Pull locking updates from Ingo Molnar:
"So we have a laundry list of locking subsystem changes:
- continuing barrier API and code improvements
- futex enhancements
- atomics API improvements
- pvqspinlock enhancements: in particular lock stealing and adaptive
spinning
- qspinlock micro-enhancements"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op
futex: Cleanup the goto confusion in requeue_pi()
futex: Remove pointless put_pi_state calls in requeue()
futex: Document pi_state refcounting in requeue code
futex: Rename free_pi_state() to put_pi_state()
futex: Drop refcount if requeue_pi() acquired the rtmutex
locking/barriers, arch: Remove ambiguous statement in the smp_store_mb() documentation
lcoking/barriers, arch: Use smp barriers in smp_store_release()
locking/cmpxchg, arch: Remove tas() definitions
locking/pvqspinlock: Queue node adaptive spinning
locking/pvqspinlock: Allow limited lock stealing
locking/pvqspinlock: Collect slowpath lock statistics
sched/core, locking: Document Program-Order guarantees
locking, sched: Introduce smp_cond_acquire() and use it
locking/pvqspinlock, x86: Optimize the PV unlock code path
locking/qspinlock: Avoid redundant read of next pointer
locking/qspinlock: Prefetch the next node cacheline
locking/qspinlock: Use _acquire/_release() versions of cmpxchg() & xchg()
atomics: Add test for atomic operations with _relaxed variants
Pull RCU changes from Paul E. McKenney:
- Adding transitivity uniformly to rcu_node structure ->lock
acquisitions. (This is implemented by the first two commits
on top of v4.4-rc2 due to the pervasive nature of this change.)
- Documentation updates, including RCU requirements.
- Expedited grace-period changes.
- Miscellaneous fixes.
- Linked-list fixes, courtesy of KTSAN.
- Torture-test updates.
- Late-breaking fix to sysrq-generated crash.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit which went into mainline through networking tree
3b13758f51 ("cgroups: Allow dynamically changing net_classid")
conflicts in net/core/netclassid_cgroup.c with the following pending
fix in cgroup/for-4.4-fixes.
1f7dd3e5a6 ("cgroup: fix handling of multi-destination migration from subtree_control enabling")
The former separates out update_classid() from cgrp_attach() and
updates it to walk all fds of all tasks in the target css so that it
can be used from both migration and config change paths. The latter
drops @css from cgrp_attach().
Resolve the conflict by making cgrp_attach() call update_classid()
with the css from the first task. We can revive @tset walking in
cgrp_attach() but given that net_cls is v1 only where there always is
only one target css during migration, this is fine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Nina Schiff <ninasc@fb.com>
We need the scheduler's fastpaths to be, well, fast, and unnecessarily
disabling and re-enabling interrupts is not necessarily consistent with
this goal. Especially given that there are regions of the scheduler that
already have interrupts disabled.
This commit therefore moves the call to rcu_note_context_switch()
to one of the interrupts-disabled regions of the scheduler, and
removes the now-redundant disabling and re-enabling of interrupts from
rcu_note_context_switch() and the functions it calls.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Shift rcu_note_context_switch() to avoid deadlock, as suggested
by Peter Zijlstra. ]
If a system with large number of sockets was driven to full
utilization, it was found that the clock tick handling occupied a
rather significant proportion of CPU time when fair group scheduling
and autogroup were enabled.
Running a java benchmark on a 16-socket IvyBridge-EX system, the perf
profile looked like:
10.52% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
9.66% 0.05% java [kernel.vmlinux] [k] hrtimer_interrupt
8.65% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
8.56% 0.00% java [kernel.vmlinux] [k] update_process_times
8.07% 0.03% java [kernel.vmlinux] [k] scheduler_tick
6.91% 1.78% java [kernel.vmlinux] [k] task_tick_fair
5.24% 5.04% java [kernel.vmlinux] [k] update_cfs_shares
In particular, the high CPU time consumed by update_cfs_shares()
was mostly due to contention on the cacheline that contained the
task_group's load_avg statistical counter. This cacheline may also
contains variables like shares, cfs_rq & se which are accessed rather
frequently during clock tick processing.
This patch moves the load_avg variable into another cacheline
separated from the other frequently accessed variables. It also
creates a cacheline aligned kmemcache for task_group to make sure
that all the allocated task_group's are cacheline aligned.
By doing so, the perf profile became:
9.44% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
8.74% 0.01% java [kernel.vmlinux] [k] hrtimer_interrupt
7.83% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
7.74% 0.00% java [kernel.vmlinux] [k] update_process_times
7.27% 0.03% java [kernel.vmlinux] [k] scheduler_tick
5.94% 1.74% java [kernel.vmlinux] [k] task_tick_fair
4.15% 3.92% java [kernel.vmlinux] [k] update_cfs_shares
The %cpu time is still pretty high, but it is better than before. The
benchmark results before and after the patch was as follows:
Before patch - Max-jOPs: 907533 Critical-jOps: 134877
After patch - Max-jOPs: 916011 Critical-jOps: 142366
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building a kernel with a gcc 6 snapshot the compiler complains
about unused const static variables for prio_to_weight and prio_to_mult
for multiple scheduler files (all but core.c and autogroup.c)
The way the array is currently declared it will be duplicated in
every scheduler file that includes sched.h, which seems rather wasteful.
Move the array out of line into core.c. I also added a sched_ prefix
to avoid any potential name space collisions.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448859583-3252-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code accounts for the time a task was absent from the fair
class (per ATTACH_AGE_LOAD). However it does not work correctly when a
task got migrated or moved to another cgroup while outside of the fair
class.
This patch tries to address that by aging on migration. We locklessly
read the 'last_update_time' stamp from both the old and new cfs_rq,
ages the load upto the old time, and sets it to the new time.
These timestamps should in general not be more than 1 tick apart from
one another, so there is a definite bound on things.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Changelog, a few edits and !SMP build fix ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445616981-29904-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These are some notes on the scheduler locking and how it provides
program order guarantees on SMP systems.
( This commit is in the locking tree, because the new documentation
refers to a newly introduced locking primitive. )
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce smp_cond_acquire() which combines a control dependency and a
read barrier to form acquire semantics.
This primitive has two benefits:
- it documents control dependencies,
- its typically cheaper than using smp_load_acquire() in a loop.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Oleg noticed that its possible to falsely observe p->on_cpu == 0 such
that we'll prematurely continue with the wakeup and effectively run p on
two CPUs at the same time.
Even though the overlap is very limited; the task is in the middle of
being scheduled out; it could still result in corruption of the
scheduler data structures.
CPU0 CPU1
set_current_state(...)
<preempt_schedule>
context_switch(X, Y)
prepare_lock_switch(Y)
Y->on_cpu = 1;
finish_lock_switch(X)
store_release(X->on_cpu, 0);
try_to_wake_up(X)
LOCK(p->pi_lock);
t = X->on_cpu; // 0
context_switch(Y, X)
prepare_lock_switch(X)
X->on_cpu = 1;
finish_lock_switch(Y)
store_release(Y->on_cpu, 0);
</preempt_schedule>
schedule();
deactivate_task(X);
X->on_rq = 0;
if (X->on_rq) // false
if (t) while (X->on_cpu)
cpu_relax();
context_switch(X, ..)
finish_lock_switch(X)
store_release(X->on_cpu, 0);
Avoid the load of X->on_cpu being hoisted over the X->on_rq load.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Explain how the control dependency and smp_rmb() end up providing
ACQUIRE semantics and pair with smp_store_release() in
finish_lock_switch().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
root_domain::rto_mask allocated through alloc_cpumask_var()
contains garbage data, this may cause problems. For instance,
When doing pull_rt_task(), it may do useless iterations if
rto_mask retains some extra garbage bits. Worse still, this
violates the isolated domain rule for clustered scheduling
using cpuset, because the tasks(with all the cpus allowed)
belongs to one root domain can be pulled away into another
root domain.
The patch cleans the garbage by using zalloc_cpumask_var()
instead of alloc_cpumask_var() for root_domain::rto_mask
allocation, thereby addressing the issues.
Do the same thing for root_domain's other cpumask memembers:
dlo_mask, span, and online.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449057179-29321-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because wakeups can (fundamentally) be late, a task might not be in
the expected state. Therefore testing against a task's state is racy,
and can yield false positives.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: oleg@redhat.com
Fixes: 9067ac85d5 ("wake_up_process() should be never used to wakeup a TASK_STOPPED/TRACED task")
Link: http://lkml.kernel.org/r/1448933660-23082-1-git-send-email-sasha.levin@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nobody use the "priv" arg passed to can_fork/cancel_fork/fork we can
kill CGROUP_CANFORK_COUNT/SUBSYS_TAG/etc and cgrp_ss_priv[] in copy_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Consider the following v2 hierarchy.
P0 (+memory) --- P1 (-memory) --- A
\- B
P0 has memory enabled in its subtree_control while P1 doesn't. If
both A and B contain processes, they would belong to the memory css of
P1. Now if memory is enabled on P1's subtree_control, memory csses
should be created on both A and B and A's processes should be moved to
the former and B's processes the latter. IOW, enabling controllers
can cause atomic migrations into different csses.
The core cgroup migration logic has been updated accordingly but the
controller migration methods haven't and still assume that all tasks
migrate to a single target css; furthermore, the methods were fed the
css in which subtree_control was updated which is the parent of the
target csses. pids controller depends on the migration methods to
move charges and this made the controller attribute charges to the
wrong csses often triggering the following warning by driving a
counter negative.
WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
Modules linked in:
CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
...
ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
Call Trace:
[<ffffffff81551ffc>] dump_stack+0x4e/0x82
[<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
[<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
[<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
[<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
[<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
[<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
[<ffffffff81189016>] cgroup_attach_task+0x176/0x200
[<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
[<ffffffff81189684>] cgroup_procs_write+0x14/0x20
[<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
[<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
[<ffffffff81265f88>] __vfs_write+0x28/0xe0
[<ffffffff812666fc>] vfs_write+0xac/0x1a0
[<ffffffff81267019>] SyS_write+0x49/0xb0
[<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76
This patch fixes the bug by removing @css parameter from the three
migration methods, ->can_attach, ->cancel_attach() and ->attach() and
updating cgroup_taskset iteration helpers also return the destination
css in addition to the task being migrated. All controllers are
updated accordingly.
* Controllers which don't care whether there are one or multiple
target csses can be converted trivially. cpu, io, freezer, perf,
netclassid and netprio fall in this category.
* cpuset's current implementation assumes that there's single source
and destination and thus doesn't support v2 hierarchy already. The
only change made by this patchset is how that single destination css
is obtained.
* memory migration path already doesn't do anything on v2. How the
single destination css is obtained is updated and the prep stage of
mem_cgroup_can_attach() is reordered to accomodate the change.
* pids is the only controller which was affected by this bug. It now
correctly handles multi-destination migrations and no longer causes
counter underflow from incorrect accounting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Use list_is_singular() to check if run_list has only one entry.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a5453fafd735affcf28e53a1d0a3d6965cb5dbb5.1447582547.git.geliangtang@163.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At present scheduler resets task's wait start timestamp when the task
migrates to another rq. This misleads scheduler itself into reporting
less wait time than actual by omitting time spent for waiting prior to
migration and also more wait count than actual by counting migration as
wait end event which can be seen by trace or /proc/<pid>/sched with
CONFIG_SCHEDSTATS=y.
Carry forward migrating task's wait time prior to migration and
don't count migration as a wait end event to fix such statistics error.
In order to determine whether task is migrating mark task->on_rq with
TASK_ON_RQ_MIGRATING while dequeuing and enqueuing due to migration.
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: ohaugan@codeaurora.org
Link: http://lkml.kernel.org/r/20151113033854.GA4247@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle were:
- sched/fair load tracking fixes and cleanups (Byungchul Park)
- Make load tracking frequency scale invariant (Dietmar Eggemann)
- sched/deadline updates (Juri Lelli)
- stop machine fixes, cleanups and enhancements for bugs triggered by
CPU hotplug stress testing (Oleg Nesterov)
- scheduler preemption code rework: remove PREEMPT_ACTIVE and related
cleanups (Peter Zijlstra)
- Rework the sched_info::run_delay code to fix races (Peter Zijlstra)
- Optimize per entity utilization tracking (Peter Zijlstra)
- ... misc other fixes, cleanups and smaller updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
sched: Don't scan all-offline ->cpus_allowed twice if !CONFIG_CPUSETS
sched: Move cpu_active() tests from stop_two_cpus() into migrate_swap_stop()
sched: Start stopper early
stop_machine: Kill cpu_stop_threads->setup() and cpu_stop_unpark()
stop_machine: Kill smp_hotplug_thread->pre_unpark, introduce stop_machine_unpark()
stop_machine: Change cpu_stop_queue_two_works() to rely on stopper->enabled
stop_machine: Introduce __cpu_stop_queue_work() and cpu_stop_queue_two_works()
stop_machine: Ensure that a queued callback will be called before cpu_stop_park()
sched/x86: Fix typo in __switch_to() comments
sched/core: Remove a parameter in the migrate_task_rq() function
sched/core: Drop unlikely behind BUG_ON()
sched/core: Fix task and run queue sched_info::run_delay inconsistencies
sched/numa: Fix task_tick_fair() from disabling numa_balancing
sched/core: Add preempt_count invariant check
sched/core: More notrace annotations
sched/core: Kill PREEMPT_ACTIVE
sched/core, sched/x86: Kill thread_info::saved_preempt_count
sched/core: Simplify preempt_count tests
sched/core: Robustify preemption leak checks
sched/core: Stop setting PREEMPT_ACTIVE
...
If CONFIG_CPUSETS=n then "case cpuset" changes the state and runs
the already failed for_each_cpu() loop again for no reason.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20151010185315.GA24100@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpu_active() tests are not fundamentally part of stop_two_cpus(),
move then into the scheduler where they belong.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ensure the stopper thread is active 'early', because the load balancer
pretty much assumes that its available. And when 'online && active' the
load-balancer is fully available.
Not only the numa balancing stop_two_cpus() caller relies on it, but
also the self migration stuff does, and at CPU_ONLINE time the cpu
really is 'free' to run anything.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20151009160054.GA10176@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts:
8cb9764fc8 ("nohz: Set isolcpus when nohz_full is set")
We assumed that full-nohz users always want scheduler isolation on full
dynticks CPUs, therefore we included full-nohz CPUs on cpu_isolated_map.
This means that tasks run by default on CPUs outside the nohz_full range
unless their affinity is explicity overwritten.
This suits pure isolation workloads but when the machine is needed to
run common workloads, the available sets of CPUs to run common tasks
becomes reduced.
We reach an extreme case when CONFIG_NO_HZ_FULL_ALL is enabled as it
leaves only CPU 0 for non-isolation tasks, which makes people think that
their supercomputer regressed to 90's UP - which is true in a sense.
Some full-nohz users appear to be interested in running normal workloads
either before or after an isolation workload. Full-nohz isn't optimized
toward normal workloads but it's still better than UP performance.
We are reaching a limitation in kernel presets here. Lets revert this
cpu_isolated_map inclusion and let userspace do its own scheduler
isolation using cpusets or explicit affinity settings.
Reported-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1444663283-30068-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU updates from Paul E. McKenney:
- Miscellaneous fixes. (Paul E. McKenney, Boqun Feng, Oleg Nesterov, Patrick Marlier)
- Improvements to expedited grace periods. (Paul E. McKenney)
- Performance improvements to and locktorture tests for percpu-rwsem.
(Oleg Nesterov, Paul E. McKenney)
- Torture-test changes. (Paul E. McKenney, Davidlohr Bueso)
- Documentation updates. (Paul E. McKenney)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_exit() is called when a task exits and disassociates the
exiting task from its cgroups and half-attach it to the root cgroup.
This is unnecessary and undesirable.
No controller actually needs an exiting task to be disassociated with
non-root cgroups. Both cpu and perf_event controllers update the
association to the root cgroup from their exit callbacks just to keep
consistent with the cgroup core behavior.
Also, this disassociation makes it difficult to track resources held
by zombies or determine where the zombies came from. Currently, pids
controller is completely broken as it uncharges on exit and zombies
always escape the resource restriction. With cgroup association being
reset on exit, fixing it is pretty painful.
There's no reason to reset cgroup membership on exit. The zombie can
be removed from its css_set so that it doesn't show up on
"cgroup.procs" and thus can't be migrated or interfere with cgroup
removal. It can still pin and point to the css_set so that its cgroup
membership is maintained. This patch makes cgroup core keep zombies
associated with their cgroups at the time of exit.
* Previous patches decoupled populated_cnt tracking from css_set
lifetime, so a dying task can be simply unlinked from its css_set
while pinning and pointing to the css_set. This keeps css_set
association from task side alive while hiding it from "cgroup.procs"
and populated_cnt tracking. The css_set reference is dropped when
the task_struct is freed.
* ->exit() callback no longer needs the css arguments as the
associated css never changes once PF_EXITING is set. Removed.
* cpu and perf_events controllers no longer need ->exit() callbacks.
There's no reason to explicitly switch away on exit. The final
schedule out is enough. The callbacks are removed.
* On traditional hierarchies, nothing changes. "/proc/PID/cgroup"
still reports "/" for all zombies. On the default hierarchy,
"/proc/PID/cgroup" keeps reporting the cgroup that the task belonged
to at the time of exit. If the cgroup gets removed before the task
is reaped, " (deleted)" is appended.
v2: Build brekage due to missing dummy cgroup_free() when
!CONFIG_CGROUP fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
The new locktorture rtmutex_lock tests exercise priority boosting, which
means that they need to set some tasks to real-time priority. To do this,
they use sched_setscheduler_nocheck(). However, this is not exported to
modules, which results in the following error when building locktorture
as a module:
ERROR: "sched_setscheduler_nocheck" [kernel/locking/locktorture.ko] undefined!
This commit therefore adds an EXPORT_SYMBOL_GPL() to allow this function
to be invoked from locktorture when built as a module.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The parameter "int next_cpu" in the following function is unused:
migrate_task_rq(struct task_struct *p, int next_cpu)
Remove it.
Signed-off-by: xiaofeng.yan <yanxiaofeng@inspur.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1442991360-31945-1-git-send-email-yanxiaofeng@inspur.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
(1) For !CONFIG_BUG cases, the bug call is a no-op, so we couldn't care
less and the change is ok.
(2) PPC and MIPS, which HAVE_ARCH_BUG_ON, do not rely on branch predictions
as it seems to be pointless [1] and thus callers should not be trying to
push an optimization in the first place.
(3) For CONFIG_BUG and !HAVE_ARCH_BUG_ON cases, BUG_ON() contains an
unlikely compiler flag already.
Hence, we can drop unlikely behind BUG_ON().
[1] http://lkml.iu.edu/hypermail/linux/kernel/1101.3/02289.html
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/6fa7125979f98bbeac26e268271769b6ca935c8d.1444051018.git.geliangtang@163.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike Meyer reported the following bug:
> During evaluation of some performance data, it was discovered thread
> and run queue run_delay accounting data was inconsistent with the other
> accounting data that was collected. Further investigation found under
> certain circumstances execution time was leaking into the task and
> run queue accounting of run_delay.
>
> Consider the following sequence:
>
> a. thread is running.
> b. thread moves beween cgroups, changes scheduling class or priority.
> c. thread sleeps OR
> d. thread involuntarily gives up cpu.
>
> a. implies:
>
> thread->sched_info.last_queued = 0
>
> a. and b. results in the following:
>
> 1. dequeue_task(rq, thread)
>
> sched_info_dequeued(rq, thread)
> delta = 0
>
> sched_info_reset_dequeued(thread)
> thread->sched_info.last_queued = 0
>
> thread->sched_info.run_delay += delta
>
> 2. enqueue_task(rq, thread)
>
> sched_info_queued(rq, thread)
>
> /* thread is still on cpu at this point. */
> thread->sched_info.last_queued = task_rq(thread)->clock;
>
> c. results in:
>
> dequeue_task(rq, thread)
>
> sched_info_dequeued(rq, thread)
>
> /* delta is execution time not run_delay. */
> delta = task_rq(thread)->clock - thread->sched_info.last_queued
>
> sched_info_reset_dequeued(thread)
> thread->sched_info.last_queued = 0
>
> thread->sched_info.run_delay += delta
>
> Since thread was running between enqueue_task(rq, thread) and
> dequeue_task(rq, thread), the delta above is really execution
> time and not run_delay.
>
> d. results in:
>
> __sched_info_switch(thread, next_thread)
>
> sched_info_depart(rq, thread)
>
> sched_info_queued(rq, thread)
>
> /* last_queued not updated due to being non-zero */
> return
>
> Since thread was running between enqueue_task(rq, thread) and
> __sched_info_switch(thread, next_thread), the execution time
> between enqueue_task(rq, thread) and
> __sched_info_switch(thread, next_thread) now will become
> associated with run_delay due to when last_queued was last updated.
>
This alternative patch solves the problem by not calling
sched_info_{de,}queued() in {de,en}queue_task(). Therefore the
sched_info state is preserved and things work as expected.
By inlining the {de,en}queue_task() functions the new condition
becomes (mostly) a compile-time constant and we'll not emit any new
branch instructions.
It even shrinks the code (due to inlining {en,de}queue_task()):
$ size defconfig-build/kernel/sched/core.o defconfig-build/kernel/sched/core.o.orig
text data bss dec hex filename
64019 23378 2344 89741 15e8d defconfig-build/kernel/sched/core.o
64149 23378 2344 89871 15f0f defconfig-build/kernel/sched/core.o.orig
Reported-by: Mike Meyer <Mike.Meyer@Teradata.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150930154413.GO3604@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
preempt_schedule_common() is marked notrace, but it does not use
_notrace() preempt_count functions and __schedule() is also not marked
notrace, which means that its perfectly possible to end up in the
tracer from preempt_schedule_common().
Steve says:
| Yep, there's some history to this. This was originally the issue that
| caused function tracing to go into infinite recursion. But now we have
| preempt_schedule_notrace(), which is used by the function tracer, and
| that function must not be traced till preemption is disabled.
|
| Now if function tracing is running and we take an interrupt when
| NEED_RESCHED is set, it calls
|
| preempt_schedule_common() (not traced)
|
| But then that calls preempt_disable() (traced)
|
| function tracer calls preempt_disable_notrace() followed by
| preempt_enable_notrace() which will see NEED_RESCHED set, and it will
| call preempt_schedule_notrace(), which stops the recursion, but
| still calls __schedule() here, and that means when we return, we call
| the __schedule() from preempt_schedule_common().
|
| That said, I prefer this patch. Preemption is disabled before calling
| __schedule(), and we get rid of a one round recursion with the
| scheduler.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we stopped setting PREEMPT_ACTIVE, there is no need to mask it
out of preempt_count() tests.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we warn about a preempt_count leak; reset the preempt_count to
the known good value such that the problem does not ripple forward.
This is most important on x86 which has a per cpu preempt_count that is
not saved/restored (after this series). So if you schedule with an
invalid (!2*PREEMPT_DISABLE_OFFSET) preempt_count the next task is
messed up too.
Enforcing this invariant limits the borkage to just the one task.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nothing tests for PREEMPT_ACTIVE anymore, stop setting it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__trace_sched_switch_state() is the last remaining PREEMPT_ACTIVE
user, move trace_sched_switch() from prepare_task_switch() to
__schedule() and propagate the @preempt argument.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is only a single PREEMPT_ACTIVE use in the regular __schedule()
path and that is to circumvent the task->state check. Since the code
setting PREEMPT_ACTIVE is the immediate caller of __schedule() we can
replace this with a function argument.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Assuming units of PREEMPT_DISABLE_OFFSET for preempt_count() numbers.
Now that TASK_DEAD no longer results in preempt_count() == 3 during
scheduling, we will always call context_switch() with preempt_count()
== 2.
However, we don't always end up with preempt_count() == 2 in
finish_task_switch() because new tasks get created with
preempt_count() == 1.
Create FORK_PREEMPT_COUNT and set it to 2 and use that in the right
places. Note that we cannot use INIT_PREEMPT_COUNT as that serves
another purpose (boot).
After this, preempt_count() is invariant across the context switch,
with exception of PREEMPT_ACTIVE.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
TASK_DEAD is special in that the final schedule call from do_exit()
must be done with preemption disabled.
This means we end up scheduling with a preempt_count() higher than
usual (3 instead of the 'expected' 2).
Since future patches will want to rely on an invariant
preempt_count() value during schedule, fix this up.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the problem this patch is trying to address is as follows:
CPU0 CPU1
context_switch(A, B)
ttwu(A)
LOCK A->pi_lock
A->on_cpu == 0
finish_task_switch(A)
prev_state = A->state <-.
WMB |
A->on_cpu = 0; |
UNLOCK rq0->lock |
| context_switch(C, A)
`-- A->state = TASK_DEAD
prev_state == TASK_DEAD
put_task_struct(A)
context_switch(A, C)
finish_task_switch(A)
A->state == TASK_DEAD
put_task_struct(A)
The argument being that the WMB will allow the load of A->state on CPU0
to cross over and observe CPU1's store of A->state, which will then
result in a double-drop and use-after-free.
Now the comment states (and this was true once upon a long time ago)
that we need to observe A->state while holding rq->lock because that
will order us against the wakeup; however the wakeup will not in fact
acquire (that) rq->lock; it takes A->pi_lock these days.
We can obviously fix this by upgrading the WMB to an MB, but that is
expensive, so we'd rather avoid that.
The alternative this patch takes is: smp_store_release(&A->on_cpu, 0),
which avoids the MB on some archs, but not important ones like ARM.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@vger.kernel.org> # v3.1+
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: manfred@colorfullife.com
Cc: will.deacon@arm.com
Fixes: e4a52bcb9a ("sched: Remove rq->lock from the first half of ttwu()")
Link: http://lkml.kernel.org/r/20150929124509.GG3816@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fix from Thomas Gleixner:
"A single bug fix for the scheduler to prevent dequeueing of the idle
task when setting the cpus allowed mask"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix crash trying to dequeue/enqueue the idle thread
The 'sched_domain_topology' variable is only used within kernel/sched/core.c.
Make it static.
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1442918939-9907-1-git-send-email-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJV+/ucAAoJEL/70l94x66DV8YH/1KDym/1GJ+/Br/YkHZnM53l
3Q0PwSLu9cNcIL9lUuDLwGTaVj+y8ud1Hjr/uzvKwivktmUYVZhkdtnZmnanvGOM
qKB9K3nFXCPx8uqy8Dn7fOwEKcg9FmDOTTkWy13HDnXO+V4crSVVt+rPw+6FUMld
NV5tYdw9Lu7y3XrveDebPWaPtyDL7OAagzmeK47eMffxG7X9Hf1H2aT7HueRi7x/
SkLIe3gmiOWmHVJDPE9TOmFYIj19gywDFysKes1gdVJLVUIXiELMT7SrvAYnToVB
zISIEj7Zx4SINPxpf2dUn8REm7NsmJY+PffLIl/Nv+ozGggFQGFH0SMZ08p0bxw=
=tfmn
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Mostly stable material, a lot of ARM fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
sched: access local runqueue directly in single_task_running
arm/arm64: KVM: Remove 'config KVM_ARM_MAX_VCPUS'
arm64: KVM: Remove all traces of the ThumbEE registers
arm: KVM: Disable virtual timer even if the guest is not using it
arm64: KVM: Disable virtual timer even if the guest is not using it
arm/arm64: KVM: vgic: Check for !irqchip_in_kernel() when mapping resources
KVM: s390: Replace incorrect atomic_or with atomic_andnot
arm: KVM: Fix incorrect device to IPA mapping
arm64: KVM: Fix user access for debug registers
KVM: vmx: fix VPID is 0000H in non-root operation
KVM: add halt_attempted_poll to VCPU stats
kvm: fix zero length mmio searching
kvm: fix double free for fast mmio eventfd
kvm: factor out core eventfd assign/deassign logic
kvm: don't try to register to KVM_FAST_MMIO_BUS for non mmio eventfd
KVM: make the declaration of functions within 80 characters
KVM: arm64: add workaround for Cortex-A57 erratum #852523
KVM: fix polling for guest halt continued even if disable it
arm/arm64: KVM: Fix PSCI affinity info return value for non valid cores
arm64: KVM: set {v,}TCR_EL2 RES1 bits
...
Commit 2ee507c472 ("sched: Add function single_task_running to let a task
check if it is the only task running on a cpu") referenced the current
runqueue with the smp_processor_id. When CONFIG_DEBUG_PREEMPT is enabled,
that is only allowed if preemption is disabled or the currrent task is
bound to the local cpu (e.g. kernel worker).
With commit f781951299 ("kvm: add halt_poll_ns module parameter") KVM
calls single_task_running. If CONFIG_DEBUG_PREEMPT is enabled that
generates a lot of kernel messages.
To avoid adding preemption in that cases, as it would limit the usefulness,
we change single_task_running to access directly the cpu local runqueue.
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Fixes: 2ee507c472
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most of the policy-tests are done via the <class>_policy() helpers with
the notable exception of idle. A new wrapper for valid_policy() has also
been added to improve readability in set_load_weight().
This commit does not change the logical behavior of the scheduler core.
Signed-off-by: Henrik Austad <henrik@austad.us>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1441810841-4756-1-git-send-email-henrik@austad.us
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sasha reports that his virtual machine tries to schedule the idle
thread since commit 6c37067e27 ("sched: Change the
sched_class::set_cpus_allowed() calling context").
Hit trace shows this happening from idle_thread_get()->init_idle(),
which is the _second_ init_idle() invocation on that task_struct, the
first being done through idle_init()->fork_idle(). (this code is
insane...)
Because we call init_idle() twice in a row, its ->sched_class ==
&idle_sched_class and ->on_rq = TASK_ON_RQ_QUEUED. This means
do_set_cpus_allowed() think we're queued and will call dequeue_task(),
which is implemented with BUG() for the idle class, seeing how
dequeueing the idle task is a daft thing.
Aside of the whole insanity of calling init_idle() _twice_, change the
code to call set_cpus_allowed_common() instead as this is 'obviously'
before the idle task gets ran etc..
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6c37067e27 ("sched: Change the sched_class::set_cpus_allowed() calling context")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"A migrate_tasks() locking fix, and a late-coming nohz change plus a
nohz debug check"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: 'Annotate' migrate_tasks()
nohz: Assert existing housekeepers when nohz full enabled
nohz: Affine unpinned timers to housekeepers
Variable sched_numa_balancing is available for both CONFIG_SCHED_DEBUG
and !CONFIG_SCHED_DEBUG. All code paths now check for
sched_numa_balancing. Hence remove sched_feat(NUMA).
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-4-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 2a1ed24 ("sched/numa: Prefer NUMA hotness over cache hotness")
sets sched feature NUMA to true. However this can enable NUMA hinting
faults on a UMA system.
This commit ensures that NUMA hinting faults occur only on a NUMA system
by setting/resetting sched_numa_balancing.
This commit:
- Makes sched_numa_balancing common to CONFIG_SCHED_DEBUG and
!CONFIG_SCHED_DEBUG. Earlier it was only in !CONFIG_SCHED_DEBUG.
- Checks for sched_numa_balancing instead of sched_feat(NUMA).
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_exit() is not called from copy_process() after commit:
e8604cb436 ("cgroup: fix spurious lockdep warning in cgroup_exit()")
from do_exit(). So this check is useless and the comment is obsolete.
Signed-off-by: Kirill Tkhai <ktkhai@odin.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/55E444C8.3020402@odin.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The previous patches made the second argument go unused, remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kernel testing triggered this warning:
| WARNING: CPU: 0 PID: 13 at kernel/sched/core.c:1156 do_set_cpus_allowed+0x7e/0x80()
| Modules linked in:
| CPU: 0 PID: 13 Comm: migration/0 Not tainted 4.2.0-rc1-00049-g25834c7 #2
| Call Trace:
| dump_stack+0x4b/0x75
| warn_slowpath_common+0x8b/0xc0
| warn_slowpath_null+0x22/0x30
| do_set_cpus_allowed+0x7e/0x80
| cpuset_cpus_allowed_fallback+0x7c/0x170
| select_fallback_rq+0x221/0x280
| migration_call+0xe3/0x250
| notifier_call_chain+0x53/0x70
| __raw_notifier_call_chain+0x1e/0x30
| cpu_notify+0x28/0x50
| take_cpu_down+0x22/0x40
| multi_cpu_stop+0xd5/0x140
| cpu_stopper_thread+0xbc/0x170
| smpboot_thread_fn+0x174/0x2f0
| kthread+0xc4/0xe0
| ret_from_kernel_thread+0x21/0x30
As Peterz pointed out:
| So the normal rules for changing task_struct::cpus_allowed are holding
| both pi_lock and rq->lock, such that holding either stabilizes the mask.
|
| This is so that wakeup can happen without rq->lock and load-balance
| without pi_lock.
|
| From this we already get the relaxation that we can omit acquiring
| rq->lock if the task is not on the rq, because in that case
| load-balancing will not apply to it.
|
| ** these are the rules currently tested in do_set_cpus_allowed() **
|
| Now, since __set_cpus_allowed_ptr() uses task_rq_lock() which
| unconditionally acquires both locks, we could get away with holding just
| rq->lock when on_rq for modification because that'd still exclude
| __set_cpus_allowed_ptr(), it would also work against
| __kthread_bind_mask() because that assumes !on_rq.
|
| That said, this is all somewhat fragile.
|
| Now, I don't think dropping rq->lock is quite as disastrous as it
| usually is because !cpu_active at this point, which means load-balance
| will not interfere, but that too is somewhat fragile.
|
| So we end up with a choice of two fragile..
This patch fixes it by following the rules for changing
task_struct::cpus_allowed with both pi_lock and rq->lock held.
Reported-by: kernel test robot <ying.huang@intel.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[ Modified changelog and patch. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/BLU436-SMTP1660820490DE202E3934ED3806E0@phx.gbl
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull locking and atomic updates from Ingo Molnar:
"Main changes in this cycle are:
- Extend atomic primitives with coherent logic op primitives
(atomic_{or,and,xor}()) and deprecate the old partial APIs
(atomic_{set,clear}_mask())
The old ops were incoherent with incompatible signatures across
architectures and with incomplete support. Now every architecture
supports the primitives consistently (by Peter Zijlstra)
- Generic support for 'relaxed atomics':
- _acquire/release/relaxed() flavours of xchg(), cmpxchg() and {add,sub}_return()
- atomic_read_acquire()
- atomic_set_release()
This came out of porting qwrlock code to arm64 (by Will Deacon)
- Clean up the fragile static_key APIs that were causing repeat bugs,
by introducing a new one:
DEFINE_STATIC_KEY_TRUE(name);
DEFINE_STATIC_KEY_FALSE(name);
which define a key of different types with an initial true/false
value.
Then allow:
static_branch_likely()
static_branch_unlikely()
to take a key of either type and emit the right instruction for the
case. To be able to know the 'type' of the static key we encode it
in the jump entry (by Peter Zijlstra)
- Static key self-tests (by Jason Baron)
- qrwlock optimizations (by Waiman Long)
- small futex enhancements (by Davidlohr Bueso)
- ... and misc other changes"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits)
jump_label/x86: Work around asm build bug on older/backported GCCs
locking, ARM, atomics: Define our SMP atomics in terms of _relaxed() operations
locking, include/llist: Use linux/atomic.h instead of asm/cmpxchg.h
locking/qrwlock: Make use of _{acquire|release|relaxed}() atomics
locking/qrwlock: Implement queue_write_unlock() using smp_store_release()
locking/lockref: Remove homebrew cmpxchg64_relaxed() macro definition
locking, asm-generic: Add _{relaxed|acquire|release}() variants for 'atomic_long_t'
locking, asm-generic: Rework atomic-long.h to avoid bulk code duplication
locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations
locking, compiler.h: Cast away attributes in the WRITE_ONCE() magic
locking/static_keys: Make verify_keys() static
jump label, locking/static_keys: Update docs
locking/static_keys: Provide a selftest
jump_label: Provide a self-test
s390/uaccess, locking/static_keys: employ static_branch_likely()
x86, tsc, locking/static_keys: Employ static_branch_likely()
locking/static_keys: Add selftest
locking/static_keys: Add a new static_key interface
locking/static_keys: Rework update logic
locking/static_keys: Add static_key_{en,dis}able() helpers
...
Pull cgroup updates from Tejun Heo:
- a new PIDs controller is added. It turns out that PIDs are actually
an independent resource from kmem due to the limited PID space.
- more core preparations for the v2 interface. Once cpu side interface
is settled, it should be ready for lifting the devel mask.
for-4.3-unified-base was temporarily branched so that other trees
(block) can pull cgroup core changes that blkcg changes depend on.
- a non-critical idr_preload usage bug fix.
* 'for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: pids: fix invalid get/put usage
cgroup: introduce cgroup_subsys->legacy_name
cgroup: don't print subsystems for the default hierarchy
cgroup: make cftype->private a unsigned long
cgroup: export cgrp_dfl_root
cgroup: define controller file conventions
cgroup: fix idr_preload usage
cgroup: add documentation for the PIDs controller
cgroup: implement the PIDs subsystem
cgroup: allow a cgroup subsystem to reject a fork
The problem addressed in this patch is about affining unpinned
timers. Adaptive or Full Dynticks CPUs are currently disturbed
by unnecessary jitter due to firing of such timers on them.
This patch will affine timers to online CPUs which are not full
dynticks in NOHZ_FULL configured systems. It should not
introduce overhead in nohz full off case due to static keys.
Signed-off-by: Vatika Harlalka <vatikaharlalka@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1441119060-2230-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull NOHZ updates from Ingo Molnar:
"The main changes, mostly written by Frederic Weisbecker, include:
- Fix some jiffies based cputime assumptions. (No real harm because
the concerned code isn't used by full dynticks.)
- Simplify jiffies <-> usecs conversions. Remove dead code.
- Remove early hacks on nohz full code that avoided messing up idle
nohz internals. Now nohz integrates well full and idle and such
hack have become needless.
- Restart nohz full tick from irq exit. (A simplification and a
preparation for future optimization on scheduler kick to nohz
full)
- Code cleanups.
- Tile driver isolation enhancement on top of nohz. (Chris Metcalf)"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
nohz: Remove useless argument on tick_nohz_task_switch()
nohz: Move tick_nohz_restart_sched_tick() above its users
nohz: Restart nohz full tick from irq exit
nohz: Remove idle task special case
nohz: Prevent tilegx network driver interrupts
alpha: Fix jiffies based cputime assumption
apm32: Fix cputime == jiffies assumption
jiffies: Remove HZ > USEC_PER_SEC special case
Pull scheduler fix from Ingo Molnar:
"This is a leftover scheduler fix from the v4.2 cycle"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix cpu_active_mask/cpu_online_mask race
Pull scheduler updates from Ingo Molnar:
"The biggest change in this cycle is the rewrite of the main SMP load
balancing metric: the CPU load/utilization. The main goal was to make
the metric more precise and more representative - see the changelog of
this commit for the gory details:
9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
It is done in a way that significantly reduces complexity of the code:
5 files changed, 249 insertions(+), 494 deletions(-)
and the performance testing results are encouraging. Nevertheless we
need to keep an eye on potential regressions, since this potentially
affects every SMP workload in existence.
This work comes from Yuyang Du.
Other changes:
- SCHED_DL updates. (Andrea Parri)
- Simplify architecture callbacks by removing finish_arch_switch().
(Peter Zijlstra et al)
- cputime accounting: guarantee stime + utime == rtime. (Peter
Zijlstra)
- optimize idle CPU wakeups some more - inspired by Facebook server
loads. (Mike Galbraith)
- stop_machine fixes and updates. (Oleg Nesterov)
- Introduce the 'trace_sched_waking' tracepoint. (Peter Zijlstra)
- sched/numa tweaks. (Srikar Dronamraju)
- misc fixes and small cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
sched/deadline: Fix comment in enqueue_task_dl()
sched/deadline: Fix comment in push_dl_tasks()
sched: Change the sched_class::set_cpus_allowed() calling context
sched: Make sched_class::set_cpus_allowed() unconditional
sched: Fix a race between __kthread_bind() and sched_setaffinity()
sched: Ensure a task has a non-normalized vruntime when returning back to CFS
sched/numa: Fix NUMA_DIRECT topology identification
tile: Reorganize _switch_to()
sched, sparc32: Update scheduler comments in copy_thread()
sched: Remove finish_arch_switch()
sched, tile: Remove finish_arch_switch
sched, sh: Fold finish_arch_switch() into switch_to()
sched, score: Remove finish_arch_switch()
sched, avr32: Remove finish_arch_switch()
sched, MIPS: Get rid of finish_arch_switch()
sched, arm: Remove finish_arch_switch()
sched/fair: Clean up load average references
sched/fair: Provide runnable_load_avg back to cfs_rq
sched/fair: Remove task and group entity load when they are dead
sched/fair: Init cfs_rq's sched_entity load average
...
There is a race condition in SMP bootup code, which may result
in
WARNING: CPU: 0 PID: 1 at kernel/workqueue.c:4418
workqueue_cpu_up_callback()
or
kernel BUG at kernel/smpboot.c:135!
It can be triggered with a bit of luck in Linux guests running
on busy hosts.
CPU0 CPUn
==== ====
_cpu_up()
__cpu_up()
start_secondary()
set_cpu_online()
cpumask_set_cpu(cpu,
to_cpumask(cpu_online_bits));
cpu_notify(CPU_ONLINE)
<do stuff, see below>
cpumask_set_cpu(cpu,
to_cpumask(cpu_active_bits));
During the various CPU_ONLINE callbacks CPUn is online but not
active. Several things can go wrong at that point, depending on
the scheduling of tasks on CPU0.
Variant 1:
cpu_notify(CPU_ONLINE)
workqueue_cpu_up_callback()
rebind_workers()
set_cpus_allowed_ptr()
This call fails because it requires an active CPU; rebind_workers()
ends with a warning:
WARNING: CPU: 0 PID: 1 at kernel/workqueue.c:4418
workqueue_cpu_up_callback()
Variant 2:
cpu_notify(CPU_ONLINE)
smpboot_thread_call()
smpboot_unpark_threads()
..
__kthread_unpark()
__kthread_bind()
wake_up_state()
..
select_task_rq()
select_fallback_rq()
The ->wake_cpu of the unparked thread is not allowed, making a call
to select_fallback_rq() necessary. Then, select_fallback_rq() cannot
find an allowed, active CPU and promptly resets the allowed CPUs, so
that the task in question ends up on CPU0.
When those unparked tasks are eventually executed, they run
immediately into a BUG:
kernel BUG at kernel/smpboot.c:135!
Just changing the order in which the online/active bits are set
(and adding some memory barriers), would solve the two issues
above. However, it would change the order of operations back to
the one before commit 6acbfb9697 ("sched: Fix hotplug vs.
set_cpus_allowed_ptr()"), thus, reintroducing that particular
problem.
Going further back into history, we have at least the following
commits touching this topic:
- commit 2baab4e904 ("sched: Fix select_fallback_rq() vs cpu_active/cpu_online")
- commit 5fbd036b55 ("sched: Cleanup cpu_active madness")
Together, these give us the following non-working solutions:
- secondary CPU sets active before online, because active is assumed to
be a subset of online;
- secondary CPU sets online before active, because the primary CPU
assumes that an online CPU is also active;
- secondary CPU sets online and waits for primary CPU to set active,
because it might deadlock.
Commit 875ebe940d ("powerpc/smp: Wait until secondaries are
active & online") introduces an arch-specific solution to this
arch-independent problem.
Now, go for a more general solution without explicit waiting and
simply set active twice: once on the secondary CPU after online
was set and once on the primary CPU after online was seen.
set_cpus_allowed_ptr()")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@vger.kernel.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Wilson <msw@amazon.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6acbfb9697 ("sched: Fix hotplug vs. set_cpus_allowed_ptr()")
Link: http://lkml.kernel.org/r/1439408156-18840-1-git-send-email-jschoenh@amazon.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the calling context of sched_class::set_cpus_allowed() such
that we can assume the task is inactive.
This allows us to easily make changes that affect accounting done by
enqueue/dequeue. This does in fact completely remove
set_cpus_allowed_rt() and greatly reduces set_cpus_allowed_dl().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.667516139@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Give every class a set_cpus_allowed() method, this enables some small
optimization in the RT,DL implementation by avoiding a double
cpumask_weight() call.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.614517487@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because sched_setscheduler() checks p->flags & PF_NO_SETAFFINITY
without locks, a caller might observe an old value and race with the
set_cpus_allowed_ptr() call from __kthread_bind() and effectively undo
it:
__kthread_bind()
do_set_cpus_allowed()
<SYSCALL>
sched_setaffinity()
if (p->flags & PF_NO_SETAFFINITIY)
set_cpus_allowed_ptr()
p->flags |= PF_NO_SETAFFINITY
Fix the bug by putting everything under the regular scheduler locks.
This also closes a hole in the serialization of task_struct::{nr_,}cpus_allowed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.545640346@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Systems which have all nodes at a distance of at most 1 hop should be
identified as 'NUMA_DIRECT'.
However, the scheduler incorrectly identifies it as 'NUMA_BACKPLANE'.
This is because 'n' is assigned to sched_max_numa_distance but the
code (mis)interprets it to mean 'number of hops'.
Rik had actually used sched_domains_numa_levels for detecting a
'NUMA_DIRECT' topology:
http://marc.info/?l=linux-kernel&m=141279712429834&w=2
But that was changed when he removed the hops table in the
subsequent version:
http://marc.info/?l=linux-kernel&m=141353106106771&w=2
Fixing the issue here.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439256048-3748-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The idea of runnable load average (let runnable time contribute to weight)
was proposed by Paul Turner and Ben Segall, and it is still followed by
this rewrite. This rewrite aims to solve the following issues:
1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is
updated at the granularity of an entity at a time, which results in the
cfs_rq's load average is stale or partially updated: at any time, only
one entity is up to date, all other entities are effectively lagging
behind. This is undesirable.
To illustrate, if we have n runnable entities in the cfs_rq, as time
elapses, they certainly become outdated:
t0: cfs_rq { e1_old, e2_old, ..., en_old }
and when we update:
t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old }
t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old }
...
We solve this by combining all runnable entities' load averages together
in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based
on the fact that if we regard the update as a function, then:
w * update(e) = update(w * e) and
update(e1) + update(e2) = update(e1 + e2), then
w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2)
therefore, by this rewrite, we have an entirely updated cfs_rq at the
time we update it:
t1: update cfs_rq { e1_new, e2_new, ..., en_new }
t2: update cfs_rq { e1_new, e2_new, ..., en_new }
...
2. cfs_rq's load average is different between top rq->cfs_rq and other
task_group's per CPU cfs_rqs in whether or not blocked_load_average
contributes to the load.
The basic idea behind runnable load average (the same for utilization)
is that the blocked state is taken into account as opposed to only
accounting for the currently runnable state. Therefore, the average
should include both the runnable/running and blocked load averages.
This rewrite does that.
In addition, we also combine runnable/running and blocked averages
of all entities into the cfs_rq's average, and update it together at
once. This is based on the fact that:
update(runnable) + update(blocked) = update(runnable + blocked)
This significantly reduces the code as we don't need to separately
maintain/update runnable/running load and blocked load.
3. How task_group entities' share is calculated is complex and imprecise.
We reduce the complexity in this rewrite to allow a very simple rule:
the task_group's load_avg is aggregated from its per CPU cfs_rqs's
load_avgs. Then group entity's weight is simply proportional to its
own cfs_rq's load_avg / task_group's load_avg. To illustrate,
if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then,
task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then
cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share
To sum up, this rewrite in principle is equivalent to the current one, but
fixes the issues described above. Turns out, it significantly reduces the
code complexity and hence increases clarity and efficiency. In addition,
the new averages are more smooth/continuous (no spurious spikes and valleys)
and updated more consistently and quickly to reflect the load dynamics.
As a result, we have less load tracking overhead, better performance,
and especially better power efficiency due to more balanced load.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mathieu reported that since 317f394160 ("sched: Move the second half
of ttwu() to the remote cpu") trace_sched_wakeup() can happen out of
context of the waker.
This is a problem when you want to analyse wakeup paths because it is
now very hard to correlate the wakeup event to whoever issued the
wakeup.
OTOH trace_sched_wakeup() is issued at the point where we set
p->state = TASK_RUNNING, which is right were we hand the task off to
the scheduler, so this is an important point when looking at
scheduling behaviour, up to here its been the wakeup path everything
hereafter is due to scheduler policy.
To bridge this gap, introduce a second tracepoint: trace_sched_waking.
It is guaranteed to be called in the waker context.
Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Francis Giraldeau <francis.giraldeau@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150609091336.GQ3644@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The unregister_sysctl_table() function tests whether its argument is NULL
and then returns immediately. Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5597877E.3060503@users.sourceforge.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add two helpers to make it easier to treat the refcount as boolean.
Suggested-by: Jason Baron <jasonbaron0@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit renames rcu_lockdep_assert() to RCU_LOCKDEP_WARN() for
consistency with the WARN() series of macros. This also requires
inverting the sense of the conditional, which this commit also does.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Add a new cgroup subsystem callback can_fork that conditionally
states whether or not the fork is accepted or rejected by a cgroup
policy. In addition, add a cancel_fork callback so that if an error
occurs later in the forking process, any state modified by can_fork can
be reverted.
Allow for a private opaque pointer to be passed from cgroup_can_fork to
cgroup_post_fork, allowing for the fork state to be stored by each
subsystem separately.
Also add a tagging system for cgroup_subsys.h to allow for CGROUP_<TAG>
enumerations to be be defined and used. In addition, explicitly add a
CGROUP_CANFORK_COUNT macro to make arrays easier to define.
This is in preparation for implementing the pids cgroup subsystem.
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
that could have been waited for -rc2. Sending them now since I
was taking care of Peter's patch anyway.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJVmB5pAAoJEL/70l94x66DpLAH/A0p2HICsG5Qw3gnI3NxAmK4
YUvtMx0d67mFXPg0kuYRMO7C2Is6XHKtnmsX8oqkg3JTRFfn7XYqlwvrrK3Be08U
tGvhigneJTGDXwU74jyik+D6VLmyJP3CxEvXM3d9AFyy7Ro9Grxx0Ja8c9cmKGQE
esCwNAEJOcqaQMtNIix3WtXifOVFr40NZlbAawsMyxVw8LZK/K5maXyUTRDI57Qn
B1wbTN1KD847/0rLrit+8VlsGEZBorUgCFhueeYGy/7EdiY0bNkzhLWb4erlWnRq
ZlKzsLdfXmEg2CEepaHCm5jlLfIurgbLfoV1tzQ5jAuj/SHmUxq+k3lZZYTYA3w=
=vDKM
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Except for the preempt notifiers fix, these are all small bugfixes
that could have been waited for -rc2. Sending them now since I was
taking care of Peter's patch anyway"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: add hyper-v crash msrs values
KVM: x86: remove data variable from kvm_get_msr_common
KVM: s390: virtio-ccw: don't overwrite config space values
KVM: x86: keep track of LVT0 changes under APICv
KVM: x86: properly restore LVT0
KVM: x86: make vapics_in_nmi_mode atomic
sched, preempt_notifier: separate notifier registration from static_key inc/dec
Pull scheduler fixes from Ingo Molnar:
"Debug info and other statistics fixes and related enhancements"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Fix numa balancing stats in /proc/pid/sched
sched/numa: Show numa_group ID in /proc/sched_debug task listings
sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h
sched/stat: Expose /proc/pid/schedstat if CONFIG_SCHED_INFO=y
sched/stat: Simplify the sched_info accounting dependency
Commit 1cde2930e1 ("sched/preempt: Add static_key() to preempt_notifiers")
had two problems. First, the preempt-notifier API needs to sleep with the
addition of the static_key, we do however need to hold off preemption
while modifying the preempt notifier list, otherwise a preemption could
observe an inconsistent list state. KVM correctly registers and
unregisters preempt notifiers with preemption disabled, so the sleep
caused dmesg splats.
Second, KVM registers and unregisters preemption notifiers very often
(in vcpu_load/vcpu_put). With a single uniprocessor guest the static key
would move between 0 and 1 continuously, hitting the slow path on every
userspace exit.
To fix this, wrap the static_key inc/dec in a new API, and call it from
KVM.
Fixes: 1cde2930e1 ("sched/preempt: Add static_key() to preempt_notifiers")
Reported-by: Pontus Fuchs <pontus.fuchs@gmail.com>
Reported-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull scheduler updates from Thomas Gleixner:
"This series of scheduler updates depends on sched/core and timers/core
branches, which are already in your tree:
- Scheduler balancing overhaul to plug a hard to trigger race which
causes an oops in the balancer (Peter Zijlstra)
- Lockdep updates which are related to the balancing updates (Peter
Zijlstra)"
* 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched,lockdep: Employ lock pinning
lockdep: Implement lock pinning
lockdep: Simplify lock_release()
sched: Streamline the task migration locking a little
sched: Move code around
sched,dl: Fix sched class hopping CBS hole
sched, dl: Convert switched_{from, to}_dl() / prio_changed_dl() to balance callbacks
sched,dl: Remove return value from pull_dl_task()
sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
sched,rt: Remove return value from pull_rt_task()
sched: Allow balance callbacks for check_class_changed()
sched: Use replace normalize_task() with __sched_setscheduler()
sched: Replace post_schedule with a balance callback list
Pull NOHZ updates from Thomas Gleixner:
"A few updates to the nohz infrastructure:
- recursion protection for context tracking
- make the TIF_NOHZ inheritance smarter
- isolate cpus which belong to the NOHZ full set"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
nohz: Set isolcpus when nohz_full is set
nohz: Add tick_nohz_full_add_cpus_to() API
context_tracking: Inherit TIF_NOHZ through forks instead of context switches
context_tracking: Protect against recursion
Pull timer updates from Thomas Gleixner:
"A rather largish update for everything time and timer related:
- Cache footprint optimizations for both hrtimers and timer wheel
- Lower the NOHZ impact on systems which have NOHZ or timer migration
disabled at runtime.
- Optimize run time overhead of hrtimer interrupt by making the clock
offset updates smarter
- hrtimer cleanups and removal of restrictions to tackle some
problems in sched/perf
- Some more leap second tweaks
- Another round of changes addressing the 2038 problem
- First step to change the internals of clock event devices by
introducing the necessary infrastructure
- Allow constant folding for usecs/msecs_to_jiffies()
- The usual pile of clockevent/clocksource driver updates
The hrtimer changes contain updates to sched, perf and x86 as they
depend on them plus changes all over the tree to cleanup API changes
and redundant code, which got copied all over the place. The y2038
changes touch s390 to remove the last non 2038 safe code related to
boot/persistant clock"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
clocksource: Increase dependencies of timer-stm32 to limit build wreckage
timer: Minimize nohz off overhead
timer: Reduce timer migration overhead if disabled
timer: Stats: Simplify the flags handling
timer: Replace timer base by a cpu index
timer: Use hlist for the timer wheel hash buckets
timer: Remove FIFO "guarantee"
timers: Sanitize catchup_timer_jiffies() usage
hrtimer: Allow hrtimer::function() to free the timer
seqcount: Introduce raw_write_seqcount_barrier()
seqcount: Rename write_seqcount_barrier()
hrtimer: Fix hrtimer_is_queued() hole
hrtimer: Remove HRTIMER_STATE_MIGRATE
selftest: Timers: Avoid signal deadlock in leap-a-day
timekeeping: Copy the shadow-timekeeper over the real timekeeper last
clockevents: Check state instead of mode in suspend/resume path
selftests: timers: Add leap-second timer edge testing to leap-a-day.c
ntp: Do leapsecond adjustment in adjtimex read path
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
ntp: Introduce and use SECS_PER_DAY macro instead of 86400
...
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- lockless wakeup support for futexes and IPC message queues
(Davidlohr Bueso, Peter Zijlstra)
- Replace spinlocks with atomics in thread_group_cputimer(), to
improve scalability (Jason Low)
- NUMA balancing improvements (Rik van Riel)
- SCHED_DEADLINE improvements (Wanpeng Li)
- clean up and reorganize preemption helpers (Frederic Weisbecker)
- decouple page fault disabling machinery from the preemption
counter, to improve debuggability and robustness (David
Hildenbrand)
- SCHED_DEADLINE documentation updates (Luca Abeni)
- topology CPU masks cleanups (Bartosz Golaszewski)
- /proc/sched_debug improvements (Srikar Dronamraju)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
sched/deadline: Remove needless parameter in dl_runtime_exceeded()
sched: Remove superfluous resetting of the p->dl_throttled flag
sched/deadline: Drop duplicate init_sched_dl_class() declaration
sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target
sched/deadline: Make init_sched_dl_class() __init
sched/deadline: Optimize pull_dl_task()
sched/preempt: Add static_key() to preempt_notifiers
sched/preempt: Fix preempt notifiers documentation about hlist_del() within unsafe iteration
sched/stop_machine: Fix deadlock between multiple stop_two_cpus()
sched/debug: Add sum_sleep_runtime to /proc/<pid>/sched
sched/debug: Replace vruntime with wait_sum in /proc/sched_debug
sched/debug: Properly format runnable tasks in /proc/sched_debug
sched/numa: Only consider less busy nodes as numa balancing destinations
Revert 095bebf61a ("sched/numa: Do not move past the balance point if unbalanced")
sched/fair: Prevent throttling in early pick_next_task_fair()
preempt: Reorganize the notrace definitions a bit
preempt: Use preempt_schedule_context() as the official tracing preemption point
sched: Make preempt_schedule_context() function-tracing safe
x86: Remove cpu_sibling_mask() and cpu_core_mask()
x86: Replace cpu_**_mask() with topology_**_cpumask()
...
Eric reported that the timer_migration sysctl is not really nice
performance wise as it needs to check at every timer insertion whether
the feature is enabled or not. Further the check does not live in the
timer code, so we have an extra function call which checks an extra
cache line to figure out that it is disabled.
We can do better and store that information in the per cpu (hr)timer
bases. I pondered to use a static key, but that's a nightmare to
update from the nohz code and the timer base cache line is hot anyway
when we select a timer base.
The old logic enabled the timer migration unconditionally if
CONFIG_NO_HZ was set even if nohz was disabled on the kernel command
line.
With this modification, we start off with migration disabled. The user
visible sysctl is still set to enabled. If the kernel switches to NOHZ
migration is enabled, if the user did not disable it via the sysctl
prior to the switch. If nohz=off is on the kernel command line,
migration stays disabled no matter what.
Before:
47.76% hog [.] main
14.84% [kernel] [k] _raw_spin_lock_irqsave
9.55% [kernel] [k] _raw_spin_unlock_irqrestore
6.71% [kernel] [k] mod_timer
6.24% [kernel] [k] lock_timer_base.isra.38
3.76% [kernel] [k] detach_if_pending
3.71% [kernel] [k] del_timer
2.50% [kernel] [k] internal_add_timer
1.51% [kernel] [k] get_nohz_timer_target
1.28% [kernel] [k] __internal_add_timer
0.78% [kernel] [k] timerfn
0.48% [kernel] [k] wake_up_nohz_cpu
After:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.127050787@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Resetting the p->dl_throttled flag in rt_mutex_setprio() (for a task that is going
to be boosted) is superfluous, as the natural place to do so is in
replenish_dl_entity().
If the task was on the runqueue and it is boosted by a DL task, it will be enqueued
back with ENQUEUE_REPLENISH flag set, which can guarantee that dl_throttled is
reset in replenish_dl_entity().
This patch drops the resetting of throttled status in function rt_mutex_setprio().
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431496867-4194-6-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
preempt_notifier_unregister() documents:
"This is safe to call from within a preemption notifier."
However, both fire_sched_in_preempt_notifiers() and
fire_sched_out_preempt_notifiers() are using hlist_for_each_entry(),
which is not safe against entry removal during iteration.
Inspection of the KVM code does not reveal any use of
preempt_notifier_unregister() within the preempt notifiers.
Therefore, fix the comment.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431881590-1456-1-git-send-email-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to remove dropping rq->lock from the
switched_{to,from}()/prio_changed() sched_class methods, run the
balance callbacks after it.
We need to remove dropping rq->lock because its buggy,
suppose using sched_setattr()/sched_setscheduler() to change a running
task from FIFO to OTHER.
By the time we get to switched_from_rt() the task is already enqueued
on the cfs runqueues. If switched_from_rt() does pull_rt_task() and
drops rq->lock, load-balancing can come in and move our task @p to
another rq.
The subsequent switched_to_fair() still assumes @p is on @rq and bad
things will happen.
By using balance callbacks we delay the load-balancing operations
{rt,dl}x{push,pull} until we've done all the important work and the
task is fully set up.
Furthermore, the balance callbacks do not know about @p, therefore
they cannot get confused like this.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Link: http://lkml.kernel.org/r/20150611124742.615343911@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
preempt_schedule_context() is a tracing safe preemption point but it's
only used when CONFIG_CONTEXT_TRACKING=y. Other configs have tracing
recursion issues since commit:
b30f0e3ffe ("sched/preempt: Optimize preemption operations on __schedule() callers")
introduced function based preemp_count_*() ops.
Lets make it available on all configs and give it a more appropriate
name for its new position.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433432349-1021-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since function tracing disables preemption, it needs a safe preemption
point to use when preemption is re-enabled without worrying about tracing
recursion. Ie: to avoid tracing recursion, that preemption point can't
be traced (use of notrace qualifier) and it can't call any traceable
function before that preemption point disables preemption itself, which
disarms the recursion.
preempt_schedule() was fine until commit:
b30f0e3ffe ("sched/preempt: Optimize preemption operations on __schedule() callers")
because PREEMPT_ACTIVE (which has the property to disable preemption
and this disarm tracing preemption recursion) was set before calling
any further function.
But that commit introduced the use of preempt_count_add/sub() functions
to set PREEMPT_ACTIVE and because these functions are called before
preemption gets a chance to be disabled, we have a tracing recursion.
preempt_schedule_context() is one of the possible preemption functions
used by tracing. Its special purpose is to avoid tracing recursion
against context tracking. Lets enhance this function to become more
generally tracing safe by disabling preemption with raw accessors, such
that no function is called before preemption gets disabled and disarm
the tracing recursion.
This function is going to become the specific tracing-safe preemption
point in further commit.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433432349-1021-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull block fixes from Jens Axboe:
"Three small fixes that have been picked up the last few weeks.
Specifically:
- Fix a memory corruption issue in NVMe with malignant user
constructed request. From Christoph.
- Kill (now) unused blk_queue_bio(), dm was changed to not need this
anymore. From Mike Snitzer.
- Always use blk_schedule_flush_plug() from the io_schedule() path
when flushing a plug, fixing a !TASK_RUNNING warning with md. From
Shaohua"
* 'for-linus' of git://git.kernel.dk/linux-block:
sched: always use blk_schedule_flush_plug in io_schedule_out
nvme: fix kernel memory corruption with short INQUIRY buffers
block: remove export for blk_queue_bio
__schedule() disables preemption and some of its callers
(the preempt_schedule*() family) also set PREEMPT_ACTIVE.
So we have two preempt_count() modifications that could be performed
at once.
Lets remove the preemption disablement from __schedule() and pull
this responsibility to its callers in order to optimize preempt_count()
operations in a single place.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431441711-29753-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the below two commits (see Fixes) we have periodic timers that can
stop themselves when they're no longer required, but need to be
(re)-started when their idle condition changes.
Further complications is that we want the timer handler to always do
the forward such that it will always correctly deal with the overruns,
and we do not want to race such that the handler has already decided
to stop, but the (external) restart sees the timer still active and we
end up with a 'lost' timer.
The problem with the current code is that the re-start can come before
the callback does the forward, at which point the forward from the
callback will WARN about forwarding an enqueued timer.
Now, conceptually its easy to detect if you're before or after the fwd
by comparing the expiration time against the current time. Of course,
that's expensive (and racy) because we don't have the current time.
Alternatively one could cache this state inside the timer, but then
everybody pays the overhead of maintaining this extra state, and that
is undesired.
The only other option that I could see is the external timer_active
variable, which I tried to kill before. I would love a nicer interface
for this seemingly simple 'problem' but alas.
Fixes: 272325c482 ("perf: Fix mux_interval hrtimer wreckage")
Fixes: 77a4d1a1b9 ("sched: Cleanup bandwidth timers")
Cc: pjt@google.com
Cc: tglx@linutronix.de
Cc: klamm@yandex-team.ru
Cc: mingo@kernel.org
Cc: bsegall@google.com
Cc: hpa@zytor.com
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150514102311.GX21418@twins.programming.kicks-ass.net
Stephane asked about PERF_COUNT_SW_CPU_MIGRATIONS and I realized it
was borken:
> The problem is that the task isn't actually scheduled while its being
> migrated (obviously), and if its not scheduled, the counters aren't
> scheduled either, so there's no observing of the fact.
>
> A further problem with migrations is that many migrations happen from
> softirq context, which is nested inside the 'random' task context of
> whoemever happens to run at that time, similarly for the wakeup
> migrations triggered from (soft)irq context. All those end up being
> accounted in the task that's currently running, eg. your 'ls'.
The below cures this by marking a task as migrated and accounting it
on the subsequent sched_in().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is useful for locking primitives that can effect multiple
wakeups per operation and want to avoid lock internal lock contention
by delaying the wakeups until we've released the lock internal locks.
Alternatively it can be used to avoid issuing multiple wakeups, and
thus save a few cycles, in packet processing. Queue all target tasks
and wakeup once you've processed all packets. That way you avoid
waking the target task multiple times if there were multiple packets
for the same task.
Properties of a wake_q are:
- Lockless, as queue head must reside on the stack.
- Being a queue, maintains wakeup order passed by the callers. This can
be important for otherwise, in scenarios where highly contended locks
could affect any reliance on lock fairness.
- A queued task cannot be added again until it is woken up.
This patch adds the needed infrastructure into the scheduler code
and uses the new wake_list to delay the futex wakeups until
after we've released the hash bucket locks.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[tweaks, adjustments, comments, etc.]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris Mason <clm@fb.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: George Spelvin <linux@horizon.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430494072-30283-2-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'rt_period_us' is automatically type converted from u64 to long and then cast
back to u64 - this down/up conversion is unnecessary and can be removed to
improve readability.
This will also help us not truncate 'rt_period_us' to 32 bits on 32-bit kernels,
should we ever have so large values. (unlikely, not the least due to procfs.)
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430643116-24049-1-git-send-email-hofrat@osadl.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I could not find the loadavg code.. turns out it was hidden in a file
called proc.c. It further got mingled up with the cruft per rq load
indexes (which we really want to get rid of).
Move the per rq load indexes into the fair.c load-balance code (that's
the only thing that uses them) and rename proc.c to loadavg.c so we
can find it again.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Did minor cleanups to the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We removed __cpuinit support (leaving no-op stubs) quite some time
ago. However this one crept back in as of commit a803f0261b
("sched: Initialize rq->age_stamp on processor start")
Since we want to clobber the stubs too, get this removed now.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Corey Minyard <cminyard@mvista.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430174880-27958-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 3c18d447b3 ("sched/core: Check for available DL bandwidth in
cpuset_cpu_inactive()"), a SCHED_DEADLINE bugfix, had a logic error that
caused a regression in setting a CPU inactive during suspend. I ran into
this when a program was failing pthread_setaffinity_np() with EINVAL after
a suspend+wake up.
A simple reproducer:
$ ./a.out
sched_setaffinity: Success
$ systemctl suspend
$ ./a.out
sched_setaffinity: Invalid argument
... where ./a.out is:
#define _GNU_SOURCE
#include <errno.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
int main(void)
{
long num_cores;
cpu_set_t cpu_set;
int ret;
num_cores = sysconf(_SC_NPROCESSORS_ONLN);
CPU_ZERO(&cpu_set);
CPU_SET(num_cores - 1, &cpu_set);
errno = 0;
ret = sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);
perror("sched_setaffinity");
return ret ? EXIT_FAILURE : EXIT_SUCCESS;
}
The mistake is that suspend is handled in the action ==
CPU_DOWN_PREPARE_FROZEN case of the switch statement in
cpuset_cpu_inactive().
However, the commit in question masked out CPU_TASKS_FROZEN
from the action, making this case dead.
The fix is straightforward.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 3c18d447b3 ("sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()")
Link: http://lkml.kernel.org/r/1cb5ecb3d6543c38cce5790387f336f54ec8e2bc.1430733960.git.osandov@osandov.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ronny reported that the following scenario is not handled correctly:
T1 (prio = 10)
lock(rtmutex);
T2 (prio = 20)
lock(rtmutex)
boost T1
T1 (prio = 20)
sys_set_scheduler(prio = 30)
T1 prio = 30
....
sys_set_scheduler(prio = 10)
T1 prio = 30
The last step is wrong as T1 should now be back at prio 20.
Commit c365c292d0 ("sched: Consider pi boosting in setscheduler()")
only handles the case where a boosted tasks tries to lower its
priority.
Fix it by taking the new effective priority into account for the
decision whether a change of the priority is required.
Reported-by: Ronny Meeus <ronny.meeus@gmail.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Fixes: c365c292d0 ("sched: Consider pi boosting in setscheduler()")
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1505051806060.4225@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
nohz_full is only useful with isolcpus are also set, since
otherwise the scheduler has to run periodically to try to
determine whether to steal work from other cores.
Accordingly, when booting with nohz_full=xxx on the command
line, we should act as if isolcpus=xxx was also set, and set
(or extend) the isolcpus set to include the nohz_full cpus.
Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Jones <davej@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430928266-24888-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
TIF_NOHZ is used by context_tracking to force syscall slow-path
on every task in order to track userspace roundtrips. As such,
it must be set on all running tasks.
It's currently explicitly inherited through context switches.
There is no need to do it in this fast-path though. The flag
could simply be set once for all on all tasks, whether they are
running or not.
Lets do this by setting the flag for the init task on early boot,
and let it propagate through fork inheritance.
While at it, mark context_tracking_cpu_set() as init code, we
only need it at early boot time.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Dave Jones <davej@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430928266-24888-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commits 0a4e6be9ca
and 80f7fdb1c7.
The task migration notifier was originally introduced in order to support
the pvclock vsyscall with non-synchronized TSC, but KVM only supports it
with synchronized TSC. Hence, on KVM the race condition is only needed
due to a bad implementation on the host side, and even then it's so rare
that it's mostly theoretical.
As far as KVM is concerned it's possible to fix the host, avoiding the
additional complexity in the vDSO and the (re)introduction of the task
migration notifier.
Xen, on the other hand, hasn't yet implemented vsyscall support at
all, so we do not care about its plans for non-synchronized TSC.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Roman reported a 3 cpu lockup scenario involving __start_cfs_bandwidth().
The more I look at that code the more I'm convinced its crack, that
entire __start_cfs_bandwidth() thing is brain melting, we don't need to
cancel a timer before starting it, *hrtimer_start*() will happily remove
the timer for you if its still enqueued.
Removing that, removes a big part of the problem, no more ugly cancel
loop to get stuck in.
So now, if I understand things right, the entire reason you have this
cfs_b->lock guarded ->timer_active nonsense is to make sure we don't
accidentally lose the timer.
It appears to me that it should be possible to guarantee that same by
unconditionally (re)starting the timer when !queued. Because regardless
what hrtimer::function will return, if we beat it to (re)enqueue the
timer, it doesn't matter.
Now, because hrtimers don't come with any serialization guarantees we
must ensure both handler and (re)start loop serialize their access to
the hrtimer to avoid both trying to forward the timer at the same
time.
Update the rt bandwidth timer to match.
This effectively reverts: 09dc4ab039 ("sched/fair: Fix
tg_set_cfs_bandwidth() deadlock on rq->lock").
Reported-by: Roman Gushchin <klamm@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415095011.804589208@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer_start() now enforces a timer interrupt when an already expired
timer is enqueued.
Get rid of the __hrtimer_start_range_ns() invocations and the loops
around it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.531131739@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull NOHZ changes from Ingo Molnar:
"This tree adds full dynticks support to KVM guests (support the
disabling of the timer tick on the guest). The main missing piece was
the recognition of guest execution as RCU extended quiescent state and
related changes"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kvm,rcu,nohz: use RCU extended quiescent state when running KVM guest
context_tracking: Export context_tracking_user_enter/exit
context_tracking: Run vtime_user_enter/exit only when state == CONTEXT_USER
context_tracking: Add stub context_tracking_is_enabled
context_tracking: Generalize context tracking APIs to support user and guest
context_tracking: Rename context symbols to prepare for transition state
ppc: Remove unused cpp symbols in kvm headers
Pull cgroup updates from Tejun Heo:
"Nothing too interesting. Rik made cpuset cooperate better with
isolcpus and there are several other cleanup patches"
* 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset, isolcpus: document relationship between cpusets & isolcpus
cpusets, isolcpus: exclude isolcpus from load balancing in cpusets
sched, isolcpu: make cpu_isolated_map visible outside scheduler
cpuset: initialize cpuset a bit early
cgroup: Use kvfree in pidlist_free()
cgroup: call cgroup_subsys->bind on cgroup subsys initialization
Pull scheduler changes from Ingo Molnar:
"Major changes:
- Reworked CPU capacity code, for better SMP load balancing on
systems with assymetric CPUs. (Vincent Guittot, Morten Rasmussen)
- Reworked RT task SMP balancing to be push based instead of pull
based, to reduce latencies on large CPU count systems. (Steven
Rostedt)
- SCHED_DEADLINE support updates and fixes. (Juri Lelli)
- SCHED_DEADLINE task migration support during CPU hotplug. (Wanpeng Li)
- x86 mwait-idle optimizations and fixes. (Mike Galbraith, Len Brown)
- sched/numa improvements. (Rik van Riel)
- various cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
sched/core: Drop debugging leftover trace_printk call
sched/deadline: Support DL task migration during CPU hotplug
sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()
sched/deadline: Always enqueue on previous rq when dl_task_timer() fires
sched/core: Remove unused argument from init_[rt|dl]_rq()
sched/deadline: Fix rt runtime corruption when dl fails its global constraints
sched/deadline: Avoid a superfluous check
sched: Improve load balancing in the presence of idle CPUs
sched: Optimize freq invariant accounting
sched: Move CFS tasks to CPUs with higher capacity
sched: Add SD_PREFER_SIBLING for SMT level
sched: Remove unused struct sched_group_capacity::capacity_orig
sched: Replace capacity_factor by usage
sched: Calculate CPU's usage statistic and put it into struct sg_lb_stats::group_usage
sched: Add struct rq::cpu_capacity_orig
sched: Make scale_rt invariant with frequency
sched: Make sched entity usage tracking scale-invariant
sched: Remove frequency scaling from cpu_capacity
sched: Track group sched_entity usage contributions
sched: Add sched_avg::utilization_avg_contrib
...
ARM/ARM64: fixes for live migration, irqfd and ioeventfd support (enabling
vhost, too), page aging
s390: interrupt handling rework, allowing to inject all local interrupts
via new ioctl and to get/set the full local irq state for migration
and introspection. New ioctls to access memory by virtual address,
and to get/set the guest storage keys. SIMD support.
MIPS: FPU and MIPS SIMD Architecture (MSA) support. Includes some patches
from Ralf Baechle's MIPS tree.
x86: bugfixes (notably for pvclock, the others are small) and cleanups.
Another small latency improvement for the TSC deadline timer.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJVJ9vmAAoJEL/70l94x66DoMEH/R3rh8IMf4jTiWRkcqohOMPX
k1+NaSY/lCKayaSgggJ2hcQenMbQoXEOdslvaA/H0oC+VfJGK+lmU6E63eMyyhjQ
Y+Px6L85NENIzDzaVu/TIWWuhil5PvIRr3VO8cvntExRoCjuekTUmNdOgCvN2ObW
wswN2qRdPIeEj2kkulbnye+9IV4G0Ne9bvsmUdOdfSSdi6ZcV43JcvrpOZT++mKj
RrKB+3gTMZYGJXMMLBwMkdl8mK1ozriD+q0mbomT04LUyGlPwYLl4pVRDBqyksD7
KsSSybaK2E4i5R80WEljgDMkNqrCgNfg6VZe4n9Y+CfAAOToNnkMJaFEi+yuqbs=
=yu2b
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"First batch of KVM changes for 4.1
The most interesting bit here is irqfd/ioeventfd support for ARM and
ARM64.
Summary:
ARM/ARM64:
fixes for live migration, irqfd and ioeventfd support (enabling
vhost, too), page aging
s390:
interrupt handling rework, allowing to inject all local interrupts
via new ioctl and to get/set the full local irq state for migration
and introspection. New ioctls to access memory by virtual address,
and to get/set the guest storage keys. SIMD support.
MIPS:
FPU and MIPS SIMD Architecture (MSA) support. Includes some
patches from Ralf Baechle's MIPS tree.
x86:
bugfixes (notably for pvclock, the others are small) and cleanups.
Another small latency improvement for the TSC deadline timer"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (146 commits)
KVM: use slowpath for cross page cached accesses
kvm: mmu: lazy collapse small sptes into large sptes
KVM: x86: Clear CR2 on VCPU reset
KVM: x86: DR0-DR3 are not clear on reset
KVM: x86: BSP in MSR_IA32_APICBASE is writable
KVM: x86: simplify kvm_apic_map
KVM: x86: avoid logical_map when it is invalid
KVM: x86: fix mixed APIC mode broadcast
KVM: x86: use MDA for interrupt matching
kvm/ppc/mpic: drop unused IRQ_testbit
KVM: nVMX: remove unnecessary double caching of MAXPHYADDR
KVM: nVMX: checks for address bits beyond MAXPHYADDR on VM-entry
KVM: x86: cache maxphyaddr CPUID leaf in struct kvm_vcpu
KVM: vmx: pass error code with internal error #2
x86: vdso: fix pvclock races with task migration
KVM: remove kvm_read_hva and kvm_read_hva_atomic
KVM: x86: optimize delivery of TSC deadline timer interrupt
KVM: x86: extract blocking logic from __vcpu_run
kvm: x86: fix x86 eflags fixed bit
KVM: s390: migrate vcpu interrupt state
...
Commit:
3c18d447b3 ("sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()")
forgot a trace_printk() debugging piece in and Steve's banner screamed
in dmesg. Remove it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1428050570-21041-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hotplug operations are destructive w.r.t. cpusets. In case such an
operation is performed on a CPU belonging to an exlusive cpuset, the
DL bandwidth information associated with the corresponding root
domain is gone even if the operation fails (in sched_cpu_inactive()).
For this reason we need to move the check we currently have in
sched_cpu_inactive() to cpuset_cpu_inactive() to prevent useless
cpusets reconfiguration in the CPU_DOWN_FAILED path.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Link: http://lkml.kernel.org/r/1427792017-7356-2-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Obviously, 'rq' is not used in these two functions, therefore,
there is no reason for it to be passed as an argument.
Signed-off-by: Abel Vesa <abelvesa@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1425383427-26244-1-git-send-email-abelvesa@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
One version of sched_rt_global_constaints() (the !rt-cgroup one)
changes state, therefore if we fail the later sched_dl_global_constraints()
call the state is left in an inconsistent state.
Fix this by changing the order of the calls.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
[ Improved the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Link: http://lkml.kernel.org/r/1426590931-4639-2-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This new field 'cpu_capacity_orig' reflects the original capacity of a CPU
before being altered by rt tasks and/or IRQ
The cpu_capacity_orig will be used:
- to detect when the capacity of a CPU has been noticeably reduced so we can
trig load balance to look for a CPU with better capacity. As an example, we
can detect when a CPU handles a significant amount of irq
(with CONFIG_IRQ_TIME_ACCOUNTING) but this CPU is seen as an idle CPU by
scheduler whereas CPUs, which are really idle, are available.
- evaluate the available capacity for CFS tasks
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following point:
2. per-CPU pvclock time info is updated if the
underlying CPU changes.
Is not true anymore since "KVM: x86: update pvclock area conditionally,
on cpu migration".
Add task migration notification back.
Problem noticed by Andy Lutomirski.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
CC: stable@kernel.org # 3.11+
When non-realtime tasks get priority-inheritance boosted to a realtime
scheduling class, RLIMIT_RTTIME starts to apply to them. However, the
counter used for checking this (the same one used for SCHED_RR
timeslices) was not getting reset. This meant that tasks running with a
non-realtime scheduling class which are repeatedly boosted to a realtime
one, but never block while they are running realtime, eventually hit the
timeout without ever running for a time over the limit. This patch
resets the realtime timeslice counter when un-PI-boosting from an RT to
a non-RT scheduling class.
I have some test code with two threads and a shared PTHREAD_PRIO_INHERIT
mutex which induces priority boosting and spins while boosted that gets
killed by a SIGXCPU on non-fixed kernels but doesn't with this patch
applied. It happens much faster with a CONFIG_PREEMPT_RT kernel, and
does happen eventually with PREEMPT_VOLUNTARY kernels.
Signed-off-by: Brian Silverman <brian@peloton-tech.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: austin@peloton-tech.com
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1424305436-6716-1-git-send-email-brian@peloton-tech.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Needed by the next patch. Also makes cpu_isolated_map present
when compiled without SMP and/or with CONFIG_NR_CPUS=1, like
the other cpu masks.
At some point we may want to clean things up so cpumasks do
not exist in UP kernels. Maybe something for the CONFIG_TINY
crowd.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: cgroups@vger.kernel.org
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Current context tracking symbols are designed to express living state.
As such they are prefixed with "IN_": IN_USER, IN_KERNEL.
Now we are going to use these symbols to also express state transitions
such as context_tracking_enter(IN_USER) or context_tracking_exit(IN_USER).
But while the "IN_" prefix works well to express entering a context, it's
confusing to depict a context exit: context_tracking_exit(IN_USER)
could mean two things:
1) We are exiting the current context to enter user context.
2) We are exiting the user context
We want 2) but the reviewer may be confused and understand 1)
So lets disambiguate these symbols and rename them to CONTEXT_USER and
CONTEXT_KERNEL.
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Will deacon <will.deacon@arm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull scheduler fixes from Ingo Molnar:
"Thiscontains misc fixes: preempt_schedule_common() and io_schedule()
recursion fixes, sched/dl fixes, a completion_done() revert, two
sched/rt fixes and a comment update patch"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/rt: Avoid obvious configuration fail
sched/autogroup: Fix failure to set cpu.rt_runtime_us
sched/dl: Do update_rq_clock() in yield_task_dl()
sched: Prevent recursion in io_schedule()
sched/completion: Serialize completion_done() with complete()
sched: Fix preempt_schedule_common() triggering tracing recursion
sched/dl: Prevent enqueue of a sleeping task in dl_task_timer()
sched: Make dl_task_time() use task_rq_lock()
sched: Clarify ordering between task_rq_lock() and move_queued_task()
If the CPU is running a realtime task that does not round-robin
with another realtime task of equal priority, there is no point
in keeping the scheduler tick going. After all, whenever the
scheduler tick runs, the kernel will just decide not to
reschedule.
Extend sched_can_stop_tick() to recognize these situations, and
inform the rest of the kernel that the scheduler tick can be
stopped.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: fweisbec@redhat.com
Cc: mtosatti@redhat.com
Link: http://lkml.kernel.org/r/20150216152349.6a8ed824@annuminas.surriel.com
[ Small cleanliness tweak. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Setting the root group's cpu.rt_runtime_us to 0 is a bad thing; it
would disallow the kernel creating RT tasks.
One can of course still set it to 1, which will (likely) still wreck
your kernel, but at least make it clear that setting it to 0 is not
good.
Collect both sanity checks into the one place while we're there.
Suggested-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150209112715.GO24151@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because task_group() uses a cache of autogroup_task_group(), whose
output depends on sched_class, switching classes can generate
problems.
In particular, when started as fair, the cache points to the
autogroup, so when switching to RT the tg_rt_schedulable() test fails
for every cpu.rt_{runtime,period}_us change because now the autogroup
has tasks and no runtime.
Furthermore, going back to the previous semantics of varying
task_group() with sched_class has the down-side that the sched_debug
output varies as well, even though the task really is in the
autogroup.
Therefore add an autogroup exception to tg_has_rt_tasks() -- such that
both (all) task_group() usages in sched/core now have one. And remove
all the remnants of the variable task_group() output.
Reported-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Stefan Bader <stefan.bader@canonical.com>
Fixes: 8323f26ce3 ("sched: Fix race in task_group()")
Link: http://lkml.kernel.org/r/20150209112237.GR5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
io_schedule() calls blk_flush_plug() which, depending on the
contents of current->plug, can initiate arbitrary blk-io requests.
Note that this contrasts with blk_schedule_flush_plug() which requires
all non-trivial work to be handed off to a separate thread.
This makes it possible for io_schedule() to recurse, and initiating
block requests could possibly call mempool_alloc() which, in times of
memory pressure, uses io_schedule().
Apart from any stack usage issues, io_schedule() will not behave
correctly when called recursively as delayacct_blkio_start() does
not allow for repeated calls.
So:
- use ->in_iowait to detect recursion. Set it earlier, and restore
it to the old value.
- move the call to "raw_rq" after the call to blk_flush_plug().
As this is some sort of per-cpu thing, we want some chance that
we are on the right CPU
- When io_schedule() is called recurively, use blk_schedule_flush_plug()
which cannot further recurse.
- as this makes io_schedule() a lot more complex and as io_schedule()
must match io_schedule_timeout(), but all the changes in io_schedule_timeout()
and make io_schedule a simple wrapper for that.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ Moved the now rudimentary io_schedule() into sched.h. ]
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Link: http://lkml.kernel.org/r/20150213162600.059fffb2@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the function graph tracer needs to disable preemption, it might
call preempt_schedule() after reenabling it if something triggered the
need for rescheduling in between.
Therefore we can't trace preempt_schedule() itself because we would
face a function tracing recursion otherwise as the tracer is always
called before PREEMPT_ACTIVE gets set to prevent that recursion. This is
why preempt_schedule() is tagged as "notrace".
But the same issue applies to every function called by preempt_schedule()
before PREEMPT_ACTIVE is actually set. And preempt_schedule_common() is
one such example. Unfortunately we forgot to tag it as notrace as well
and as a result we are encountering tracing recursion since it got
introduced by:
a18b5d0181 ("sched: Fix missing preemption opportunity")
Let's fix that by applying the appropriate function tag to
preempt_schedule_common().
Reported-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1424110807-15057-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kirill reported that a dl task can be throttled and dequeued at the
same time. This happens, when it becomes throttled in schedule(),
which is called to go to sleep:
current->state = TASK_INTERRUPTIBLE;
schedule()
deactivate_task()
dequeue_task_dl()
update_curr_dl()
start_dl_timer()
__dequeue_task_dl()
prev->on_rq = 0;
This invalidates the assumption from commit 0f397f2c90 ("sched/dl:
Fix race in dl_task_timer()"):
"The only reason we don't strictly need ->pi_lock now is because
we're guaranteed to have p->state == TASK_RUNNING here and are
thus free of ttwu races".
And therefore we have to use the full task_rq_lock() here.
This further amends the fact that we forgot to update the rq lock loop
for TASK_ON_RQ_MIGRATE, from commit cca26e8009 ("sched: Teach
scheduler to understand TASK_ON_RQ_MIGRATING state").
Reported-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Link: http://lkml.kernel.org/r/20150217123139.GN5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There was a wee bit of confusion around the exact ordering here;
clarify things.
Reported-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20150217121258.GM5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main scheduler changes in this cycle were:
- various sched/deadline fixes and enhancements
- rescheduling latency fixes/cleanups
- rework the rq->clock code to be more consistent and more robust.
- minor micro-optimizations
- ->avg.decay_count fixes
- add a stack overflow check to might_sleep()
- idle-poll handler fix, possibly resulting in power savings
- misc smaller updates and fixes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/Documentation: Remove unneeded word
sched/wait: Introduce wait_on_bit_timeout()
sched: Pull resched loop to __schedule() callers
sched/deadline: Remove cpu_active_mask from cpudl_find()
sched: Fix hrtick_start() on UP
sched/deadline: Avoid pointless __setscheduler()
sched/deadline: Fix stale yield state
sched/deadline: Fix hrtick for a non-leftmost task
sched/deadline: Modify cpudl::free_cpus to reflect rd->online
sched/idle: Add missing checks to the exit condition of cpu_idle_poll()
sched: Fix missing preemption opportunity
sched/rt: Reduce rq lock contention by eliminating locking of non-feasible target
sched/debug: Print rq->clock_task
sched/core: Rework rq->clock update skips
sched/core: Validate rq_clock*() serialization
sched/core: Remove check of p->sched_class
sched/fair: Fix sched_entity::avg::decay_count initialization
sched/debug: Fix potential call to __ffs(0) in sched_show_task()
sched/debug: Check for stack overflow in ___might_sleep()
sched/fair: Fix the dealing with decay_count in __synchronize_entity_decay()
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- AMD range breakpoints support:
Extend breakpoint tools and core to support address range through
perf event with initial backend support for AMD extended
breakpoints.
The syntax is:
perf record -e mem:addr/len:type
For example set write breakpoint from 0x1000 to 0x1200 (0x1000 + 512)
perf record -e mem:0x1000/512:w
- event throttling/rotating fixes
- various event group handling fixes, cleanups and general paranoia
code to be more robust against bugs in the future.
- kernel stack overhead fixes
User-visible tooling side changes:
- Show precise number of samples in at the end of a 'record' session,
if processing build ids, since we will then traverse the whole
perf.data file and see all the PERF_RECORD_SAMPLE records,
otherwise stop showing the previous off-base heuristicly counted
number of "samples" (Namhyung Kim).
- Support to read compressed module from build-id cache (Namhyung
Kim)
- Enable sampling loads and stores simultaneously in 'perf mem'
(Stephane Eranian)
- 'perf diff' output improvements (Namhyung Kim)
- Fix error reporting for evsel pgfault constructor (Arnaldo Carvalho
de Melo)
Tooling side infrastructure changes:
- Cache eh/debug frame offset for dwarf unwind (Namhyung Kim)
- Support parsing parameterized events (Cody P Schafer)
- Add support for IP address formats in libtraceevent (David Ahern)
Plus other misc fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
perf: Decouple unthrottling and rotating
perf: Drop module reference on event init failure
perf: Use POLLIN instead of POLL_IN for perf poll data in flag
perf: Fix put_event() ctx lock
perf: Fix move_group() order
perf: Fix event->ctx locking
perf: Add a bit of paranoia
perf symbols: Convert lseek + read to pread
perf tools: Use perf_data_file__fd() consistently
perf symbols: Support to read compressed module from build-id cache
perf evsel: Set attr.task bit for a tracking event
perf header: Set header version correctly
perf record: Show precise number of samples
perf tools: Do not use __perf_session__process_events() directly
perf callchain: Cache eh/debug frame offset for dwarf unwind
perf tools: Provide stub for missing pthread_attr_setaffinity_np
perf evsel: Don't rely on malloc working for sz 0
tools lib traceevent: Add support for IP address formats
perf ui/tui: Show fatal error message only if exists
perf tests: Fix typo in sample-parsing.c
...
Pull scheduler fixes from Ingo Molnar:
"Misc fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Fix deadline parameter modification handling
sched/wait: Remove might_sleep() from wait_event_cmd()
sched: Fix crash if cpuset_cpumask_can_shrink() is passed an empty cpumask
sched/fair: Avoid using uninitialized variable in preferred_group_nid()
__schedule() disables preemption during its job and re-enables it
afterward without doing a preemption check to avoid recursion.
But if an event happens after the context switch which requires
rescheduling, we need to check again if a task of a higher priority
needs the CPU. A preempt irq can raise such a situation. To handle that,
__schedule() loops on need_resched().
But preempt_schedule_*() functions, which call __schedule(), also loop
on need_resched() to handle missed preempt irqs. Hence we end up with
the same loop happening twice.
Lets simplify that by attributing the need_resched() loop responsibility
to all __schedule() callers.
There is a risk that the outer loop now handles reschedules that used
to be handled by the inner loop with the added overhead of caller details
(inc/dec of PREEMPT_ACTIVE, irq save/restore) but assuming those inner
rescheduling loop weren't too frequent, this shouldn't matter. Especially
since the whole preemption path is now losing one loop in any case.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1422404652-29067-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The commit 177ef2a631 ("sched/deadline: Fix a precision problem in
the microseconds range") forgot to change the UP version of
hrtick_start(), do so now.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Fixes: 177ef2a631 ("sched/deadline: Fix a precision problem in the microseconds range")
[ Fixed the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1416962647-76792-7-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no need to dequeue/enqueue and push/pull if there are
no scheduling parameters changed for the DL class.
Both fair and RT classes already check if parameters changed for
them to avoid unnecessary overhead. This patch add the parameters
changed test for the DL class in order to reduce overhead.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
[ Fixed up the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1416962647-76792-5-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 67dfa1b756 ("sched/deadline: Implement cancel_dl_timer() to
use in switched_from_dl()") removed the hrtimer_try_cancel() function
call out from init_dl_task_timer(), which gets called from
__setparam_dl().
The result is that we can now re-init the timer while its active --
this is bad and corrupts timer state.
Furthermore; changing the parameters of an active deadline task is
tricky in that you want to maintain guarantees, while immediately
effective change would allow one to circumvent the CBS guarantees --
this too is bad, as one (bad) task should not be able to affect the
others.
Rework things to avoid both problems. We only need to initialize the
timer once, so move that to __sched_fork() for new tasks.
Then make sure __setparam_dl() doesn't affect the current running
state but only updates the parameters used to calculate the next
scheduling period -- this guarantees the CBS functions as expected
(albeit slightly pessimistic).
This however means we need to make sure __dl_clear_params() needs to
reset the active state otherwise new (and tasks flipping between
classes) will not properly (re)compute their first instance.
Todo: close class flipping CBS hole.
Todo: implement delayed BW release.
Reported-by: Luca Abeni <luca.abeni@unitn.it>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Fixes: 67dfa1b756 ("sched/deadline: Implement cancel_dl_timer() to use in switched_from_dl()")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150128140803.GF23038@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 8eb23b9f35 ("sched: Debug nested sleeps") added code to report
on nested sleep conditions, which we generally want to avoid because the
inner sleeping operation can re-set the thread state to TASK_RUNNING,
but that will then cause the outer sleep loop not actually sleep when it
calls schedule.
However, that's actually valid traditional behavior, with the inner
sleep being some fairly rare case (like taking a sleeping lock that
normally doesn't actually need to sleep).
And the debug code would actually change the state of the task to
TASK_RUNNING internally, which makes that kind of traditional and
working code not work at all, because now the nested sleep doesn't just
sometimes cause the outer one to not block, but will cause it to happen
every time.
In particular, it will cause the cardbus kernel daemon (pccardd) to
basically busy-loop doing scheduling, converting a laptop into a heater,
as reported by Bruno Prémont. But there may be other legacy uses of
that nested sleep model in other drivers that are also likely to never
get converted to the new model.
This fixes both cases:
- don't set TASK_RUNNING when the nested condition happens (note: even
if WARN_ONCE() only _warns_ once, the return value isn't whether the
warning happened, but whether the condition for the warning was true.
So despite the warning only happening once, the "if (WARN_ON(..))"
would trigger for every nested sleep.
- in the cases where we knowingly disable the warning by using
"sched_annotate_sleep()", don't change the task state (that is used
for all core scheduling decisions), instead use '->task_state_change'
that is used for the debugging decision itself.
(Credit for the second part of the fix goes to Oleg Nesterov: "Can't we
avoid this subtle change in behaviour DEBUG_ATOMIC_SLEEP adds?" with the
suggested change to use 'task_state_change' as part of the test)
Reported-and-bisected-by: Bruno Prémont <bonbons@linux-vserver.org>
Tested-by: Rafael J Wysocki <rjw@rjwysocki.net>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>,
Cc: Ilya Dryomov <ilya.dryomov@inktank.com>,
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Hurley <peter@hurleysoftware.com>,
Cc: Davidlohr Bueso <dave@stgolabs.net>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If an interrupt fires in cond_resched(), between the call to __schedule()
and the PREEMPT_ACTIVE count decrementation, and that interrupt sets
TIF_NEED_RESCHED, the call to preempt_schedule_irq() will be ignored
due to the PREEMPT_ACTIVE count. This kind of scenario, with irq preemption
being delayed because it's interrupting a preempt-disabled area, is
usually fixed up after preemption is re-enabled back with an explicit
call to preempt_schedule().
This is what preempt_enable() does but a raw preempt count decrement as
performed by __preempt_count_sub(PREEMPT_ACTIVE) doesn't handle delayed
preemption check. Therefore when such a race happens, the rescheduling
is going to be delayed until the next scheduler or preemption entrypoint.
This can be a problem for scheduler latency sensitive workloads.
Lets fix that by consolidating cond_resched() with preempt_schedule()
internals.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Ingo Molnar <mingo@kernel.org>
Original-patch-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1421946484-9298-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both Linus (most recent) and Steve (a while ago) reported that perf
related callbacks have massive stack bloat.
The problem is that software events need a pt_regs in order to
properly report the event location and unwind stack. And because we
could not assume one was present we allocated one on stack and filled
it with minimal bits required for operation.
Now, pt_regs is quite large, so this is undesirable. Furthermore it
turns out that most sites actually have a pt_regs pointer available,
making this even more onerous, as the stack space is pointless waste.
This patch addresses the problem by observing that software events
have well defined nesting semantics, therefore we can use static
per-cpu storage instead of on-stack.
Linus made the further observation that all but the scheduler callers
of perf_sw_event() have a pt_regs available, so we change the regular
perf_sw_event() to require a valid pt_regs (where it used to be
optional) and add perf_sw_event_sched() for the scheduler.
We have a scheduler specific call instead of a more generic _noregs()
like construct because we can assume non-recursion from the scheduler
and thereby simplify the code further (_noregs would have to put the
recursion context call inline in order to assertain which __perf_regs
element to use).
One last note on the implementation of perf_trace_buf_prepare(); we
allow .regs = NULL for those cases where we already have a pt_regs
pointer available and do not need another.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Javi Merino <javi.merino@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.cz>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Link: http://lkml.kernel.org/r/20141216115041.GW3337@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The original purpose of rq::skip_clock_update was to avoid 'costly' clock
updates for back to back wakeup-preempt pairs. The big problem with it
has always been that the rq variable is unaware of the context and
causes indiscrimiate clock skips.
Rework the entire thing and create a sense of context by only allowing
schedule() to skip clock updates. (XXX can we measure the cost of the
added store?)
By ensuring only schedule can ever skip an update, we guarantee we're
never more than 1 tick behind on the update.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150105103554.432381549@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Search all usage of p->sched_class in sched/core.c, no one check it
before use, so it seems that every task must belong to one sched_class.
Signed-off-by: Yao Dongdong <yaodongdong@huawei.com>
[ Moved the early class assignment to make it boot. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1419835303-28958-1-git-send-email-yaodongdong@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Child has the same decay_count as parent. If it's not zero,
we add it to parent's cfs_rq->removed_load:
wake_up_new_task()->set_task_cpu()->migrate_task_rq_fair().
Child's load is a just garbade after copying of parent,
it hasn't been on cfs_rq yet, and it must not be added to
cfs_rq::removed_load in migrate_task_rq_fair().
The patch moves sched_entity::avg::decay_count intialization
in sched_fork(). So, migrate_task_rq_fair() does not change
removed_load.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418644618.6074.13.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
"struct task_struct"->state is "volatile long" and __ffs() warns that
"Undefined if no bit exists, so code should check against 0 first."
Therefore, at expression
state = p->state ? __ffs(p->state) + 1 : 0;
in sched_show_task(), CPU might see "p->state" before "?" as "non-zero"
but "p->state" after "?" as "zero", which could result in
"state >= sizeof(stat_nam)" being true and bogus '?' is printed.
This patch changes "state" from "unsigned int" to "unsigned long" and
save "p->state" before calling __ffs(), in order to avoid potential call
to __ffs(0).
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/201412052131.GCE35924.FVHFOtLOJOMQFS@I-love.SAKURA.ne.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes a "BUG: sleeping function called from invalid context"
message is not indicative of locking problems, but is the result
of a stack overflow corrupting the thread info.
Witness http://oss.sgi.com/archives/xfs/2014-02/msg00325.html
for example, which took a few go-rounds to sort out.
If we're printing the warning, things are wonky already, and
it'd be informative to check for the stack end corruption at this
point, too.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/5490B158.4060005@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When allocating space for load_balance_mask, in sched_init, when
CPUMASK_OFFSTACK is set, we've managed to spill over
KMALLOC_MAX_SIZE on our 6144 core machine. The patch below
breaks up the allocations so that they don't overflow the max
alloc size. It also allocates the masks on the the node from
which they'll most commonly be accessed, to minimize remote
accesses on NUMA machines.
Suggested-by: George Beshers <gbeshers@sgi.com>
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Cc: George Beshers <gbeshers@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418928270-148543-1-git-send-email-athorlton@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
rcu_read_lock() can not protect p->real_parent if release_task(p) was
already called, change sched_show_task() to check pis_alive() like other
users do.
Note: we need some helpers to cleanup the code like this. And it seems
that that the usage of cpu_curr(cpu) in dump_cpu_task() is not safe too.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>,
Cc: Sterling Alexander <stalexan@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Roland McGrath <roland@hack.frob.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- 'Nested Sleep Debugging', activated when CONFIG_DEBUG_ATOMIC_SLEEP=y.
This instruments might_sleep() checks to catch places that nest
blocking primitives - such as mutex usage in a wait loop. Such
bugs can result in hard to debug races/hangs.
Another category of invalid nesting that this facility will detect
is the calling of blocking functions from within schedule() ->
sched_submit_work() -> blk_schedule_flush_plug().
There's some potential for false positives (if secondary blocking
primitives themselves are not ready yet for this facility), but the
kernel will warn once about such bugs per bootup, so the warning
isn't much of a nuisance.
This feature comes with a number of fixes, for problems uncovered
with it, so no messages are expected normally.
- Another round of sched/numa optimizations and refinements, for
CONFIG_NUMA_BALANCING=y.
- Another round of sched/dl fixes and refinements.
Plus various smaller fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched: Add missing rcu protection to wake_up_all_idle_cpus
sched/deadline: Introduce start_hrtick_dl() for !CONFIG_SCHED_HRTICK
sched/numa: Init numa balancing fields of init_task
sched/deadline: Remove unnecessary definitions in cpudeadline.h
sched/cpupri: Remove unnecessary definitions in cpupri.h
sched/deadline: Fix rq->dl.pushable_tasks bug in push_dl_task()
sched/fair: Fix stale overloaded status in the busiest group finding logic
sched: Move p->nr_cpus_allowed check to select_task_rq()
sched/completion: Document when to use wait_for_completion_io_*()
sched: Update comments about CLONE_NEWUTS and CLONE_NEWIPC
sched/fair: Kill task_struct::numa_entry and numa_group::task_list
sched: Refactor task_struct to use numa_faults instead of numa_* pointers
sched/deadline: Don't check CONFIG_SMP in switched_from_dl()
sched/deadline: Reschedule from switched_from_dl() after a successful pull
sched/deadline: Push task away if the deadline is equal to curr during wakeup
sched/deadline: Add deadline rq status print
sched/deadline: Fix artificial overrun introduced by yield_task_dl()
sched/rt: Clean up check_preempt_equal_prio()
sched/core: Use dl_bw_of() under rcu_read_lock_sched()
sched: Check if we got a shallowest_idle_cpu before searching for least_loaded_cpu
...
Pull RCU updates from Ingo Molnar:
"These are the main changes in this cycle:
- Streamline RCU's use of per-CPU variables, shifting from "cpu"
arguments to functions to "this_"-style per-CPU variable
accessors.
- signal-handling RCU updates.
- real-time updates.
- torture-test updates.
- miscellaneous fixes.
- documentation updates"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
rcu: Fix FIXME in rcu_tasks_kthread()
rcu: More info about potential deadlocks with rcu_read_unlock()
rcu: Optimize cond_resched_rcu_qs()
rcu: Add sparse check for RCU_INIT_POINTER()
documentation: memory-barriers.txt: Correct example for reorderings
documentation: Add atomic_long_t to atomic_ops.txt
documentation: Additional restriction for control dependencies
documentation: Document RCU self test boot params
rcutorture: Fix rcu_torture_cbflood() memory leak
rcutorture: Remove obsolete kversion param in kvm.sh
rcutorture: Remove stale test configurations
rcutorture: Enable RCU self test in configs
rcutorture: Add early boot self tests
torture: Run Linux-kernel binary out of results directory
cpu: Avoid puts_pending overflow
rcu: Remove "cpu" argument to rcu_cleanup_after_idle()
rcu: Remove "cpu" argument to rcu_prepare_for_idle()
rcu: Remove "cpu" argument to rcu_needs_cpu()
rcu: Remove "cpu" argument to rcu_note_context_switch()
rcu: Remove "cpu" argument to rcu_preempt_check_callbacks()
...
Locklessly doing is_idle_task(rq->curr) is only okay because of
RCU protection. The older variant of the broken code checked
rq->curr == rq->idle instead and therefore didn't need RCU.
Fixes: f6be8af1c9 ("sched: Add new API wake_up_if_idle() to wake up the idle cpu")
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Chuansheng Liu <chuansheng.liu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/729365dddca178506dfd0a9451006344cd6808bc.1417277372.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It appears that some SCHEDULE_USER (asm for schedule_user) callers
in arch/x86/kernel/entry_64.S are called from RCU kernel context,
and schedule_user will return in RCU user context. This causes RCU
warnings and possible failures.
This is intended to be a minimal fix suitable for 3.18.
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the p->nr_cpus_allowed check into kernel/sched/core.c: select_task_rq().
This change will make fair.c, rt.c, and deadline.c all start with the
same logic.
Suggested-and-Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "pang.xunlei" <pang.xunlei@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415150077-59053-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit d670ec1317 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc
test case in cost of breaking another one. After that commit, calling
clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result
of Y time being smaller than X time.
Reproducer/tester can be found further below, it can be compiled and ran by:
gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread
while ./tst-cpuclock2 ; do : ; done
This reproducer, when running on a buggy kernel, will complain
about "clock_gettime difference too small".
Issue happens because on start in thread_group_cputimer() we initialize
sum_exec_runtime of cputimer with threads runtime not yet accounted and
then add the threads runtime to running cputimer again on scheduler
tick, making it's sum_exec_runtime bigger than actual threads runtime.
KOSAKI Motohiro posted a fix for this problem, but that patch was never
applied: https://lkml.org/lkml/2013/5/26/191 .
This patch takes different approach to cure the problem. It calls
update_curr() when cputimer starts, that assure we will have updated
stats of running threads and on the next schedule tick we will account
only the runtime that elapsed from cputimer start. That also assure we
have consistent state between cpu times of individual threads and cpu
time of the process consisted by those threads.
Full reproducer (tst-cpuclock2.c):
#define _GNU_SOURCE
#include <unistd.h>
#include <sys/syscall.h>
#include <stdio.h>
#include <time.h>
#include <pthread.h>
#include <stdint.h>
#include <inttypes.h>
/* Parameters for the Linux kernel ABI for CPU clocks. */
#define CPUCLOCK_SCHED 2
#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
((~(clockid_t) (pid) << 3) | (clockid_t) (clock))
static pthread_barrier_t barrier;
/* Help advance the clock. */
static void *chew_cpu(void *arg)
{
pthread_barrier_wait(&barrier);
while (1) ;
return NULL;
}
/* Don't use the glibc wrapper. */
static int do_nanosleep(int flags, const struct timespec *req)
{
clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED);
return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL);
}
static int64_t tsdiff(const struct timespec *before, const struct timespec *after)
{
int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec;
int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec;
return after_i - before_i;
}
int main(void)
{
int result = 0;
pthread_t th;
pthread_barrier_init(&barrier, NULL, 2);
if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) {
perror("pthread_create");
return 1;
}
pthread_barrier_wait(&barrier);
/* The test. */
struct timespec before, after, sleeptimeabs;
int64_t sleepdiff, diffabs;
const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 };
/* The relative nanosleep. Not sure why this is needed, but its presence
seems to make it easier to reproduce the problem. */
if (do_nanosleep(0, &sleeptime) != 0) {
perror("clock_nanosleep");
return 1;
}
/* Get the current time. */
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) {
perror("clock_gettime[2]");
return 1;
}
/* Compute the absolute sleep time based on the current time. */
uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec;
sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000;
sleeptimeabs.tv_nsec = nsec % 1000000000;
/* Sleep for the computed time. */
if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) {
perror("absolute clock_nanosleep");
return 1;
}
/* Get the time after the sleep. */
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) {
perror("clock_gettime[3]");
return 1;
}
/* The time after sleep should always be equal to or after the absolute sleep
time passed to clock_nanosleep. */
sleepdiff = tsdiff(&sleeptimeabs, &after);
if (sleepdiff < 0) {
printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff);
result = 1;
printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec);
printf("After %llu.%09llu\n", after.tv_sec, after.tv_nsec);
printf("Sleep %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec);
}
/* The difference between the timestamps taken before and after the
clock_nanosleep call should be equal to or more than the duration of the
sleep. */
diffabs = tsdiff(&before, &after);
if (diffabs < sleeptime.tv_nsec) {
printf("clock_gettime difference too small: %" PRId64 "\n", diffabs);
result = 1;
}
pthread_cancel(th);
return result;
}
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While looking over the cpu-timer code I found that we appear to add
the delta for the calling task twice, through:
cpu_timer_sample_group()
thread_group_cputimer()
thread_group_cputime()
times->sum_exec_runtime += task_sched_runtime();
*sample = cputime.sum_exec_runtime + task_delta_exec();
Which would make the sample run ahead, making the sleep short.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20141112113737.GI10476@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On latest mm + KASan patchset I've got this:
==================================================================
BUG: AddressSanitizer: out of bounds access in sched_init_smp+0x3ba/0x62c at addr ffff88006d4bee6c
=============================================================================
BUG kmalloc-8 (Not tainted): kasan error
-----------------------------------------------------------------------------
Disabling lock debugging due to kernel taint
INFO: Allocated in alloc_vfsmnt+0xb0/0x2c0 age=75 cpu=0 pid=0
__slab_alloc+0x4b4/0x4f0
__kmalloc_track_caller+0x15f/0x1e0
kstrdup+0x44/0x90
alloc_vfsmnt+0xb0/0x2c0
vfs_kern_mount+0x35/0x190
kern_mount_data+0x25/0x50
pid_ns_prepare_proc+0x19/0x50
alloc_pid+0x5e2/0x630
copy_process.part.41+0xdf5/0x2aa0
do_fork+0xf5/0x460
kernel_thread+0x21/0x30
rest_init+0x1e/0x90
start_kernel+0x522/0x531
x86_64_start_reservations+0x2a/0x2c
x86_64_start_kernel+0x15b/0x16a
INFO: Slab 0xffffea0001b52f80 objects=24 used=22 fp=0xffff88006d4befc0 flags=0x100000000004080
INFO: Object 0xffff88006d4bed20 @offset=3360 fp=0xffff88006d4bee70
Bytes b4 ffff88006d4bed10: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
Object ffff88006d4bed20: 70 72 6f 63 00 6b 6b a5 proc.kk.
Redzone ffff88006d4bed28: cc cc cc cc cc cc cc cc ........
Padding ffff88006d4bee68: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
CPU: 0 PID: 1 Comm: swapper/0 Tainted: G B 3.18.0-rc3-mm1+ #108
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
ffff88006d4be000 0000000000000000 ffff88006d4bed20 ffff88006c86fd18
ffffffff81cd0a59 0000000000000058 ffff88006d404240 ffff88006c86fd48
ffffffff811fa3a8 ffff88006d404240 ffffea0001b52f80 ffff88006d4bed20
Call Trace:
dump_stack (lib/dump_stack.c:52)
print_trailer (mm/slub.c:645)
object_err (mm/slub.c:652)
? sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
kasan_report_error (mm/kasan/report.c:102 mm/kasan/report.c:178)
? kasan_poison_shadow (mm/kasan/kasan.c:48)
? kasan_unpoison_shadow (mm/kasan/kasan.c:54)
? kasan_poison_shadow (mm/kasan/kasan.c:48)
? kasan_kmalloc (mm/kasan/kasan.c:311)
__asan_load4 (mm/kasan/kasan.c:371)
? sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
kernel_init_freeable (init/main.c:869 init/main.c:997)
? finish_task_switch (kernel/sched/sched.h:1036 kernel/sched/core.c:2248)
? rest_init (init/main.c:924)
kernel_init (init/main.c:929)
? rest_init (init/main.c:924)
ret_from_fork (arch/x86/kernel/entry_64.S:348)
? rest_init (init/main.c:924)
Read of size 4 by task swapper/0:
Memory state around the buggy address:
ffff88006d4beb80: fc fc fc fc fc fc fc fc fc fc 00 fc fc fc fc fc
ffff88006d4bec00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bec80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bed00: fc fc fc fc 00 fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bed80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88006d4bee00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc 04 fc
^
ffff88006d4bee80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bef00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bef80: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
ffff88006d4bf000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88006d4bf080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Zero 'level' (e.g. on non-NUMA system) causing out of bounds
access in this line:
sched_max_numa_distance = sched_domains_numa_distance[level - 1];
Fix this by exiting from sched_init_numa() earlier.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Fixes: 9942f79ba ("sched/numa: Export info needed for NUMA balancing on complex topologies")
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1415372020-1871-1-git-send-email-a.ryabinin@samsung.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch simplifies task_struct by removing the four numa_* pointers
in the same array and replacing them with the array pointer. By doing this,
on x86_64, the size of task_struct is reduced by 3 ulong pointers (24 bytes on
x86_64).
A new parameter is added to the task_faults_idx function so that it can return
an index to the correct offset, corresponding with the old precalculated
pointers.
All of the code in sched/ that depended on task_faults_idx and numa_* was
changed in order to match the new logic.
Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: dave@stgolabs.net
Cc: riel@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141031001331.GA30662@winterfell
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As per commit f10e00f4bf ("sched/dl: Use dl_bw_of() under
rcu_read_lock_sched()"), dl_bw_of() has to be protected by
rcu_read_lock_sched().
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414497286-28824-1-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently used hrtimer_try_to_cancel() is racy:
raw_spin_lock(&rq->lock)
... dl_task_timer raw_spin_lock(&rq->lock)
... raw_spin_lock(&rq->lock) ...
switched_from_dl() ... ...
hrtimer_try_to_cancel() ... ...
switched_to_fair() ... ...
... ... ...
... ... ...
raw_spin_unlock(&rq->lock) ... (asquired)
... ... ...
... ... ...
do_exit() ... ...
schedule() ... ...
raw_spin_lock(&rq->lock) ... raw_spin_unlock(&rq->lock)
... ... ...
raw_spin_unlock(&rq->lock) ... raw_spin_lock(&rq->lock)
... ... (asquired)
put_task_struct() ... ...
free_task_struct() ... ...
... ... raw_spin_unlock(&rq->lock)
... (asquired) ...
... ... ...
... (use after free) ...
So, let's implement 100% guaranteed way to cancel the timer and let's
be sure we are safe even in very unlikely situations.
rq unlocking does not limit the area of switched_from_dl() use, because
this has already been possible in pull_dl_task() below.
Let's consider the safety of of this unlocking. New code in the patch
is working when hrtimer_try_to_cancel() fails. This means the callback
is running. In this case hrtimer_cancel() is just waiting till the
callback is finished. Two
1) Since we are in switched_from_dl(), new class is not dl_sched_class and
new prio is not less MAX_DL_PRIO. So, the callback returns early; it's
right after !dl_task() check. After that hrtimer_cancel() returns back too.
The above is:
raw_spin_lock(rq->lock); ...
... dl_task_timer()
... raw_spin_lock(rq->lock);
switched_from_dl() ...
hrtimer_try_to_cancel() ...
raw_spin_unlock(rq->lock); ...
hrtimer_cancel() ...
... raw_spin_unlock(rq->lock);
... return HRTIMER_NORESTART;
... ...
raw_spin_lock(rq->lock); ...
2) But the below is also possible:
dl_task_timer()
raw_spin_lock(rq->lock);
...
raw_spin_unlock(rq->lock);
raw_spin_lock(rq->lock); ...
switched_from_dl() ...
hrtimer_try_to_cancel() ...
... return HRTIMER_NORESTART;
raw_spin_unlock(rq->lock); ...
hrtimer_cancel(); ...
raw_spin_lock(rq->lock); ...
In this case hrtimer_cancel() returns immediately. Very unlikely case,
just to mention.
Nobody can manipulate the task, because check_class_changed() is
always called with pi_lock locked. Nobody can force the task to
participate in (concurrent) priority inheritance schemes (the same reason).
All concurrent task operations require pi_lock, which is held by us.
No deadlocks with dl_task_timer() are possible, because it returns
right after !dl_task() check (it does nothing).
If we receive a new dl_task during the time of unlocked rq, we just
don't have to do pull_dl_task() in switched_from_dl() further.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
[ Added comments]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414420852.19914.186.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In some cases this can trigger a true flood of output.
Requested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sched_move_task() is the only interface to change sched_task_group:
cpu_cgrp_subsys methods and autogroup_move_group() use it.
Everything is synchronized by task_rq_lock(), so cpu_cgroup_attach()
is ordered with other users of sched_move_task(). This means we do no
need RCU here: if we've dereferenced a tg here, the .attach method
hasn't been called for it yet.
Thus, we should pass "true" to task_css_check() to silence lockdep
warnings.
Fixes: eeb61e53ea ("sched: Fix race between task_group and sched_task_group")
Reported-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414473874.8574.2.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "cpu" argument to rcu_note_context_switch() is always the current
CPU, so drop it. This in turn allows the "cpu" argument to
rcu_preempt_note_context_switch() to be removed, which allows the sole
use of "cpu" in both functions to be replaced with a this_cpu_ptr().
Again, the anticipated cross-CPU uses of these functions has been
replaced by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
cond_resched() is a preemption point, not strictly a blocking
primitive, so exclude it from the ->state test.
In particular, preemption preserves task_struct::state.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: tglx@linutronix.de
Cc: ilya.dryomov@inktank.com
Cc: umgwanakikbuti@gmail.com
Cc: oleg@redhat.com
Cc: Alex Elder <alex.elder@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Axel Lin <axel.lin@ingics.com>
Cc: Daniel Borkmann <dborkman@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140924082242.656559952@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Validate we call might_sleep() with TASK_RUNNING, which catches places
where we nest blocking primitives, eg. mutex usage in a wait loop.
Since all blocking is arranged through task_struct::state, nesting
this will cause the inner primitive to set TASK_RUNNING and the outer
will thus not block.
Another observed problem is calling a blocking function from
schedule()->sched_submit_work()->blk_schedule_flush_plug() which will
then destroy the task state for the actual __schedule() call that
comes after it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: tglx@linutronix.de
Cc: ilya.dryomov@inktank.com
Cc: umgwanakikbuti@gmail.com
Cc: oleg@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140924082242.591637616@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
How we deal with updates to exclusive cpusets is currently broken.
As an example, suppose we have an exclusive cpuset composed of
two cpus: A[cpu0,cpu1]. We can assign SCHED_DEADLINE task to it
up to the allowed bandwidth. If we want now to modify cpusetA's
cpumask, we have to check that removing a cpu's amount of
bandwidth doesn't break AC guarantees. This thing isn't checked
in the current code.
This patch fixes the problem above, denying an update if the
new cpumask won't have enough bandwidth for SCHED_DEADLINE tasks
that are currently active.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/5433E6AF.5080105@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Exclusive cpusets are the only way users can restrict SCHED_DEADLINE tasks
affinity (performing what is commonly called clustered scheduling).
Unfortunately, such thing is currently broken for two reasons:
- No check is performed when the user tries to attach a task to
an exlusive cpuset (recall that exclusive cpusets have an
associated maximum allowed bandwidth).
- Bandwidths of source and destination cpusets are not correctly
updated after a task is migrated between them.
This patch fixes both things at once, as they are opposite faces
of the same coin.
The check is performed in cpuset_can_attach(), as there aren't any
points of failure after that function. The updated is split in two
halves. We first reserve bandwidth in the destination cpuset, after
we pass the check in cpuset_can_attach(). And we then release
bandwidth from the source cpuset when the task's affinity is
actually changed. Even if there can be time windows when sched_setattr()
may erroneously fail in the source cpuset, we are fine with it, as
we can't perfom an atomic update of both cpusets at once.
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: michael@amarulasolutions.com
Cc: luca.abeni@unitn.it
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/1411118561-26323-3-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_preempt_count() is pointless if preemption counter is per-cpu,
currently this is x86 only. It is only valid if the task is not
running, and even in this case the only info it can provide is the
state of PREEMPT_ACTIVE bit.
Change its single caller to check p->on_rq instead, this should be
the same if p->state != TASK_RUNNING, and kill this helper.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Alexander Graf <agraf@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20141008183348.GC17495@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both callers of finish_task_switch() need to recalculate this_rq()
and pass it as an argument, plus __schedule() does this again after
context_switch().
It would be simpler to call this_rq() once in finish_task_switch()
and return the this rq to the callers.
Note: probably "int cpu" in __schedule() should die; it is not used
and both rcu_note_context_switch() and wq_worker_sleeping() do not
really need this argument.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141009193232.GB5408@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
finish_task_switch() enables preemption, so post_schedule(rq) can be
called on the wrong (and even dead) CPU. Afaics, nothing really bad
can happen, but in this case we can wrongly clear rq->post_schedule
on that CPU. And this simply looks wrong in any case.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141008193644.GA32055@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Smaller NUMA systems tend to have all NUMA nodes directly connected
to each other. This includes the degenerate case of a system with just
one node, ie. a non-NUMA system.
Larger systems can have two kinds of NUMA topology, which affects how
tasks and memory should be placed on the system.
On glueless mesh systems, nodes that are not directly connected to
each other will bounce traffic through intermediary nodes. Task groups
can be run closer to each other by moving tasks from a node to an
intermediary node between it and the task's preferred node.
On NUMA systems with backplane controllers, the intermediary hops
are incapable of running programs. This creates "islands" of nodes
that are at an equal distance to anywhere else in the system.
Each kind of topology requires a slightly different placement
algorithm; this patch provides the mechanism to detect the kind
of NUMA topology of a system.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
[ Changed to use kernel/sched/sched.h ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/1413530994-9732-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Export some information that is necessary to do placement of
tasks on systems with multi-level NUMA topologies.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413530994-9732-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
preempt_schedule_context() does preempt_enable_notrace() at the end
and this can call the same function again; exception_exit() is heavy
and it is quite possible that need-resched is true again.
1. Change this code to dec preempt_count() and check need_resched()
by hand.
2. As Linus suggested, we can use the PREEMPT_ACTIVE bit and avoid
the enable/disable dance around __schedule(). But in this case
we need to move into sched/core.c.
3. Cosmetic, but x86 forgets to declare this function. This doesn't
really matter because it is only called by asm helpers, still it
make sense to add the declaration into asm/preempt.h to match
preempt_schedule().
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Chuck Ebbert <cebbert.lkml@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20141005202322.GB27962@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The race may happen when somebody is changing task_group of a forking task.
Child's cgroup is the same as parent's after dup_task_struct() (there just
memory copying). Also, cfs_rq and rt_rq are the same as parent's.
But if parent changes its task_group before it's called cgroup_post_fork(),
we do not reflect this situation on child. Child's cfs_rq and rt_rq remain
the same, while child's task_group changes in cgroup_post_fork().
To fix this we introduce fork() method, which calls sched_move_task() directly.
This function changes sched_task_group on appropriate (also its logic has
no problem with freshly created tasks, so we shouldn't introduce something
special; we are able just to use it).
Possibly, this decides the Burke Libbey's problem: https://lkml.org/lkml/2014/10/24/456
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414405105.19914.169.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Optimized support for Intel "Cluster-on-Die" (CoD) topologies (Dave
Hansen)
- Various sched/idle refinements for better idle handling (Nicolas
Pitre, Daniel Lezcano, Chuansheng Liu, Vincent Guittot)
- sched/numa updates and optimizations (Rik van Riel)
- sysbench speedup (Vincent Guittot)
- capacity calculation cleanups/refactoring (Vincent Guittot)
- Various cleanups to thread group iteration (Oleg Nesterov)
- Double-rq-lock removal optimization and various refactorings
(Kirill Tkhai)
- various sched/deadline fixes
... and lots of other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/dl: Use dl_bw_of() under rcu_read_lock_sched()
sched/fair: Delete resched_cpu() from idle_balance()
sched, time: Fix build error with 64 bit cputime_t on 32 bit systems
sched: Improve sysbench performance by fixing spurious active migration
sched/x86: Fix up typo in topology detection
x86, sched: Add new topology for multi-NUMA-node CPUs
sched/rt: Use resched_curr() in task_tick_rt()
sched: Use rq->rd in sched_setaffinity() under RCU read lock
sched: cleanup: Rename 'out_unlock' to 'out_free_new_mask'
sched: Use dl_bw_of() under RCU read lock
sched/fair: Remove duplicate code from can_migrate_task()
sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
sched: print_rq(): Don't use tasklist_lock
sched: normalize_rt_tasks(): Don't use _irqsave for tasklist_lock, use task_rq_lock()
sched: Fix the task-group check in tg_has_rt_tasks()
sched/fair: Leverage the idle state info when choosing the "idlest" cpu
sched: Let the scheduler see CPU idle states
sched/deadline: Fix inter- exclusive cpusets migrations
sched/deadline: Clear dl_entity params when setscheduling to different class
sched/numa: Kill the wrong/dead TASK_DEAD check in task_numa_fault()
...
Pull core locking updates from Ingo Molnar:
"The main updates in this cycle were:
- mutex MCS refactoring finishing touches: improve comments, refactor
and clean up code, reduce debug data structure footprint, etc.
- qrwlock finishing touches: remove old code, self-test updates.
- small rwsem optimization
- various smaller fixes/cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/lockdep: Revert qrwlock recusive stuff
locking/rwsem: Avoid double checking before try acquiring write lock
locking/rwsem: Move EXPORT_SYMBOL() lines to follow function definition
locking/rwlock, x86: Delete unused asm/rwlock.h and rwlock.S
locking/rwlock, x86: Clean up asm/spinlock*.h to remove old rwlock code
locking/semaphore: Resolve some shadow warnings
locking/selftest: Support queued rwlock
locking/lockdep: Restrict the use of recursive read_lock() with qrwlock
locking/spinlocks: Always evaluate the second argument of spin_lock_nested()
locking/Documentation: Update locking/mutex-design.txt disadvantages
locking/Documentation: Move locking related docs into Documentation/locking/
locking/mutexes: Use MUTEX_SPIN_ON_OWNER when appropriate
locking/mutexes: Refactor optimistic spinning code
locking/mcs: Remove obsolete comment
locking/mutexes: Document quick lock release when unlocking
locking/mutexes: Standardize arguments in lock/unlock slowpaths
locking: Remove deprecated smp_mb__() barriers
rq->rd is freed using call_rcu_sched(), so rcu_read_lock() to access it
is not enough. We should use either rcu_read_lock_sched() or preempt_disable().
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Fixes: 66339c31bc "sched: Use dl_bw_of() under RCU read lock"
Link: http://lkml.kernel.org/r/1412065417.20287.24.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Probability of use-after-free isn't zero in this place.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v3.14+
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140922183636.11015.83611.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Nothing is locked there, so label's name only confuses a reader.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140922183630.11015.59500.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
dl_bw_of() dereferences rq->rd which has to have RCU read lock held.
Probability of use-after-free isn't zero here.
Also add lockdep assert into dl_bw_cpus().
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v3.14+
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140922183624.11015.71558.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1. read_lock(tasklist_lock) does not need to disable irqs.
2. ->mm != NULL is a common mistake, use PF_KTHREAD.
3. The second ->mm check can be simply removed.
4. task_rq_lock() looks better than raw_spin_lock(&p->pi_lock) +
__task_rq_lock().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140921193338.GA28621@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
tg_has_rt_tasks() wants to find an RT task in this task_group, but
task_rq(p)->rt.tg wrongly checks the root rt_rq.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: http://lkml.kernel.org/r/20140921193336.GA28618@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task is using SCHED_DEADLINE and the user setschedules it to a
different class its sched_dl_entity static parameters are not cleaned
up. This causes a bug if the user sets it back to SCHED_DEADLINE with
the same parameters again. The problem resides in the check we
perform at the very beginning of dl_overflow():
if (new_bw == p->dl.dl_bw)
return 0;
This condition is met in the case depicted above, so the function
returns and dl_b->total_bw is not updated (the p->dl.dl_bw is not
added to it). After this, admission control is broken.
This patch fixes the thing, properly clearing static parameters for a
task that ceases to use SCHED_DEADLINE.
Reported-by: Daniele Alessandrelli <daniele.alessandrelli@gmail.com>
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Tested-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1411118561-26323-2-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently in the event of a stack overrun a call to schedule()
does not check for this type of corruption. This corruption is
often silent and can go unnoticed. However once the corrupted
region is examined at a later stage, the outcome is undefined
and often results in a sporadic page fault which cannot be
handled.
This patch checks for a stack overrun and takes appropriate
action since the damage is already done, there is no point
in continuing.
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dzickus@redhat.com
Cc: bmr@redhat.com
Cc: jcastillo@redhat.com
Cc: oleg@redhat.com
Cc: riel@redhat.com
Cc: prarit@redhat.com
Cc: jgh@redhat.com
Cc: minchan@kernel.org
Cc: mpe@ellerman.id.au
Cc: tglx@linutronix.de
Cc: rostedt@goodmis.org
Cc: hannes@cmpxchg.org
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lubomir Rintel <lkundrak@v3.sk>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1410527779-8133-4-git-send-email-atomlin@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a task is queued but not running on it rq, we can simply migrate
it without migration thread and switching of context.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1410519814.3569.7.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current code can fail to migrate a waking task (silently) when TTWU_QUEUE is
enabled.
When a task is waking, it is pending on the wake_list of the rq, but it is not
queued (task->on_rq == 0). In this case, set_cpus_allowed_ptr() and
__migrate_task() will not migrate it because its invisible to them.
This behavior is incorrect, because the task has been already woken, it will be
running on the wrong CPU without correct placement until the next wake-up or
update for cpus_allowed.
To fix this problem, we need to finish the wakeup (so they appear on
the runqueue) before we migrate them.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Jason J. Herne <jjherne@linux.vnet.ibm.com>
Tested-by: Jason J. Herne <jjherne@linux.vnet.ibm.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/538ED7EB.5050303@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUDOW+AAoJEHm+PkMAQRiGOXYH/00TPKm8PdM5cXXG2YYYv9eT
W99K7KD2i0/qiVtlGgjjvB7fO3K0HcZusTd2jmVd8IWntXvauq7Zpw5YZkjwu4KX
Y1HCwwCd2aw0FoqgrJhNP3+j5Cr1BD/HLtbffjCe+A3tppOIis4Bwt2wJOoYlXpS
hU9Jxxc4lcRo8YKbffouDo7PIneWeJy8N+WGpUR5BfJIEK0ZZtCUqn3/3WLX4FYu
fE6uiF/bACTpKXU/mo4dDbhZp439H/QdwQc9B0F8+8CBDMXKaNHrPV7kN36T2SWa
fD4boikTsi/yh9Ks1fvHbvNq2N0ihoMnja+vLRyvjAcAQv2fKG3OZtYgFWSdghU=
=Xknd
-----END PGP SIGNATURE-----
Merge tag 'v3.17-rc4' into sched/core, to prevent conflicts with upcoming patches, and to refresh the tree
Linux 3.17-rc4
An overrun could happen in function start_hrtick_dl()
when a task with SCHED_DEADLINE runs in the microseconds
range.
For example, if a task with SCHED_DEADLINE has the following parameters:
Task runtime deadline period
P1 200us 500us 500us
The deadline and period from task P1 are less than 1ms.
In order to achieve microsecond precision, we need to enable HRTICK feature
by the next command:
PC#echo "HRTICK" > /sys/kernel/debug/sched_features
PC#trace-cmd record -e sched_switch &
PC#./schedtool -E -t 200000:500000:500000 -e ./test
The binary test is in an endless while(1) loop here.
Some pieces of trace.dat are as follows:
<idle>-0 157.603157: sched_switch: :R ==> 2481:4294967295: test
test-2481 157.603203: sched_switch: 2481:R ==> 0:120: swapper/2
<idle>-0 157.605657: sched_switch: :R ==> 2481:4294967295: test
test-2481 157.608183: sched_switch: 2481:R ==> 2483:120: trace-cmd
trace-cmd-2483 157.609656: sched_switch:2483:R==>2481:4294967295: test
We can get the runtime of P1 from the information above:
runtime = 157.608183 - 157.605657
runtime = 0.002526(2.526ms)
The correct runtime should be less than or equal to 200us at some point.
The problem is caused by a conditional judgment "delta > 10000"
in function start_hrtick_dl().
Because no hrtimer start up to control the rest of runtime
when the reset of runtime is less than 10us.
So the process will continue to run until tick-period is coming.
Move the code with the limit of the least time slice
from hrtick_start_fair() to hrtick_start() because the
EDF schedule class also needs this function in start_hrtick_dl().
To fix this problem, we call hrtimer_start() unconditionally in
start_hrtick_dl(), and make sure the scheduling slice won't be smaller
than 10us in hrtimer_start().
Signed-off-by: Xiaofeng Yan <xiaofeng.yan@huawei.com>
Reviewed-by: Li Zefan <lizefan@huawei.com>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409022941-5880-1-git-send-email-xiaofeng.yan@huawei.com
[ Massaged the changelog and the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This function will help an async task processing batched jobs from
workqueue decide if it wants to keep processing on more chunks of batched
work that can be delayed, or to accumulate more work for more efficient
batched processing later.
If no other tasks are running on the cpu, the batching process can take
advantgae of the available cpu cycles to a make decision to continue
processing the existing accumulated work to minimize delay,
otherwise it will yield.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid double_rq_lock() and use TASK_ON_RQ_MIGRATING for
__migrate_task(). The advantage is (obviously) not holding two
rq->lock's at the same time and thereby increasing parallelism.
The important point to note is that because we acquire dst->lock
immediately after releasing src->lock the potential wait time of
task_rq_lock() callers on TASK_ON_RQ_MIGRATING is not longer
than it would have been in the double rq lock scenario.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528070.23412.89.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a new p->on_rq state which will be used to indicate that a task
is in a process of migrating between two RQs. It allows to get
rid of double_rq_lock(), which we used to use to change a rq of
a queued task before.
Let's consider an example. To move a task between src_rq and
dst_rq we will do the following:
raw_spin_lock(&src_rq->lock);
/* p is a task which is queued on src_rq */
p = ...;
dequeue_task(src_rq, p, 0);
p->on_rq = TASK_ON_RQ_MIGRATING;
set_task_cpu(p, dst_cpu);
raw_spin_unlock(&src_rq->lock);
/*
* Both RQs are unlocked here.
* Task p is dequeued from src_rq
* but its on_rq value is not zero.
*/
raw_spin_lock(&dst_rq->lock);
p->on_rq = TASK_ON_RQ_QUEUED;
enqueue_task(dst_rq, p, 0);
raw_spin_unlock(&dst_rq->lock);
While p->on_rq is TASK_ON_RQ_MIGRATING, task is considered as
"migrating", and other parallel scheduler actions with it are
not available to parallel callers. The parallel caller is
spining till migration is completed.
The unavailable actions are changing of cpu affinity, changing
of priority etc, in other words all the functionality which used
to require task_rq(p)->lock before (and related to the task).
To implement TASK_ON_RQ_MIGRATING support we primarily are using
the following fact. Most of scheduler users (from which we are
protecting a migrating task) use task_rq_lock() and
__task_rq_lock() to get the lock of task_rq(p). These primitives
know that task's cpu may change, and they are spining while the
lock of the right RQ is not held. We add one more condition into
them, so they will be also spinning until the migration is
finished.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528062.23412.88.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement task_on_rq_queued() and use it everywhere instead of
on_rq check. No functional changes.
The only exception is we do not use the wrapper in
check_for_tasks(), because it requires to export
task_on_rq_queued() in global header files. Next patch in series
would return it back, so we do not twist it from here to there.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Its been a while and there are no in-tree users left, so remove the
deprecated barriers.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chen, Gong <gong.chen@linux.intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Joe Perches <joe@perches.com>
Cc: John Sullivan <jsrhbz@kanargh.force9.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The child variable in build_overlap_sched_groups() actually refers to the
peer or sibling domain of the given CPU. Rename it to sibling to be consistent
with the naming in build_group_mask().
Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1406942283-18249-1-git-send-email-zzhsuny@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
* pm-sleep:
PM / hibernate: avoid unsafe pages in e820 reserved regions
* pm-cpufreq:
cpufreq: arm_big_little: fix module license spec
cpufreq: speedstep-smi: fix decimal printf specifiers
cpufreq: OPP: Avoid sleeping while atomic
cpufreq: cpu0: Do not print error message when deferring
cpufreq: integrator: Use set_cpus_allowed_ptr
* pm-cpuidle:
cpuidle: menu: Lookup CPU runqueues less
cpuidle: menu: Call nr_iowait_cpu less times
cpuidle: menu: Use ktime_to_us instead of reinventing the wheel
cpuidle: menu: Use shifts when calculating averages where possible
The menu governer makes separate lookups of the CPU runqueue to get
load and number of IO waiters but it can be done with a single lookup.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull scheduler updates from Ingo Molnar:
- Move the nohz kick code out of the scheduler tick to a dedicated IPI,
from Frederic Weisbecker.
This necessiated quite some background infrastructure rework,
including:
* Clean up some irq-work internals
* Implement remote irq-work
* Implement nohz kick on top of remote irq-work
* Move full dynticks timer enqueue notification to new kick
* Move multi-task notification to new kick
* Remove unecessary barriers on multi-task notification
- Remove proliferation of wait_on_bit() action functions and allow
wait_on_bit_action() functions to support a timeout. (Neil Brown)
- Another round of sched/numa improvements, cleanups and fixes. (Rik
van Riel)
- Implement fast idling of CPUs when the system is partially loaded,
for better scalability. (Tim Chen)
- Restructure and fix the CPU hotplug handling code that may leave
cfs_rq and rt_rq's throttled when tasks are migrated away from a dead
cpu. (Kirill Tkhai)
- Robustify the sched topology setup code. (Peterz Zijlstra)
- Improve sched_feat() handling wrt. static_keys (Jason Baron)
- Misc fixes.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
sched/fair: Fix 'make xmldocs' warning caused by missing description
sched: Use macro for magic number of -1 for setparam
sched: Robustify topology setup
sched: Fix sched_setparam() policy == -1 logic
sched: Allow wait_on_bit_action() functions to support a timeout
sched: Remove proliferation of wait_on_bit() action functions
sched/numa: Revert "Use effective_load() to balance NUMA loads"
sched: Fix static_key race with sched_feat()
sched: Remove extra static_key*() function indirection
sched/rt: Fix replenish_dl_entity() comments to match the current upstream code
sched: Transform resched_task() into resched_curr()
sched/deadline: Kill task_struct->pi_top_task
sched: Rework check_for_tasks()
sched/rt: Enqueue just unthrottled rt_rq back on the stack in __disable_runtime()
sched/fair: Disable runtime_enabled on dying rq
sched/numa: Change scan period code to match intent
sched/numa: Rework best node setting in task_numa_migrate()
sched/numa: Examine a task move when examining a task swap
sched/numa: Simplify task_numa_compare()
sched/numa: Use effective_load() to balance NUMA loads
...
Pull cgroup changes from Tejun Heo:
"Mostly changes to get the v2 interface ready. The core features are
mostly ready now and I think it's reasonable to expect to drop the
devel mask in one or two devel cycles at least for a subset of
controllers.
- cgroup added a controller dependency mechanism so that block cgroup
can depend on memory cgroup. This will be used to finally support
IO provisioning on the writeback traffic, which is currently being
implemented.
- The v2 interface now uses a separate table so that the interface
files for the new interface are explicitly declared in one place.
Each controller will explicitly review and add the files for the
new interface.
- cpuset is getting ready for the hierarchical behavior which is in
the similar style with other controllers so that an ancestor's
configuration change doesn't change the descendants' configurations
irreversibly and processes aren't silently migrated when a CPU or
node goes down.
All the changes are to the new interface and no behavior changed for
the multiple hierarchies"
* 'for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (29 commits)
cpuset: fix the WARN_ON() in update_nodemasks_hier()
cgroup: initialize cgrp_dfl_root_inhibit_ss_mask from !->dfl_files test
cgroup: make CFTYPE_ONLY_ON_DFL and CFTYPE_NO_ internal to cgroup core
cgroup: distinguish the default and legacy hierarchies when handling cftypes
cgroup: replace cgroup_add_cftypes() with cgroup_add_legacy_cftypes()
cgroup: rename cgroup_subsys->base_cftypes to ->legacy_cftypes
cgroup: split cgroup_base_files[] into cgroup_{dfl|legacy}_base_files[]
cpuset: export effective masks to userspace
cpuset: allow writing offlined masks to cpuset.cpus/mems
cpuset: enable onlined cpu/node in effective masks
cpuset: refactor cpuset_hotplug_update_tasks()
cpuset: make cs->{cpus, mems}_allowed as user-configured masks
cpuset: apply cs->effective_{cpus,mems}
cpuset: initialize top_cpuset's configured masks at mount
cpuset: use effective cpumask to build sched domains
cpuset: inherit ancestor's masks if effective_{cpus, mems} becomes empty
cpuset: update cs->effective_{cpus, mems} when config changes
cpuset: update cpuset->effective_{cpus,mems} at hotplug
cpuset: add cs->effective_cpus and cs->effective_mems
cgroup: clean up sane_behavior handling
...
Instead of passing around a magic number -1 for the sched_setparam()
policy, use a more descriptive macro name like SETPARAM_POLICY.
[ based on top of Daniel's sched_setparam() fix ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Daniel Bristot de Oliveira<bristot@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140723112826.6ed6cbce@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We hard assume that higher topology levels are supersets of lower
levels.
Detect, warn and try to fixup when we encounter this violated.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Bruno Wolff III <bruno@wolff.to>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140722094740.GJ12054@laptop.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The scheduler uses policy == -1 to preserve the current policy state to
implement sched_setparam(). But, as (int) -1 is equals to 0xffffffff,
it's matching the if (policy & SCHED_RESET_ON_FORK) on
_sched_setscheduler(). This match changes the policy value to an
invalid value, breaking the sched_setparam() syscall.
This patch checks policy == -1 before check the SCHED_RESET_ON_FORK flag.
The following program shows the bug:
int main(void)
{
struct sched_param param = {
.sched_priority = 5,
};
sched_setscheduler(0, SCHED_FIFO, ¶m);
param.sched_priority = 1;
sched_setparam(0, ¶m);
param.sched_priority = 0;
sched_getparam(0, ¶m);
if (param.sched_priority != 1)
printf("failed priority setting (found %d instead of 1)\n",
param.sched_priority);
else
printf("priority setting fine\n");
}
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org> # 3.14+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Fixes: 7479f3c9cf "sched: Move SCHED_RESET_ON_FORK into attr::sched_flags"
Link: http://lkml.kernel.org/r/9ebe0566a08dbbb3999759d3f20d6004bb2dbcfa.1406079891.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As pointed out by Andi Kleen, the usage of static keys can be racy in
sched_feat_disable() vs. sched_feat_enable(). Currently, we first check the
value of keys->enabled, and subsequently update the branch direction. This,
can be racy and can potentially leave the keys in an inconsistent state.
Take the i_mutex around these calls to resolve the race.
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/9d7780c83db26683955cd01e6bc654ee2586e67f.1404315388.git.jbaron@akamai.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We always use resched_task() with rq->curr argument.
It's not possible to reschedule any task but rq's current.
The patch introduces resched_curr(struct rq *) to
replace all of the repeating patterns. The main aim
is cleanup, but there is a little size profit too:
(before)
$ size kernel/sched/built-in.o
text data bss dec hex filename
155274 16445 7042 178761 2ba49 kernel/sched/built-in.o
$ size vmlinux
text data bss dec hex filename
7411490 1178376 991232 9581098 92322a vmlinux
(after)
$ size kernel/sched/built-in.o
text data bss dec hex filename
155130 16445 7042 178617 2b9b9 kernel/sched/built-in.o
$ size vmlinux
text data bss dec hex filename
7411362 1178376 991232 9580970 9231aa vmlinux
I was choosing between resched_curr() and resched_rq(),
and the first name looks better for me.
A little lie in Documentation/trace/ftrace.txt. I have not
actually collected the tracing again. With a hope the patch
won't make execution times much worse :)
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, cgroup_subsys->base_cftypes is used for both the unified
default hierarchy and legacy ones and subsystems can mark each file
with either CFTYPE_ONLY_ON_DFL or CFTYPE_INSANE if it has to appear
only on one of them. This is quite hairy and error-prone. Also, we
may end up exposing interface files to the default hierarchy without
thinking it through.
cgroup_subsys will grow two separate cftype arrays and apply each only
on the hierarchies of the matching type. This will allow organizing
cftypes in a lot clearer way and encourage subsystems to scrutinize
the interface which is being exposed in the new default hierarchy.
In preparation, this patch renames cgroup_subsys->base_cftypes to
cgroup_subsys->legacy_cftypes. This patch is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Aristeu Rozanski <aris@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
We kill rq->rd on the CPU_DOWN_PREPARE stage:
cpuset_cpu_inactive -> cpuset_update_active_cpus -> partition_sched_domains ->
-> cpu_attach_domain -> rq_attach_root -> set_rq_offline
This unthrottles all throttled cfs_rqs.
But the cpu is still able to call schedule() till
take_cpu_down->__cpu_disable()
is called from stop_machine.
This case the tasks from just unthrottled cfs_rqs are pickable
in a standard scheduler way, and they are picked by dying cpu.
The cfs_rqs becomes throttled again, and migrate_tasks()
in migration_call skips their tasks (one more unthrottle
in migrate_tasks()->CPU_DYING does not happen, because rq->rd
is already NULL).
Patch sets runtime_enabled to zero. This guarantees, the runtime
is not accounted, and the cfs_rqs won't exceed given
cfs_rq->runtime_remaining = 1, and tasks will be pickable
in migrate_tasks(). runtime_enabled is recalculated again
when rq becomes online again.
Ben Segall also noticed, we always enable runtime in
tg_set_cfs_bandwidth(). Actually, we should do that for online
cpus only. To prevent races with unthrottle_offline_cfs_rqs()
we take get_online_cpus() lock.
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
CC: Konstantin Khorenko <khorenko@parallels.com>
CC: Paul Turner <pjt@google.com>
CC: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403684382.3462.42.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a task has been dequeued, it has been accounted. Do not project
cycles that may or may not ever be accounted to a dequeued task, as
that may make clock_gettime() both inaccurate and non-monotonic.
Protect update_rq_clock() from slight TSC skew while at it.
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: kosaki.motohiro@jp.fujitsu.com
Cc: pjt@google.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403588980.29711.11.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sched_can_stop_tick() is using 7 spaces instead of 8 spaces or a 'tab' at the
beginning of few lines. Which doesn't align well with the Coding Guidelines.
Also remove local variable 'rq' as it is used at only one place and we can
directly use this_rq() instead.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: fweisbec@gmail.com
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/afb781733e4a9ffbced5eb9fd25cc0aa5c6ffd7a.1403596966.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit ac1bea8578 (Make cond_resched() report RCU quiescent states)
fixed a problem where a CPU looping in the kernel with but one runnable
task would give RCU CPU stall warnings, even if the in-kernel loop
contained cond_resched() calls. Unfortunately, in so doing, it introduced
performance regressions in Anton Blanchard's will-it-scale "open1" test.
The problem appears to be not so much the increased cond_resched() path
length as an increase in the rate at which grace periods complete, which
increased per-update grace-period overhead.
This commit takes a different approach to fixing this bug, mainly by
moving the RCU-visible quiescent state from cond_resched() to
rcu_note_context_switch(), and by further reducing the check to a
simple non-zero test of a single per-CPU variable. However, this
approach requires that the force-quiescent-state processing send
resched IPIs to the offending CPUs. These will be sent only once
the grace period has reached an age specified by the boot/sysfs
parameter rcutree.jiffies_till_sched_qs, or once the grace period
reaches an age halfway to the point at which RCU CPU stall warnings
will be emitted, whichever comes first.
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@gentwo.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
[ paulmck: Made rcu_momentary_dyntick_idle() as suggested by the
ktest build robot. Also fixed smp_mb() comment as noted by
Oleg Nesterov. ]
Merge with e552592e (Reduce overhead of cond_resched() checks for RCU)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
A full dynticks CPU is allowed to stop its tick when a single task runs.
Meanwhile when a new task gets enqueued, the CPU must be notified so that
it can restart its tick to maintain local fairness and other accounting
details.
This notification is performed by way of an IPI. Then when the target
receives the IPI, we expect it to see the new value of rq->nr_running.
Hence the following ordering scenario:
CPU 0 CPU 1
write rq->running get IPI
smp_wmb() smp_rmb()
send IPI read rq->nr_running
But Paul Mckenney says that nowadays IPIs imply a full barrier on
all architectures. So we can safely remove this pair and rely on the
implicit barriers that come along IPI send/receive. Lets
just comment on this new assumption.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Now that we have a nohz full remote kick based on irq work, lets use
it to notify a CPU that it's exiting single task mode.
This unbloats a bit the scheduler IPI that the nohz code was abusing
for its cool "callable anywhere/anytime" properties.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
When a new timer is enqueued on a full dynticks target, that CPU must
re-evaluate the next tick to handle the timer correctly.
This is currently performed through the scheduler IPI. Meanwhile this
happens at the cost of off-topic workarounds in that fast path to make
it call irq_exit().
As we plan to remove this hack off the scheduler IPI, lets use
the nohz full kick instead. Pretty much any IPI fits for that job
as long at it calls irq_exit(). The nohz full kick just happens to be
handy and readily available here.
If it happens to be too much an overkill in the future, we can still
turn that timer kick into an empty IPI.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull more scheduler updates from Ingo Molnar:
"Second round of scheduler changes:
- try-to-wakeup and IPI reduction speedups, from Andy Lutomirski
- continued power scheduling cleanups and refactorings, from Nicolas
Pitre
- misc fixes and enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Delete extraneous extern for to_ratio()
sched/idle: Optimize try-to-wake-up IPI
sched/idle: Simplify wake_up_idle_cpu()
sched/idle: Clear polling before descheduling the idle thread
sched, trace: Add a tracepoint for IPI-less remote wakeups
cpuidle: Set polling in poll_idle
sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
sched: Rename capacity related flags
sched: Final power vs. capacity cleanups
sched: Remove remaining dubious usage of "power"
sched: Let 'struct sched_group_power' care about CPU capacity
sched/fair: Disambiguate existing/remaining "capacity" usage
sched/fair: Change "has_capacity" to "has_free_capacity"
sched/fair: Remove "power" from 'struct numa_stats'
sched: Fix signedness bug in yield_to()
sched/fair: Use time_after() in record_wakee()
sched/balancing: Reduce the rate of needless idle load balancing
sched/fair: Fix unlocked reads of some cfs_b->quota/period
Pull more perf updates from Ingo Molnar:
"A second round of perf updates:
- wide reaching kprobes sanitization and robustization, with the hope
of fixing all 'probe this function crashes the kernel' bugs, by
Masami Hiramatsu.
- uprobes updates from Oleg Nesterov: tmpfs support, corner case
fixes and robustization work.
- perf tooling updates and fixes from Jiri Olsa, Namhyung Ki, Arnaldo
et al:
* Add support to accumulate hist periods (Namhyung Kim)
* various fixes, refactorings and enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
perf: Differentiate exec() and non-exec() comm events
perf: Fix perf_event_comm() vs. exec() assumption
uprobes/x86: Rename arch_uprobe->def to ->defparam, minor comment updates
perf/documentation: Add description for conditional branch filter
perf/x86: Add conditional branch filtering support
perf/tool: Add conditional branch filter 'cond' to perf record
perf: Add new conditional branch filter 'PERF_SAMPLE_BRANCH_COND'
uprobes: Teach copy_insn() to support tmpfs
uprobes: Shift ->readpage check from __copy_insn() to uprobe_register()
perf/x86: Use common PMU interrupt disabled code
perf/ARM: Use common PMU interrupt disabled code
perf: Disable sampled events if no PMU interrupt
perf: Fix use after free in perf_remove_from_context()
perf tools: Fix 'make help' message error
perf record: Fix poll return value propagation
perf tools: Move elide bool into perf_hpp_fmt struct
perf tools: Remove elide setup for SORT_MODE__MEMORY mode
perf tools: Fix "==" into "=" in ui_browser__warning assignment
perf tools: Allow overriding sysfs and proc finding with env var
perf tools: Consider header files outside perf directory in tags target
...
Fix this dependency on the locking tree's smp_mb*() API changes:
kernel/sched/idle.c:247:3: error: implicit declaration of function ‘smp_mb__after_atomic’ [-Werror=implicit-function-declaration]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
"A lot of activities on cgroup side. Heavy restructuring including
locking simplification took place to improve the code base and enable
implementation of the unified hierarchy, which currently exists behind
a __DEVEL__ mount option. The core support is mostly complete but
individual controllers need further work. To explain the design and
rationales of the the unified hierarchy
Documentation/cgroups/unified-hierarchy.txt
is added.
Another notable change is css (cgroup_subsys_state - what each
controller uses to identify and interact with a cgroup) iteration
update. This is part of continuing updates on css object lifetime and
visibility. cgroup started with reference count draining on removal
way back and is now reaching a point where csses behave and are
iterated like normal refcnted objects albeit with some complexities to
allow distinguishing the state where they're being deleted. The css
iteration update isn't taken advantage of yet but is planned to be
used to simplify memcg significantly"
* 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (77 commits)
cgroup: disallow disabled controllers on the default hierarchy
cgroup: don't destroy the default root
cgroup: disallow debug controller on the default hierarchy
cgroup: clean up MAINTAINERS entries
cgroup: implement css_tryget()
device_cgroup: use css_has_online_children() instead of has_children()
cgroup: convert cgroup_has_live_children() into css_has_online_children()
cgroup: use CSS_ONLINE instead of CGRP_DEAD
cgroup: iterate cgroup_subsys_states directly
cgroup: introduce CSS_RELEASED and reduce css iteration fallback window
cgroup: move cgroup->serial_nr into cgroup_subsys_state
cgroup: link all cgroup_subsys_states in their sibling lists
cgroup: move cgroup->sibling and ->children into cgroup_subsys_state
cgroup: remove cgroup->parent
device_cgroup: remove direct access to cgroup->children
memcg: update memcg_has_children() to use css_next_child()
memcg: remove tasks/children test from mem_cgroup_force_empty()
cgroup: remove css_parent()
cgroup: skip refcnting on normal root csses and cgrp_dfl_root self css
cgroup: use cgroup->self.refcnt for cgroup refcnting
...
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.
* accumulated work in next: (6809 commits)
ufs: sb mutex merge + mutex_destroy
powerpc: update comments for generic idle conversion
cris: update comments for generic idle conversion
idle: remove cpu_idle() forward declarations
nbd: zero from and len fields in NBD_CMD_DISCONNECT.
mm: convert some level-less printks to pr_*
MAINTAINERS: adi-buildroot-devel is moderated
MAINTAINERS: add linux-api for review of API/ABI changes
mm/kmemleak-test.c: use pr_fmt for logging
fs/dlm/debug_fs.c: replace seq_printf by seq_puts
fs/dlm/lockspace.c: convert simple_str to kstr
fs/dlm/config.c: convert simple_str to kstr
mm: mark remap_file_pages() syscall as deprecated
mm: memcontrol: remove unnecessary memcg argument from soft limit functions
mm: memcontrol: clean up memcg zoneinfo lookup
mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
mm/mempool.c: update the kmemleak stack trace for mempool allocations
lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
mm: introduce kmemleak_update_trace()
mm/kmemleak.c: use %u to print ->checksum
...
Pull scheduler fixes from Ingo Molnar:
"Four misc fixes: each was deemed serious enough to warrant v3.15
inclusion"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix tg_set_cfs_bandwidth() deadlock on rq->lock
sched/dl: Fix race in dl_task_timer()
sched: Fix sched_policy < 0 comparison
sched/numa: Fix use of spin_{un}lock_irq() when interrupts are disabled
[ This series reduces the number of IPIs on Andy's workload by something like
99%. It's down from many hundreds per second to very few.
The basic idea behind this series is to make TIF_POLLING_NRFLAG be a
reliable indication that the idle task is polling. Once that's done,
the rest is reasonably straightforward. ]
When enqueueing tasks on remote LLC domains, we send an IPI to do the
work 'locally' and avoid bouncing all the cachelines over.
However, when the remote CPU is idle (and polling, say x86 mwait), we
don't need to send an IPI, we can simply kick the TIF word to wake it
up and have the 'idle' loop do the work.
So when _TIF_POLLING_NRFLAG is set, but _TIF_NEED_RESCHED is not (yet)
set, set _TIF_NEED_RESCHED and avoid sending the IPI.
Much-requested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[Edited by Andy Lutomirski, but this is mostly Peter Zijlstra's code.]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: umgwanakikbuti@gmail.com
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/ce06f8b02e7e337be63e97597fc4b248d3aa6f9b.1401902905.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
Let's rename the following feature flags since they do relate to capacity:
SD_SHARE_CPUPOWER -> SD_SHARE_CPUCAPACITY
ARCH_POWER -> ARCH_CAPACITY
NONTASK_POWER -> NONTASK_CAPACITY
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Andy Fleming <afleming@freescale.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: devicetree@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/n/tip-e93lpnxb87owfievqatey6b5@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
This contains the architecture visible changes. Incidentally, only ARM
takes advantage of the available pow^H^H^Hcapacity scaling hooks and
therefore those changes outside kernel/sched/ are confined to one ARM
specific file. The default arch_scale_smt_power() hook is not overridden
by anyone.
Replacements are as follows:
arch_scale_freq_power --> arch_scale_freq_capacity
arch_scale_smt_power --> arch_scale_smt_capacity
SCHED_POWER_SCALE --> SCHED_CAPACITY_SCALE
SCHED_POWER_SHIFT --> SCHED_CAPACITY_SHIFT
The local usage of "power" in arch/arm/kernel/topology.c is also changed
to "capacity" as appropriate.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Brown <broonie@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: devicetree@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-48zba9qbznvglwelgq2cfygh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
This is the remaining "power" -> "capacity" rename for local symbols.
Those symbols visible to the rest of the kernel are not included yet.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-yyyhohzhkwnaotr3lx8zd5aa@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
Since struct sched_group_power is really about compute capacity of sched
groups, let's rename it to struct sched_group_capacity. Similarly sgp
becomes sgc. Related variables and functions dealing with groups are also
adjusted accordingly.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-5yeix833vvgf2uyj5o36hpu9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
yield_to() is supposed to return -ESRCH if there is no task to
yield to, but because the type is bool that is the same as returning
true.
The only place I see which cares is kvm_vcpu_on_spin().
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Raghavendra <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/20140523102042.GA7267@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
tg_set_cfs_bandwidth() sets cfs_b->timer_active to 0 to
force the period timer restart. It's not safe, because
can lead to deadlock, described in commit 927b54fccbf0:
"__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock."
Three CPUs must be involved:
CPU0 CPU1 CPU2
take rq->lock period timer fired
... take cfs_b lock
... ... tg_set_cfs_bandwidth()
throttle_cfs_rq() release cfs_b lock take cfs_b lock
... distribute_cfs_runtime() timer_active = 0
take cfs_b->lock wait for rq->lock ...
__start_cfs_bandwidth()
{wait for timer callback
break if timer_active == 1}
So, CPU0 and CPU1 are deadlocked.
Instead of resetting cfs_b->timer_active, tg_set_cfs_bandwidth can
wait for period timer callbacks (ignoring cfs_b->timer_active) and
restart the timer explicitly.
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/87wqdi9g8e.wl\%klamm@yandex-team.ru
Cc: pjt@google.com
Cc: chris.j.arges@canonical.com
Cc: gregkh@linuxfoundation.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
attr.sched_policy is u32, therefore a comparison against < 0 is never true.
Fix this by casting sched_policy to int.
This issue was reported by coverity CID 1219934.
Fixes: dbdb22754f ("sched: Disallow sched_attr::sched_policy < 0")
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1401741514-7045-1-git-send-email-richard@nod.at
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After learning we'll need some sort of deferred printk functionality in
the timekeeping core, Peter suggested we rename the printk_sched function
so it can be reused by needed subsystems.
This only changes the function name. No logic changes.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main scheduling related changes in this cycle were:
- various sched/numa updates, for better performance
- tree wide cleanup of open coded nice levels
- nohz fix related to rq->nr_running use
- cpuidle changes and continued consolidation to improve the
kernel/sched/idle.c high level idle scheduling logic. As part of
this effort I pulled cpuidle driver changes from Rafael as well.
- standardized idle polling amongst architectures
- continued work on preparing better power/energy aware scheduling
- sched/rt updates
- misc fixlets and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
sched/numa: Decay ->wakee_flips instead of zeroing
sched/numa: Update migrate_improves/degrades_locality()
sched/numa: Allow task switch if load imbalance improves
sched/rt: Fix 'struct sched_dl_entity' and dl_task_time() comments, to match the current upstream code
sched: Consolidate open coded implementations of nice level frobbing into nice_to_rlimit() and rlimit_to_nice()
sched: Initialize rq->age_stamp on processor start
sched, nohz: Change rq->nr_running to always use wrappers
sched: Fix the rq->next_balance logic in rebalance_domains() and idle_balance()
sched: Use clamp() and clamp_val() to make sys_nice() more readable
sched: Do not zero sg->cpumask and sg->sgp->power in build_sched_groups()
sched/numa: Fix initialization of sched_domain_topology for NUMA
sched: Call select_idle_sibling() when not affine_sd
sched: Simplify return logic in sched_read_attr()
sched: Simplify return logic in sched_copy_attr()
sched: Fix exec_start/task_hot on migrated tasks
arm64: Remove TIF_POLLING_NRFLAG
metag: Remove TIF_POLLING_NRFLAG
sched/idle: Make cpuidle_idle_call() void
sched/idle: Reflow cpuidle_idle_call()
sched/idle: Delay clearing the polling bit
...
Pull RCU changes from Ingo Molnar:
"The main RCU changes in this cycle were:
- RCU torture-test changes.
- variable-name renaming cleanup.
- update RCU documentation.
- miscellaneous fixes.
- patch to suppress RCU stall warnings while sysrq requests are being
processed"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (68 commits)
rcu: Provide API to suppress stall warnings while sysrc runs
rcu: Variable name changed in tree_plugin.h and used in tree.c
torture: Remove unused definition
torture: Remove __init from torture_init_begin/end
torture: Check for multiple concurrent torture tests
locktorture: Remove reference to nonexistent Kconfig parameter
rcutorture: Run rcu_torture_writer at normal priority
rcutorture: Note diffs from git commits
rcutorture: Add missing destroy_timer_on_stack()
rcutorture: Explicitly test synchronous grace-period primitives
rcutorture: Add tests for get_state_synchronize_rcu()
rcutorture: Test RCU-sched primitives in TREE_PREEMPT_RCU kernels
torture: Use elapsed time to detect hangs
rcutorture: Check for rcu_torture_fqs creation errors
torture: Better summary diagnostics for build failures
torture: Notice if an all-zero cpumask is passed inside a critical section
rcutorture: Make rcu_torture_reader() use cond_resched()
sched,rcu: Make cond_resched() report RCU quiescent states
percpu: Fix raw_cpu_inc_return()
rcutorture: Export RCU grace-period kthread wait state to rcutorture
...
Pull scheduler fixes from Ingo Molnar:
"Various fixlets, mostly related to the (root-only) SCHED_DEADLINE
policy, but also a hotplug bug fix and a fix for a NR_CPUS related
overallocation bug causing a suspend/resume regression"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix hotplug vs. set_cpus_allowed_ptr()
sched/cpupri: Replace NR_CPUS arrays
sched/deadline: Replace NR_CPUS arrays
sched/deadline: Restrict user params max value to 2^63 ns
sched/deadline: Change sched_getparam() behaviour vs SCHED_DEADLINE
sched: Disallow sched_attr::sched_policy < 0
sched: Make sched_setattr() correctly return -EFBIG
Pull scheduler fixes from Ingo Molnar:
"The biggest commit is an irqtime accounting loop latency fix, the rest
are misc fixes all over the place: deadline scheduling, docs, numa,
balancer and a bad to-idle latency fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Initialize newidle balance stats in sd_numa_init()
sched: Fix updating rq->max_idle_balance_cost and rq->next_balance in idle_balance()
sched: Skip double execution of pick_next_task_fair()
sched: Use CPUPRI_NR_PRIORITIES instead of MAX_RT_PRIO in cpupri check
sched/deadline: Fix memory leak
sched/deadline: Fix sched_yield() behavior
sched: Sanitize irq accounting madness
sched/docbook: Fix 'make htmldocs' warnings caused by missing description
Pull RCU updates from Paul E. McKenney:
" 1. Update RCU documentation. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/634.
2. Miscellaneous fixes. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/645.
3. Torture-test changes. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/667.
4. Variable-name renaming cleanup, sent separately due to conflicts.
This was posted to LKML at https://lkml.org/lkml/2014/5/13/854.
5. Patch to suppress RCU stall warnings while sysrq requests are
being processed. This patch is the RCU portions of the patch
that Rik posted to LKML at https://lkml.org/lkml/2014/4/29/457.
The reason for pushing this patch ahead instead of waiting until
3.17 is that the NMI-based stack traces are messing up sysrq
output, and in some cases also messing up the system as well."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the sched_clock time starts at a large value, the kernel will spin
in sched_avg_update for a long time while rq->age_stamp catches up
with rq->clock.
The comment in kernel/sched/clock.c says that there is no strict promise
that it starts at zero. So initialize rq->age_stamp when a cpu starts up
to avoid this.
I was seeing long delays on a simulator that didn't start the clock at
zero. This might also be an issue on reboots on processors that don't
re-initialize the timer to zero on reset, and when using kexec.
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1399574859-11714-1-git-send-email-minyard@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no need to zero struct sched_group member cpumask and struct
sched_group_power member power since both structures are already allocated
as zeroed memory in __sdt_alloc().
This patch has been tested with
BUG_ON(!cpumask_empty(sched_group_cpus(sg))); and BUG_ON(sg->sgp->power);
in build_sched_groups() on ARM TC2 and INTEL i5 M520 platform including
CPU hotplug scenarios.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1398865178-12577-1-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jet Chen has reported a kernel panics when booting qemu-system-x86_64 with
kvm64 cpu. A panic occured while building the sched_domain.
In sched_init_numa, we create a new topology table in which both default
levels and numa levels are copied. The last row of the table must have a null
pointer in the mask field.
The current implementation doesn't add this last row in the computation of the
table size. So we add 1 row in the allocation size that will be used as the
last row of the table. The kzalloc will ensure that the mask field is NULL.
Reported-by: Jet Chen <jet.chen@intel.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: fengguang.wu@intel.com
Link: http://lkml.kernel.org/r/1399972261-25693-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Gotos are chained pointlessly here, and the 'out' label
can be dispensed with.
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/536CEC29.9090503@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The logic in this function is a little contorted, clean it up:
* Rather than having chained gotos for the -EFBIG case, just
return -EFBIG directly.
* Now, the label 'out' is no longer needed, and 'ret' must be zero
zero by the time we fall through to this point, so just return 0.
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/536CEC24.9080201@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lai found that:
WARNING: CPU: 1 PID: 13 at arch/x86/kernel/smp.c:124 native_smp_send_reschedule+0x2d/0x4b()
...
migration_cpu_stop+0x1d/0x22
was caused by set_cpus_allowed_ptr() assuming that cpu_active_mask is
always a sub-set of cpu_online_mask.
This isn't true since 5fbd036b55 ("sched: Cleanup cpu_active madness").
So set active and online at the same time to avoid this particular
problem.
Fixes: 5fbd036b55 ("sched: Cleanup cpu_active madness")
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/53758B12.8060609@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Michael Kerrisk noticed that creating SCHED_DEADLINE reservations
with certain parameters (e.g, a runtime of something near 2^64 ns)
can cause a system freeze for some amount of time.
The problem is that in the interface we have
u64 sched_runtime;
while internally we need to have a signed runtime (to cope with
budget overruns)
s64 runtime;
At the time we setup a new dl_entity we copy the first value in
the second. The cast turns out with negative values when
sched_runtime is too big, and this causes the scheduler to go crazy
right from the start.
Moreover, considering how we deal with deadlines wraparound
(s64)(a - b) < 0
we also have to restrict acceptable values for sched_{deadline,period}.
This patch fixes the thing checking that user parameters are always
below 2^63 ns (still large enough for everyone).
It also rewrites other conditions that we check, since in
__checkparam_dl we don't have to deal with deadline wraparounds
and what we have now erroneously fails when the difference between
values is too big.
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Dario Faggioli<raistlin@linux.it>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140513141131.20d944f81633ee937f256385@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The way we read POSIX one should only call sched_getparam() when
sched_getscheduler() returns either SCHED_FIFO or SCHED_RR.
Given that we currently return sched_param::sched_priority=0 for all
others, extend the same behaviour to SCHED_DEADLINE.
Requested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: linux-man <linux-man@vger.kernel.org>
Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20140512205034.GH13467@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The scheduler uses policy=-1 to preserve the current policy state to
implement sys_sched_setparam(), this got exposed to userspace by
accident through sys_sched_setattr(), cure this.
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140509085311.GJ30445@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The documented[1] behavior of sched_attr() in the proposed man page text is:
sched_attr::size must be set to the size of the structure, as in
sizeof(struct sched_attr), if the provided structure is smaller
than the kernel structure, any additional fields are assumed
'0'. If the provided structure is larger than the kernel structure,
the kernel verifies all additional fields are '0' if not the
syscall will fail with -E2BIG.
As currently implemented, sched_copy_attr() returns -EFBIG for
for this case, but the logic in sys_sched_setattr() converts that
error to -EFAULT. This patch fixes the behavior.
[1] http://thread.gmane.org/gmane.linux.kernel/1615615/focus=1697760
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/536CEC17.9070903@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup in general is moving towards using cgroup_subsys_state as the
fundamental structural component and css_parent() was introduced to
convert from using cgroup->parent to css->parent. It was quite some
time ago and we're moving forward with making css more prominent.
This patch drops the trivial wrapper css_parent() and let the users
dereference css->parent. While at it, explicitly mark fields of css
which are public and immutable.
v2: New usage from device_cgroup.c converted.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Given a CPU running a loop containing cond_resched(), with no
other tasks runnable on that CPU, RCU will eventually report RCU
CPU stall warnings due to lack of quiescent states. Fortunately,
every call to cond_resched() is a perfectly good quiescent state.
Unfortunately, invoking rcu_note_context_switch() is a bit heavyweight
for cond_resched(), especially given the need to disable preemption,
and, for RCU-preempt, interrupts as well.
This commit therefore maintains a per-CPU counter that causes
cond_resched(), cond_resched_lock(), and cond_resched_softirq() to call
rcu_note_context_switch(), but only about once per 256 invocations.
This ratio was chosen in keeping with the relative time constants of
RCU grace periods.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Because mwait_idle_with_hints() gets called from !idle context it must
call current_clr_polling(). This however means that resched_task() is
very likely to send an IPI even when we were polling:
CPU0 CPU1
if (current_set_polling_and_test())
goto out;
__monitor(&ti->flags);
if (!need_resched())
__mwait(eax, ecx);
set_tsk_need_resched(p);
smp_mb();
out:
current_clr_polling();
if (!tsk_is_polling(p))
smp_send_reschedule(cpu);
So while it is correct (extra IPIs aren't a problem, whereas a missed
IPI would be) it is a performance problem (for some).
Avoid this issue by using fetch_or() to atomically set NEED_RESCHED
and test if POLLING_NRFLAG is set.
Since a CPU stuck in mwait is unlikely to modify the flags word,
contention on the cmpxchg is unlikely and thus we should mostly
succeed in a single go.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-kf5suce6njh5xf5d3od13rr0@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A new flag SD_SHARE_POWERDOMAIN is created to reflect whether groups of CPUs
in a sched_domain level can or not reach different power state. As an example,
the flag should be cleared at CPU level if groups of cores can be power gated
independently. This information can be used in the load balance decision or to
add load balancing level between group of CPUs that can power gate
independantly.
This flag is part of the topology flags that can be set by arch.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: schwidefsky@de.ibm.com
Cc: cmetcalf@tilera.com
Cc: benh@kernel.crashing.org
Cc: preeti@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1397209481-28542-5-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We replace the old way to configure the scheduler topology with a new method
which enables a platform to declare additionnal level (if needed).
We still have a default topology table definition that can be used by platform
that don't want more level than the SMT, MC, CPU and NUMA ones. This table can
be overwritten by an arch which either wants to add new level where a load
balance make sense like BOOK or powergating level or wants to change the flags
configuration of some levels.
For each level, we need a function pointer that returns cpumask for each cpu,
a function pointer that returns the flags for the level and a name. Only flags
that describe topology, can be set by an architecture. The current topology
flags are:
SD_SHARE_CPUPOWER
SD_SHARE_PKG_RESOURCES
SD_NUMA
SD_ASYM_PACKING
Then, each level must be a subset on the next one. The build sequence of the
sched_domain will take care of removing useless levels like those with 1 CPU
and those with the same CPU span and no more relevant information for
load balancing than its children.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux390@de.ibm.com
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Link: http://lkml.kernel.org/r/1397209481-28542-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tim wrote:
"The current code will call pick_next_task_fair a second time in the
slow path if we did not pull any task in our first try. This is
really unnecessary as we already know no task can be pulled and it
doubles the delay for the cpu to enter idle.
We instrumented some network workloads and that saw that
pick_next_task_fair is frequently called twice before a cpu enters
idle. The call to pick_next_task_fair can add non trivial latency as
it calls load_balance which runs find_busiest_group on an hierarchy of
sched domains spanning the cpus for a large system. For some 4 socket
systems, we saw almost 0.25 msec spent per call of pick_next_task_fair
before a cpu can be idled."
Optimize the second call away for the common case and document the
dependency.
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/20140424100047.GP11096@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
yield_task_dl() is broken:
o it forces current to be throttled setting its runtime to zero;
o it sets current's dl_se->dl_new to one, expecting that dl_task_timer()
will queue it back with proper parameters at replenish time.
Unfortunately, dl_task_timer() has this check at the very beginning:
if (!dl_task(p) || dl_se->dl_new)
goto unlock;
So, it just bails out and the task is never replenished. It actually
yielded forever.
To fix this, introduce a new flag indicating that the task properly yielded
the CPU before its current runtime expired. While this is a little overdoing
at the moment, the flag would be useful in the future to discriminate between
"good" jobs (of which remaining runtime could be reclaimed, i.e. recycled)
and "bad" jobs (for which dl_throttled task has been set) that needed to be
stopped.
Reported-by: yjay.kim <yjay.kim@lge.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140429103953.e68eba1b2ac3309214e3dc5a@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As requested by Linus add explicit __visible to the asmlinkage users.
This marks functions visible to assembler.
Tree sweep for rest of tree.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1398984278-29319-4-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Use NOKPROBE_SYMBOL macro to protect functions from
kprobes instead of __kprobes annotation in sched/core.c.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/20140417081842.26341.83959.stgit@ltc230.yrl.intra.hitachi.co.jp
Introduce NOKPROBE_SYMBOL() macro which builds a kprobes
blacklist at kernel build time.
The usage of this macro is similar to EXPORT_SYMBOL(),
placed after the function definition:
NOKPROBE_SYMBOL(function);
Since this macro will inhibit inlining of static/inline
functions, this patch also introduces a nokprobe_inline macro
for static/inline functions. In this case, we must use
NOKPROBE_SYMBOL() for the inline function caller.
When CONFIG_KPROBES=y, the macro stores the given function
address in the "_kprobe_blacklist" section.
Since the data structures are not fully initialized by the
macro (because there is no "size" information), those
are re-initialized at boot time by using kallsyms.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20140417081705.26341.96719.stgit@ltc230.yrl.intra.hitachi.co.jp
Cc: Alok Kataria <akataria@vmware.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jan-Simon Möller <dl9pf@gmx.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-sparse@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When 'flags' argument to sched_{set,get}attr() syscalls were
added in:
6d35ab4809 ("sched: Add 'flags' argument to sched_{set,get}attr() syscalls")
no description for 'flags' was added. It causes the following warnings on "make htmldocs":
Warning(/kernel/sched/core.c:3645): No description found for parameter 'flags'
Warning(/kernel/sched/core.c:3789): No description found for parameter 'flags'
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1397753955-2914-1-git-send-email-standby24x7@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the smp_mb__{before,after}*() ops are fundamentally dependent on
how an arch can implement atomics it doesn't make sense to have 3
variants of them. They must all be the same.
Furthermore, the 3 variants suggest they're only valid for those 3
atomic ops, while we have many more where they could be applied.
So move away from
smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() and reduce the
interface to just the two: smp_mb__{before,after}_atomic().
This patch prepares the way by introducing default implementations in
asm-generic/barrier.h that default to a full barrier and providing
__deprecated inlines for the previous 6 barriers if they're not
provided by the arch.
This should allow for a mostly painless transition (lots of deprecated
warns in the interim).
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/n/tip-wr59327qdyi9mbzn6x937s4e@git.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Chen, Gong" <gong.chen@linux.intel.com>
Cc: John Sullivan <jsrhbz@kanargh.force9.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mauro Carvalho Chehab <m.chehab@samsung.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge second patch-bomb from Andrew Morton:
- the rest of MM
- zram updates
- zswap updates
- exit
- procfs
- exec
- wait
- crash dump
- lib/idr
- rapidio
- adfs, affs, bfs, ufs
- cris
- Kconfig things
- initramfs
- small amount of IPC material
- percpu enhancements
- early ioremap support
- various other misc things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (156 commits)
MAINTAINERS: update Intel C600 SAS driver maintainers
fs/ufs: remove unused ufs_super_block_third pointer
fs/ufs: remove unused ufs_super_block_second pointer
fs/ufs: remove unused ufs_super_block_first pointer
fs/ufs/super.c: add __init to init_inodecache()
doc/kernel-parameters.txt: add early_ioremap_debug
arm64: add early_ioremap support
arm64: initialize pgprot info earlier in boot
x86: use generic early_ioremap
mm: create generic early_ioremap() support
x86/mm: sparse warning fix for early_memremap
lglock: map to spinlock when !CONFIG_SMP
percpu: add preemption checks to __this_cpu ops
vmstat: use raw_cpu_ops to avoid false positives on preemption checks
slub: use raw_cpu_inc for incrementing statistics
net: replace __this_cpu_inc in route.c with raw_cpu_inc
modules: use raw_cpu_write for initialization of per cpu refcount.
mm: use raw_cpu ops for determining current NUMA node
percpu: add raw_cpu_ops
slub: fix leak of 'name' in sysfs_slab_add
...
To increase compiler portability there is <linux/compiler.h> which
provides convenience macros for various gcc constructs. Eg: __weak for
__attribute__((weak)). I've replaced all instances of gcc attributes
with the right macro in the kernel subsystem.
Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the final piece in the puzzle, as all patches to remove the
last users of \(interruptible_\|\)sleep_on\(_timeout\|\) have made it
into the 3.15 merge window. The work was long overdue, and this
interface in particular should not have survived the BKL removal
that was done a couple of years ago.
Citing Jon Corbet from http://lwn.net/2001/0201/kernel.php3":
"[...] it was suggested that the janitors look for and fix all code
that calls sleep_on() [...] since (1) almost all such code is
incorrect, and (2) Linus has agreed that those functions should
be removed in the 2.5 development series".
We haven't quite made it for 2.5, but maybe we can merge this for 3.15.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"A lot updates for cgroup:
- The biggest one is cgroup's conversion to kernfs. cgroup took
after the long abandoned vfs-entangled sysfs implementation and
made it even more convoluted over time. cgroup's internal objects
were fused with vfs objects which also brought in vfs locking and
object lifetime rules. Naturally, there are places where vfs rules
don't fit and nasty hacks, such as credential switching or lock
dance interleaving inode mutex and cgroup_mutex with object serial
number comparison thrown in to decide whether the operation is
actually necessary, needed to be employed.
After conversion to kernfs, internal object lifetime and locking
rules are mostly isolated from vfs interactions allowing shedding
of several nasty hacks and overall simplification. This will also
allow implmentation of operations which may affect multiple cgroups
which weren't possible before as it would have required nesting
i_mutexes.
- Various simplifications including dropping of module support,
easier cgroup name/path handling, simplified cgroup file type
handling and task_cg_lists optimization.
- Prepatory changes for the planned unified hierarchy, which is still
a patchset away from being actually operational. The dummy
hierarchy is updated to serve as the default unified hierarchy.
Controllers which aren't claimed by other hierarchies are
associated with it, which BTW was what the dummy hierarchy was for
anyway.
- Various fixes from Li and others. This pull request includes some
patches to add missing slab.h to various subsystems. This was
triggered xattr.h include removal from cgroup.h. cgroup.h
indirectly got included a lot of files which brought in xattr.h
which brought in slab.h.
There are several merge commits - one to pull in kernfs updates
necessary for converting cgroup (already in upstream through
driver-core), others for interfering changes in the fixes branch"
* 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits)
cgroup: remove useless argument from cgroup_exit()
cgroup: fix spurious lockdep warning in cgroup_exit()
cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c
cgroup: break kernfs active_ref protection in cgroup directory operations
cgroup: fix cgroup_taskset walking order
cgroup: implement CFTYPE_ONLY_ON_DFL
cgroup: make cgrp_dfl_root mountable
cgroup: drop const from @buffer of cftype->write_string()
cgroup: rename cgroup_dummy_root and related names
cgroup: move ->subsys_mask from cgroupfs_root to cgroup
cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding
cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root
cgroup: reorganize cgroup bootstrapping
cgroup: relocate setting of CGRP_DEAD
cpuset: use rcu_read_lock() to protect task_cs()
cgroup_freezer: document freezer_fork() subtleties
cgroup: update cgroup_transfer_tasks() to either succeed or fail
cgroup: drop task_lock() protection around task->cgroups
cgroup: update how a newly forked task gets associated with css_set
...
Pull core block layer updates from Jens Axboe:
"This is the pull request for the core block IO bits for the 3.15
kernel. It's a smaller round this time, it contains:
- Various little blk-mq fixes and additions from Christoph and
myself.
- Cleanup of the IPI usage from the block layer, and associated
helper code. From Frederic Weisbecker and Jan Kara.
- Duplicate code cleanup in bio-integrity from Gu Zheng. This will
give you a merge conflict, but that should be easy to resolve.
- blk-mq notify spinlock fix for RT from Mike Galbraith.
- A blktrace partial accounting bug fix from Roman Pen.
- Missing REQ_SYNC detection fix for blk-mq from Shaohua Li"
* 'for-3.15/core' of git://git.kernel.dk/linux-block: (25 commits)
blk-mq: add REQ_SYNC early
rt,blk,mq: Make blk_mq_cpu_notify_lock a raw spinlock
blk-mq: support partial I/O completions
blk-mq: merge blk_mq_insert_request and blk_mq_run_request
blk-mq: remove blk_mq_alloc_rq
blk-mq: don't dump CPU -> hw queue map on driver load
blk-mq: fix wrong usage of hctx->state vs hctx->flags
blk-mq: allow blk_mq_init_commands() to return failure
block: remove old blk_iopoll_enabled variable
blktrace: fix accounting of partially completed requests
smp: Rename __smp_call_function_single() to smp_call_function_single_async()
smp: Remove wait argument from __smp_call_function_single()
watchdog: Simplify a little the IPI call
smp: Move __smp_call_function_single() below its safe version
smp: Consolidate the various smp_call_function_single() declensions
smp: Teach __smp_call_function_single() to check for offline cpus
smp: Remove unused list_head from csd
smp: Iterate functions through llist_for_each_entry_safe()
block: Stop abusing rq->csd.list in blk-softirq
block: Remove useless IPI struct initialization
...