML-Reference: <4D7118D30200007800034F79@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299119690-13991-5-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Intel Nehalem and Westmere CPUs the generic perf LLC-* events count the
L2 caches, not the real L3 LLC - this was inconsistent with behavior on
other CPUs.
Fixing this requires the use of the special OFFCORE_RESPONSE
events which need a separate mask register.
This has been implemented by the previous patch, now use this infrastructure
to set correct events for the LLC-* on Nehalem and Westmere.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299119690-13991-3-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change logs against Andi's original version:
- Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra)
- Fixed a major event scheduling issue. There cannot be a ref++ on an
event that has already done ref++ once and without calling
put_constraint() in between. (Stephane Eranian)
- Use thread_cpumask for percore allocation. (Lin Ming)
- Use MSR names in the extra reg lists. (Lin Ming)
- Remove redundant "c = NULL" in intel_percore_constraints
- Fix comment of perf_event_attr::config1
Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event
that can be used to monitor any offcore accesses from a core.
This is a very useful event for various tunings, and it's
also needed to implement the generic LLC-* events correctly.
Unfortunately this event requires programming a mask in a separate
register. And worse this separate register is per core, not per
CPU thread.
This patch:
- Teaches perf_events that OFFCORE_RESPONSE needs extra parameters.
The extra parameters are passed by user space in the
perf_event_attr::config1 field.
- Adds support to the Intel perf_event core to schedule per
core resources. This adds fairly generic infrastructure that
can be also used for other per core resources.
The basic code has is patterned after the similar AMD northbridge
constraints code.
Thanks to Stephane Eranian who pointed out some problems
in the original version and suggested improvements.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch updates PEBS event constraints for Intel Atom, Nehalem, Westmere.
This patch also reorganizes the PEBS format/constraint detection code. It is
now based on processor model and not PEBS format. Two processors may use the
same PEBS format without have the same list of PEBS events.
In this second version, we simplified the initialization of the PEBS
constraints by leveraging the existing switch() statement in perf_event_intel.c.
We also renamed the constraint tables to be more consistent with regular
constraints.
In this 3rd version, we drop BR_INST_RETIRED.MISPRED from Intel Atom as it does
not seem to work. Use MISPREDICTED_BRANCH_RETIRED instead. Also add FP_ASSIST.*
o both Intel Nehalem and Westmere. I misssed those in the earlier patches.
Events were tested using libpfm4 perf_examples.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4d6e6b02.815bdf0a.637b.07a7@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds basic SandyBridge support, including hardware
cache events and PEBS events support.
It has been tested on SandyBridge CPUs with perf stat and also
with PEBS based profiling - both work fine.
The patch does not affect other models.
v2 -> v3:
- fix PEBS event 0xd0 with right umask combinations
- move snb pebs constraint assignment to intel_pmu_init
v1 -> v2:
- add more raw and PEBS events constraints
- use offcore events for LLC-* cache events
- remove the call to Nehalem workaround enable_all function
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
LKML-Reference: <1299072424.2175.24.camel@localhost>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Do the notifier registration later, so we don't have to worry
about freeing it if we fail the msr allocation.
Signed-off-by: Dave Jones <davej@redhat.com>
It appears that when powernow-k8 finds that
No compatible ACPI _PSS objects found.
and suggests
Try again with latest BIOS.
it fails the module load, but does not unregister the cpu_notifier that was
registered in powernowk8_init
This ends up leaving freed memory on the cpu notifier list for some other
poor module (e.g. md/raid5) to come along and trip over.
The following might be a partial fix, but I suspect there is probably other
clean-up that is needed.
( https://bugzilla.novell.com/show_bug.cgi?id=655215 has full dmesg traces).
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Neil Brown <neilb@suse.de>
This patch adds support for AMD family 15h core counters. There are
major changes compared to family 10h. First, there is a new perfctr
msr range for up to 6 counters. Northbridge counters are separate
now. This patch only adds support for core counters. Second, certain
events may only be scheduled on certain counters. For this we need to
extend the event scheduling and constraints.
We use cpu feature flags to calculate family 15h msr address offsets.
This way we later can implement a faster ALTERNATIVE() version for
this.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20110215135210.GB5874@erda.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of storing the base addresses we can store the counter's msr
addresses directly in config_base/event_base of struct hw_perf_event.
This avoids recalculating the address with each msr access. The
addresses are configured one time. We also need this change to later
modify the address calculation.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-5-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch allows the reservation of perfctrs with new msr addresses
introduced for AMD cpu family 15h (0xc0010200/0xc0010201, etc).
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-4-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds helper functions to calculate perfctr msr addresses.
We need this to later add support for AMD family 15h cpus. For this we
have to change the algorithms to generate the perfctr's msr addresses.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-3-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use helper function in x86_pmu_enable_all() to minimize access to
x86_pmu.eventsel in the fast path. The counter's msr address is now
calculated using struct hw_perf_event. Later we add code that
calculates the msr addresses with a table lookup which shouldn't be
done in the fast path.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-2-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Several people have reported spurious unknown NMI
messages on some P4 CPUs.
This patch fixes it by checking for an overflow (negative
counter values) directly, instead of relying on the
P4_CCCR_OVF bit.
Reported-by: George Spelvin <linux@horizon.com>
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Don Zickus <dzickus@redhat.com>
Reported-by: Dave Airlie <airlied@gmail.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <AANLkTinfuTfCck_FfaOHrDqQZZehtRzkBum4SpFoO=KJ@mail.gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit d518573de6 ("x86, amd: Normalize compute unit IDs on
multi-node processors") introduced compute unit normalization
but causes a compiler warning:
arch/x86/kernel/cpu/amd.c: In function 'amd_detect_cmp':
arch/x86/kernel/cpu/amd.c:268: warning: 'cores_per_cu' may be used uninitialized in this function
arch/x86/kernel/cpu/amd.c:268: note: 'cores_per_cu' was declared here
The compiler is right - initialize it with a proper value.
Also, fix up a comment while at it.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20110214171451.GB10076@kryptos.osrc.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
L3 Cache Partitioning allows selecting which of the 4 L3 subcaches can be used
for evictions by the L2 cache of each compute unit. By writing a 4-bit
hexadecimal mask into the the sysfs file
/sys/devices/system/cpu/cpuX/cache/index3/subcaches, the user can set the
enabled subcaches for a CPU.
The settings are directly read from and written to the hardware, so there is no
way to have contradicting settings for two CPUs belonging to the same compute
unit. Writing will always overwrite any previous setting for a compute unit.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: <Andreas.Herrmann3@amd.com>
LKML-Reference: <1297098639-431383-1-git-send-email-hans.rosenfeld@amd.com>
[ -v3: minor style fixes ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>