We can maintain the ordering of the scheduler cpu hotplug functionality nicely
in one notifer. Get rid of the maze.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Prevent the SMP scheduler related notifiers to be executed before the smp
scheduler is initialized and install them early.
This is a preparatory change for further consolidation of the hotplug notifier
maze.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Start distangling the maze of hotplug notifiers in the scheduler.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In order to enable symmetric hotplug, we must mirror the online &&
!active state of cpu-down on the cpu-up side.
However, to retain sanity, limit this state to per-cpu kthreads.
Aside from the change to set_cpus_allowed_ptr(), which allow moving
the per-cpu kthreads on, the other critical piece is the cpu selection
for pinned tasks in select_task_rq(). This avoids dropping into
select_fallback_rq().
select_fallback_rq() cannot be allowed to select !active cpus because
its used to migrate user tasks away. And we do not want to move user
tasks onto cpus that are in transition.
Requested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160301152303.GV6356@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The problem with the existing lock pinning is that each pin is of
value 1; this mean you can simply unpin if you know its pinned,
without having any extra information.
This scheme generates a random (16 bit) cookie for each pin and
requires this same cookie to unpin. This means you have to keep the
cookie in context.
No objsize difference for !LOCKDEP kernels.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to be able to pass around more than just the IRQ flags in the
future, add a rq_flags structure.
No difference in code generation for the x86_64-defconfig build I
tested.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By default, this is the same thing as switch_mm().
x86 will override it as an optimization.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/df401df47bdd6be3e389c6f1e3f5310d70e81b2c.1461688545.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Chris Metcalf reported a that sched_can_stop_tick() sometimes fails to
re-enable the tick.
His observed problem is that rq->cfs.nr_running can be 1 even though
there are multiple runnable CFS tasks. This happens in the cgroup
case, in which case cfs.nr_running is the number of runnable entities
for that level.
If there is a single runnable cgroup (which can have an arbitrary
number of runnable child entries itself) rq->cfs.nr_running will be 1.
However, looking at that function I think there's more problems with it.
It seems to assume that if there's FIFO tasks, those will run. This is
incorrect. The FIFO task can have a lower prio than an RR task, in which
case the RR task will run.
So the whole fifo_nr_running test seems misplaced, it should go after
the rr_nr_running tests. That is, only if !rr_nr_running, can we use
fifo_nr_running like this.
Reported-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Chris Metcalf <cmetcalf@mellanox.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Fixes: 76d92ac305 ("sched: Migrate sched to use new tick dependency mask model")
Link: http://lkml.kernel.org/r/20160421160315.GK24771@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I got a minus(very big) dl_b->total_bw during my deadline tests.
# grep dl /proc/sched_debug
dl_rq[0]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -222297900
Something unusual must have happened.
After some digging, I finally noticed that when changing a deadline
task to normal(cfs), and changing it back to deadline immediately,
after it died, we will got the wrong dl_bw->total_bw.
The root cause is in dl_overflow(), it has:
if (new_bw == p->dl.dl_bw)
return 0;
1) When a deadline task is changed to !deadline task, it will start
dl timer in switched_from_dl(), and retain previous deadline parameter
till the timer expires.
2) If we change it back to deadline with the same bandwidth parameter
before the timer expires, as it keeps the old bandwidth although it
is not a deadline task. dl_overflow() simply returns success without
updating the right data, and got the wrong dl_bw->total_bw.
The solution is simple, if @p is not deadline, don't return.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460636368-1993-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some code in CPU load update only concern NO_HZ configs but it is
built on all configurations. When NO_HZ isn't built, that code is harmless
but just happens to take some useless ressources in CPU and memory:
1) one useless field in struct rq
2) jiffies record on every tick that is never used (cpu_load_update_periodic)
3) decay_load_missed is called two times on every tick to eventually
return immediately with no action taken. And that function is dead
code.
For pure optimization purposes, lets conditionally build the NO_HZ
related code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461080211-16271-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CPU load update related functions have a weak naming convention
currently, starting with update_cpu_load_*() which isn't ideal as
"update" is a very generic concept.
Since two of these functions are public already (and a third is to come)
that's enough to introduce a more conventional naming scheme. So let's
do the following rename instead:
update_cpu_load_*() -> cpu_load_update_*()
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sysrq_sched_debug_show() can dump a lot of information. Don't print out
all that if we're just trying to get a list of blocked tasks (SysRq-W).
The information is still accessible with SysRq-T.
Signed-off-by: Rabin Vincent <rabinv@axis.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459777322-30902-1-git-send-email-rabin.vincent@axis.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A new task's util_avg is set to full utilization of a CPU (100% time
running). This accelerates a new task's utilization ramp-up, useful to
boost its execution in early time. However, it may result in
(insanely) high utilization for a transient time period when a flood
of tasks are spawned. Importantly, it violates the "fundamentally
bounded" CPU utilization, and its side effect is negative if we don't
take any measure to bound it.
This patch proposes an algorithm to address this issue. It has
two methods to approach a sensible initial util_avg:
(1) An expected (or average) util_avg based on its cfs_rq's util_avg:
util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
(2) A trajectory of how successive new tasks' util develops, which
gives 1/2 of the left utilization budget to a new task such that
the additional util is noticeably large (when overall util is low) or
unnoticeably small (when overall util is high enough). In the meantime,
the aggregate utilization is well bounded:
util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
where n denotes the nth task.
If util_avg is larger than util_avg_cap, then the effective util is
clamped to the util_avg_cap.
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: steve.muckle@linaro.org
Link: http://lkml.kernel.org/r/1459283456-21682-1-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While testing the tracer preemptoff, I hit this strange trace:
<...>-259 0...1 0us : schedule <-worker_thread
<...>-259 0d..1 0us : rcu_note_context_switch <-__schedule
<...>-259 0d..1 0us : rcu_sched_qs <-rcu_note_context_switch
<...>-259 0d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
<...>-259 0d..1 0us : _raw_spin_lock <-__schedule
<...>-259 0d..1 0us : preempt_count_add <-_raw_spin_lock
<...>-259 0d..2 0us : do_raw_spin_lock <-_raw_spin_lock
<...>-259 0d..2 1us : deactivate_task <-__schedule
<...>-259 0d..2 1us : update_rq_clock.part.84 <-deactivate_task
<...>-259 0d..2 1us : dequeue_task_fair <-deactivate_task
<...>-259 0d..2 1us : dequeue_entity <-dequeue_task_fair
<...>-259 0d..2 1us : update_curr <-dequeue_entity
<...>-259 0d..2 1us : update_min_vruntime <-update_curr
<...>-259 0d..2 1us : cpuacct_charge <-update_curr
<...>-259 0d..2 1us : __rcu_read_lock <-cpuacct_charge
<...>-259 0d..2 1us : __rcu_read_unlock <-cpuacct_charge
<...>-259 0d..2 1us : clear_buddies <-dequeue_entity
<...>-259 0d..2 1us : account_entity_dequeue <-dequeue_entity
<...>-259 0d..2 2us : update_min_vruntime <-dequeue_entity
<...>-259 0d..2 2us : update_cfs_shares <-dequeue_entity
<...>-259 0d..2 2us : hrtick_update <-dequeue_task_fair
<...>-259 0d..2 2us : wq_worker_sleeping <-__schedule
<...>-259 0d..2 2us : kthread_data <-wq_worker_sleeping
<...>-259 0d..2 2us : pick_next_task_fair <-__schedule
<...>-259 0d..2 2us : check_cfs_rq_runtime <-pick_next_task_fair
<...>-259 0d..2 2us : pick_next_entity <-pick_next_task_fair
<...>-259 0d..2 2us : clear_buddies <-pick_next_entity
<...>-259 0d..2 2us : pick_next_entity <-pick_next_task_fair
<...>-259 0d..2 2us : clear_buddies <-pick_next_entity
<...>-259 0d..2 2us : set_next_entity <-pick_next_task_fair
<...>-259 0d..2 3us : put_prev_entity <-pick_next_task_fair
<...>-259 0d..2 3us : check_cfs_rq_runtime <-put_prev_entity
<...>-259 0d..2 3us : set_next_entity <-pick_next_task_fair
gnome-sh-1031 0d..2 3us : finish_task_switch <-__schedule
gnome-sh-1031 0d..2 3us : _raw_spin_unlock_irq <-finish_task_switch
gnome-sh-1031 0d..2 3us : do_raw_spin_unlock <-_raw_spin_unlock_irq
gnome-sh-1031 0...2 3us!: preempt_count_sub <-_raw_spin_unlock_irq
gnome-sh-1031 0...1 582us : do_raw_spin_lock <-_raw_spin_lock
gnome-sh-1031 0...1 583us : _raw_spin_unlock <-drm_gem_object_lookup
gnome-sh-1031 0...1 583us : do_raw_spin_unlock <-_raw_spin_unlock
gnome-sh-1031 0...1 583us : preempt_count_sub <-_raw_spin_unlock
gnome-sh-1031 0...1 584us : _raw_spin_unlock <-drm_gem_object_lookup
gnome-sh-1031 0...1 584us+: trace_preempt_on <-drm_gem_object_lookup
gnome-sh-1031 0...1 603us : <stack trace>
=> preempt_count_sub
=> _raw_spin_unlock
=> drm_gem_object_lookup
=> i915_gem_madvise_ioctl
=> drm_ioctl
=> do_vfs_ioctl
=> SyS_ioctl
=> entry_SYSCALL_64_fastpath
As I'm tracing preemption disabled, it seemed incorrect that the trace
would go across a schedule and report not being in the scheduler.
Looking into this I discovered the problem.
schedule() calls preempt_disable() but the preempt_schedule() calls
preempt_enable_notrace(). What happened above was that the gnome-shell
task was preempted on another CPU, migrated over to the idle cpu. The
tracer stared with idle calling schedule(), which called
preempt_disable(), but then gnome-shell finished, and it enabled
preemption with preempt_enable_notrace() that does stop the trace, even
though preemption was enabled.
The purpose of the preempt_disable_notrace() in the preempt_schedule()
is to prevent function tracing from going into an infinite loop.
Because function tracing can trace the preempt_enable/disable() calls
that are traced. The problem with function tracing is:
NEED_RESCHED set
preempt_schedule()
preempt_disable()
preempt_count_inc()
function trace (before incrementing preempt count)
preempt_disable_notrace()
preempt_enable_notrace()
sees NEED_RESCHED set
preempt_schedule() (repeat)
Now by breaking out the preempt off/on tracing into their own code:
preempt_disable_check() and preempt_enable_check(), we can add these to
the preempt_schedule() code. As preemption would then be disabled, even
if they were to be traced by the function tracer, the disabled
preemption would prevent the recursion.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160321112339.6dc78ad6@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch functionally reverts:
5fd7a09cfb ("atomic: Export fetch_or()")
During the merge Linus observed that the generic version of fetch_or()
was messy:
" This makes the ugly "fetch_or()" macro that the scheduler used
internally a new generic helper, and does a bad job at it. "
e23604edac Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Now that we have introduced atomic_fetch_or(), fetch_or() is only used
by the scheduler in order to deal with thread_info flags which type
can vary across architectures.
Lets confine fetch_or() back to the scheduler so that we encourage
future users to use the more robust and well typed atomic_t version
instead.
While at it, fetch_or() gets robustified, pasting improvements from a
previous patch by Ingo Molnar that avoids needless expression
re-evaluations in the loop.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458830281-4255-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"Misc fixes: a cgroup fix, a fair-scheduler migration accounting fix, a
cputime fix and two cpuacct cleanups"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/cpuacct: Simplify the cpuacct code
sched/cpuacct: Rename parameter in cpuusage_write() for readability
sched/fair: Add comments to explain select_idle_sibling()
sched/fair: Fix fairness issue on migration
sched/cgroup: Fix/cleanup cgroup teardown/init
sched/cputime: Fix steal time accounting vs. CPU hotplug
The CPU controller hasn't kept up with the various changes in the whole
cgroup initialization / destruction sequence, and commit:
2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
caused it to explode.
The reason for this is that zombies do not inhibit css_offline() from
being called, but do stall css_released(). Now we tear down the cfs_rq
structures on css_offline() but zombies can run after that, leading to
use-after-free issues.
The solution is to move the tear-down to css_released(), which
guarantees nobody (including no zombies) is still using our cgroup.
Furthermore, a few simple cleanups are possible too. There doesn't
appear to be any point to us using css_online() (anymore?) so fold that
in css_alloc().
And since cgroup code guarantees an RCU grace period between
css_released() and css_free() we can forgo using call_rcu() and free the
stuff immediately.
Suggested-by: Tejun Heo <tj@kernel.org>
Reported-by: Kazuki Yamaguchi <k@rhe.jp>
Reported-by: Niklas Cassel <niklas.cassel@axis.com>
Tested-by: Niklas Cassel <niklas.cassel@axis.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
Link: http://lkml.kernel.org/r/20160316152245.GY6344@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull 'objtool' stack frame validation from Ingo Molnar:
"This tree adds a new kernel build-time object file validation feature
(ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
It was written by and is maintained by Josh Poimboeuf.
The motivation: there's a category of hard to find kernel bugs, most
of them in assembly code (but also occasionally in C code), that
degrades the quality of kernel stack dumps/backtraces. These bugs are
hard to detect at the source code level. Such bugs result in
incorrect/incomplete backtraces most of time - but can also in some
rare cases result in crashes or other undefined behavior.
The build time correctness checking is done via the new 'objtool'
user-space utility that was written for this purpose and which is
hosted in the kernel repository in tools/objtool/. The tool's (very
simple) UI and source code design is shaped after Git and perf and
shares quite a bit of infrastructure with tools/perf (which tooling
infrastructure sharing effort got merged via perf and is already
upstream). Objtool follows the well-known kernel coding style.
Objtool does not try to check .c or .S files, it instead analyzes the
resulting .o generated machine code from first principles: it decodes
the instruction stream and interprets it. (Right now objtool supports
the x86-64 architecture.)
From tools/objtool/Documentation/stack-validation.txt:
"The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand
which analyzes every .o file and ensures the validity of its stack
metadata. It enforces a set of rules on asm code and C inline
assembly code so that stack traces can be reliable.
Currently it only checks frame pointer usage, but there are plans to
add CFI validation for C files and CFI generation for asm files.
For each function, it recursively follows all possible code paths
and validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements,
for which gcc sometimes uses jump tables."
When this new kernel option is enabled (it's disabled by default), the
tool, if it finds any suspicious assembly code pattern, outputs
warnings in compiler warning format:
warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
... so that scripts that pick up compiler warnings will notice them.
All known warnings triggered by the tool are fixed by the tree, most
of the commits in fact prepare the kernel to be warning-free. Most of
them are bugfixes or cleanups that stand on their own, but there are
also some annotations of 'special' stack frames for justified cases
such entries to JIT-ed code (BPF) or really special boot time code.
There are two other long-term motivations behind this tool as well:
- To improve the quality and reliability of kernel stack frames, so
that they can be used for optimized live patching.
- To create independent infrastructure to check the correctness of
CFI stack frames at build time. CFI debuginfo is notoriously
unreliable and we cannot use it in the kernel as-is without extra
checking done both on the kernel side and on the build side.
The quality of kernel stack frames matters to debuggability as well,
so IMO we can merge this without having to consider the live patching
or CFI debuginfo angle"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
objtool: Only print one warning per function
objtool: Add several performance improvements
tools: Copy hashtable.h into tools directory
objtool: Fix false positive warnings for functions with multiple switch statements
objtool: Rename some variables and functions
objtool: Remove superflous INIT_LIST_HEAD
objtool: Add helper macros for traversing instructions
objtool: Fix false positive warnings related to sibling calls
objtool: Compile with debugging symbols
objtool: Detect infinite recursion
objtool: Prevent infinite recursion in noreturn detection
objtool: Detect and warn if libelf is missing and don't break the build
tools: Support relative directory path for 'O='
objtool: Support CROSS_COMPILE
x86/asm/decoder: Use explicitly signed chars
objtool: Enable stack metadata validation on 64-bit x86
objtool: Add CONFIG_STACK_VALIDATION option
objtool: Add tool to perform compile-time stack metadata validation
x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
sched: Always inline context_switch()
...
Pull cgroup updates from Tejun Heo:
"cgroup changes for v4.6-rc1. No userland visible behavior changes in
this pull request. I'll send out a separate pull request for the
addition of cgroup namespace support.
- The biggest change is the revamping of cgroup core task migration
and controller handling logic. There are quite a few places where
controllers and tasks are manipulated. Previously, many of those
places implemented custom operations for each specific use case
assuming specific starting conditions. While this worked, it makes
the code fragile and difficult to follow.
The bulk of this pull request restructures these operations so that
most related operations are performed through common helpers which
implement recursive (subtrees are always processed consistently)
and idempotent (they make cgroup hierarchy converge to the target
state rather than performing operations assuming specific starting
conditions). This makes the code a lot easier to understand,
verify and extend.
- Implicit controller support is added. This is primarily for using
perf_event on the v2 hierarchy so that perf can match cgroup v2
path without requiring the user to do anything special. The kernel
portion of perf_event changes is acked but userland changes are
still pending review.
- cgroup_no_v1= boot parameter added to ease testing cgroup v2 in
certain environments.
- There is a regression introduced during v4.4 devel cycle where
attempts to migrate zombie tasks can mess up internal object
management. This was fixed earlier this week and included in this
pull request w/ stable cc'd.
- Misc non-critical fixes and improvements"
* 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (44 commits)
cgroup: avoid false positive gcc-6 warning
cgroup: ignore css_sets associated with dead cgroups during migration
Documentation: cgroup v2: Trivial heading correction.
cgroup: implement cgroup_subsys->implicit_on_dfl
cgroup: use css_set->mg_dst_cgrp for the migration target cgroup
cgroup: make cgroup[_taskset]_migrate() take cgroup_root instead of cgroup
cgroup: move migration destination verification out of cgroup_migrate_prepare_dst()
cgroup: fix incorrect destination cgroup in cgroup_update_dfl_csses()
cgroup: Trivial correction to reflect controller.
cgroup: remove stale item in cgroup-v1 document INDEX file.
cgroup: update css iteration in cgroup_update_dfl_csses()
cgroup: allocate 2x cgrp_cset_links when setting up a new root
cgroup: make cgroup_calc_subtree_ss_mask() take @this_ss_mask
cgroup: reimplement rebind_subsystems() using cgroup_apply_control() and friends
cgroup: use cgroup_apply_enable_control() in cgroup creation path
cgroup: combine cgroup_mutex locking and offline css draining
cgroup: factor out cgroup_{apply|finalize}_control() from cgroup_subtree_control_write()
cgroup: introduce cgroup_{save|propagate|restore}_control()
cgroup: make cgroup_drain_offline() and cgroup_apply_control_{disable|enable}() recursive
cgroup: factor out cgroup_apply_control_enable() from cgroup_subtree_control_write()
...
Pull workqueue updates from Tejun Heo:
"Three trivial workqueue changes"
* 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Fix comment for work_on_cpu()
sched/core: Get rid of 'cpu' argument in wq_worker_sleeping()
workqueue: Replace usage of init_name with dev_set_name()
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...
Pull NOHZ updates from Ingo Molnar:
"NOHZ enhancements, by Frederic Weisbecker, which reorganizes/refactors
the NOHZ 'can the tick be stopped?' infrastructure and related code to
be data driven, and harmonizes the naming and handling of all the
various properties"
[ This makes the ugly "fetch_or()" macro that the scheduler used
internally a new generic helper, and does a bad job at it.
I'm pulling it, but I've asked Ingo and Frederic to get this
fixed up ]
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched-clock: Migrate to use new tick dependency mask model
posix-cpu-timers: Migrate to use new tick dependency mask model
sched: Migrate sched to use new tick dependency mask model
sched: Account rr tasks
perf: Migrate perf to use new tick dependency mask model
nohz: Use enum code for tick stop failure tracing message
nohz: New tick dependency mask
nohz: Implement wide kick on top of irq work
atomic: Export fetch_or()
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Make schedstats a runtime tunable (disabled by default) and
optimize it via static keys.
As most distributions enable CONFIG_SCHEDSTATS=y due to its
instrumentation value, this is a nice performance enhancement.
(Mel Gorman)
- Implement 'simple waitqueues' (swait): these are just pure
waitqueues without any of the more complex features of full-blown
waitqueues (callbacks, wake flags, wake keys, etc.). Simple
waitqueues have less memory overhead and are faster.
Use simple waitqueues in the RCU code (in 4 different places) and
for handling KVM vCPU wakeups.
(Peter Zijlstra, Daniel Wagner, Thomas Gleixner, Paul Gortmaker,
Marcelo Tosatti)
- sched/numa enhancements (Rik van Riel)
- NOHZ performance enhancements (Rik van Riel)
- Various sched/deadline enhancements (Steven Rostedt)
- Various fixes (Peter Zijlstra)
- ... and a number of other fixes, cleanups and smaller enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
sched/cputime: Fix steal_account_process_tick() to always return jiffies
sched/deadline: Remove dl_new from struct sched_dl_entity
Revert "kbuild: Add option to turn incompatible pointer check into error"
sched/deadline: Remove superfluous call to switched_to_dl()
sched/debug: Fix preempt_disable_ip recording for preempt_disable()
sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity
time, acct: Drop irq save & restore from __acct_update_integrals()
acct, time: Change indentation in __acct_update_integrals()
sched, time: Remove non-power-of-two divides from __acct_update_integrals()
sched/rt: Kick RT bandwidth timer immediately on start up
sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug
sched/debug: Move sched_domain_sysctl to debug.c
sched/debug: Move the /sys/kernel/debug/sched_features file setup into debug.c
sched/rt: Fix PI handling vs. sched_setscheduler()
sched/core: Remove duplicated sched_group_set_shares() prototype
sched/fair: Consolidate nohz CPU load update code
sched/fair: Avoid using decay_load_missed() with a negative value
sched/deadline: Always calculate end of period on sched_yield()
sched/cgroup: Fix cgroup entity load tracking tear-down
rcu: Use simple wait queues where possible in rcutree
...
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poision prior to returning.
In the case of CPU hotplug, CPUs exit the kernel a number of levels deep
in C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
When a CPU is subsequently brought back into the kernel via a different
path, depending on stackframe, layout calls to instrumented functions
may hit this stale poison, resulting in (spurious) KASAN splats to the
console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dl_new field of struct sched_dl_entity is currently used to
identify new deadline tasks, so that their deadline and runtime
can be properly initialised.
However, these tasks can be easily identified by checking if
their deadline is smaller than the current time when they switch
to SCHED_DEADLINE. So, dl_new can be removed by introducing this
check in switched_to_dl(); this allows to simplify the
SCHED_DEADLINE code.
Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457350024-7825-2-git-send-email-luca.abeni@unitn.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On CPU hotplug the steal time accounting can keep a stale rq->prev_steal_time
value over CPU down and up. So after the CPU comes up again the delta
calculation in steal_account_process_tick() wreckages itself due to the
unsigned math:
u64 steal = paravirt_steal_clock(smp_processor_id());
steal -= this_rq()->prev_steal_time;
So if steal is smaller than rq->prev_steal_time we end up with an insane large
value which then gets added to rq->prev_steal_time, resulting in a permanent
wreckage of the accounting. As a consequence the per CPU stats in /proc/stat
become stale.
Nice trick to tell the world how idle the system is (100%) while the CPU is
100% busy running tasks. Though we prefer realistic numbers.
None of the accounting values which use a previous value to account for
fractions is reset at CPU hotplug time. update_rq_clock_task() has a sanity
check for prev_irq_time and prev_steal_time_rq, but that sanity check solely
deals with clock warps and limits the /proc/stat visible wreckage. The
prev_time values are still wrong.
Solution is simple: Reset rq->prev_*_time when the CPU is plugged in again.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: commit 095c0aa83e "sched: adjust scheduler cpu power for stolen time"
Fixes: commit aa48380851 "sched: Remove irq time from available CPU power"
Fixes: commit e6e6685acc "KVM guest: Steal time accounting"
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603041539490.3686@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of providing asynchronous checks for the nohz subsystem to verify
sched tick dependency, migrate sched to the new mask.
Everytime a task is enqueued or dequeued, we evaluate the state of the
tick dependency on top of the policy of the tasks in the runqueue, by
order of priority:
SCHED_DEADLINE: Need the tick in order to periodically check for runtime
SCHED_FIFO : Don't need the tick (no round-robin)
SCHED_RR : Need the tick if more than 1 task of the same priority
for round robin (simplified with checking if more than
one SCHED_RR task no matter what priority).
SCHED_NORMAL : Need the tick if more than 1 task for round-robin.
We could optimize that further with one flag per sched policy on the tick
dependency mask and perform only the checks relevant to the policy
concerned by an enqueue/dequeue operation.
Since the checks aren't based on the current task anymore, we could get
rid of the task switch hook but it's still needed for posix cpu
timers.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Given that wq_worker_sleeping() could only be called for a
CPU it is running on, we do not need passing a CPU ID as an
argument.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Move the scheduler cpu online notifier part to the hotplug core. This is
anyway the highest priority callback and we need that functionality right now
for the next changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.200791046@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The preempt_disable() invokes preempt_count_add() which saves the caller
in ->preempt_disable_ip. It uses CALLER_ADDR1 which does not look for
its caller but for the parent of the caller. Which means we get the correct
caller for something like spin_lock() unless the architectures inlines
those invocations. It is always wrong for preempt_disable() or
local_bh_disable().
This patch makes the function get_lock_parent_ip() which tries
CALLER_ADDR0,1,2 if the former is a locking function.
This seems to record the preempt_disable() caller properly for
preempt_disable() itself as well as for get_cpu_var() or
local_bh_disable().
Steven asked for the get_parent_ip() -> get_lock_parent_ip() rename.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160226135456.GB18244@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The sched_domain_sysctl setup is only enabled when SCHED_DEBUG is
configured. As debug.c is only compiled when SCHED_DEBUG is configured as
well, move the setup of sched_domain_sysctl into that file.
Note, the (un)register_sched_domain_sysctl() functions had to be changed
from static to allow access to them from core.c.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.599278093@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As /sys/kernel/debug/sched_features is only created when SCHED_DEBUG is enabled, and the file
debug.c is only compiled when SCHED_DEBUG is enabled, it makes sense to move
sched_feature setup into that file and get rid of the #ifdef.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.464193063@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andrea Parri reported:
> I found that the following scenario (with CONFIG_RT_GROUP_SCHED=y) is not
> handled correctly:
>
> T1 (prio = 20)
> lock(rtmutex);
>
> T2 (prio = 20)
> blocks on rtmutex (rt_nr_boosted = 0 on T1's rq)
>
> T1 (prio = 20)
> sys_set_scheduler(prio = 0)
> [new_effective_prio == oldprio]
> T1 prio = 20 (rt_nr_boosted = 0 on T1's rq)
>
> The last step is incorrect as T1 is now boosted (c.f., rt_se_boosted());
> in particular, if we continue with
>
> T1 (prio = 20)
> unlock(rtmutex)
> wakeup(T2)
> adjust_prio(T1)
> [prio != rt_mutex_getprio(T1)]
> dequeue(T1)
> rt_nr_boosted = (unsigned long)(-1)
> ...
> T1 prio = 0
>
> then we end up leaving rt_nr_boosted in an "inconsistent" state.
>
> The simple program attached could reproduce the previous scenario; note
> that, as a consequence of the presence of this state, the "assertion"
>
> WARN_ON(!rt_nr_running && rt_nr_boosted)
>
> from dec_rt_group() may trigger.
So normally we dequeue/enqueue tasks in sched_setscheduler(), which
would ensure the accounting stays correct. However in the early PI path
we fail to do so.
So this was introduced at around v3.14, by:
c365c292d0 ("sched: Consider pi boosting in setscheduler()")
which fixed another problem exactly because that dequeue/enqueue, joy.
Fix this by teaching rt about DEQUEUE_SAVE/ENQUEUE_RESTORE and have it
preserve runqueue location with that option. This requires decoupling
the on_rt_rq() state from being on the list.
In order to allow for explicit movement during the SAVE/RESTORE,
introduce {DE,EN}QUEUE_MOVE. We still must use SAVE/RESTORE in these
cases to preserve other invariants.
Respecting the SAVE/RESTORE flags also has the (nice) side-effect that
things like sys_nice()/sys_sched_setaffinity() also do not reorder
FIFO tasks (whereas they used to before this patch).
Reported-by: Andrea Parri <parri.andrea@gmail.com>
Tested-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a cgroup's CPU runqueue is destroyed, it should remove its
remaining load accounting from its parent cgroup.
The current site for doing so it unsuited because its far too late and
unordered against other cgroup removal (->css_free() will be, but we're also
in an RCU callback).
Put it in the ->css_offline() callback, which is the start of cgroup
destruction, right after the group has been made unavailable to
userspace. The ->css_offline() callbacks are called in hierarchical order
after the following v4.4 commit:
aa226ff4a1 ("cgroup: make sure a parent css isn't offlined before its children")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160121212416.GL6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_GCOV is enabled, gcc decides to put context_switch()
out-of-line, which is inconsistent with its normal behavior.
It also causes an objtool warning because __schedule() no longer inlines
context_switch(), so the "STACK_FRAME_NON_STANDARD(__schedule)"
statement loses its effect.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/d62aee926b6e303394e34a06999a964dc2773cf6.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
objtool reports the following warnings for __schedule():
kernel/sched/core.o: warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
kernel/sched/core.o: warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
kernel/sched/core.o: warning: objtool:__schedule()+0x40a: call without frame pointer save/setup
kernel/sched/core.o: warning: objtool:__schedule()+0x7fd: frame pointer state mismatch
kernel/sched/core.o: warning: objtool:__schedule()+0x421: frame pointer state mismatch
Basically it's confused by two unusual attributes of the switch_to()
macro:
1. It saves prev's frame pointer to the old stack and restores next's
frame pointer from the new stack.
2. For new tasks it jumps directly to ret_from_fork.
Eventually it would probably be a good idea to clean up the
ret_from_fork hack so that new tasks are created with a valid initial
stack, as suggested by Andy:
https://lkml.kernel.org/r/CALCETrWsqCw4L1qKO9j9L5F+4ED4viuLQTFc=n1pKBZfFPQUFg@mail.gmail.com
Then __schedule() could return normally into the new code and objtool
hopefully wouldn't have a problem anymore.
In the meantime, mark its stack frame as non-standard so we can have a
baseline with no objtool warnings. The marker also serves as a reminder
that this code could be improved a bit.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/91190e324ebd7fcd01748d508d0dfd4693e84d91.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove an unnecessary assignment of variable not used any more.
( This has no runtime effects as GCC is smart enough to optimize
this out. )
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455159578-17256-1-git-send-email-byungchul.park@lge.com
[ Edited the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Export fetch_or() that's implemented and used internally by the
scheduler. We are going to use it for NO_HZ so make it generally
available.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
schedstats is very useful during debugging and performance tuning but it
incurs overhead to calculate the stats. As such, even though it can be
disabled at build time, it is often enabled as the information is useful.
This patch adds a kernel command-line and sysctl tunable to enable or
disable schedstats on demand (when it's built in). It is disabled
by default as someone who knows they need it can also learn to enable
it when necessary.
The benefits are dependent on how scheduler-intensive the workload is.
If it is then the patch reduces the number of cycles spent calculating
the stats with a small benefit from reducing the cache footprint of the
scheduler.
These measurements were taken from a 48-core 2-socket
machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a
single socket machine 8-core machine with Intel i7-3770 processors.
netperf-tcp
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%)
Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%)
Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%)
Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%)
Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%)
Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%)
Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%)
Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%)
Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%)
Small gains here, UDP_STREAM showed nothing intresting and neither did
the TCP_RR tests. The gains on the 8-core machine were very similar.
tbench4
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%)
Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%)
Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%)
Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%)
Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%)
Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%)
Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%)
Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%)
Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%)
Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%)
Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%)
Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%)
Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%)
Small gains of 2-4% at low thread counts and otherwise flat. The
gains on the 8-core machine were slightly different
tbench4 on 8-core i7-3770 single socket machine
Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%)
Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%)
Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%)
Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%)
Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%)
Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%)
Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%)
Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%)
Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%)
Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%)
In constract, this shows a relatively steady 2-3% gain at higher thread
counts. Due to the nature of the patch and the type of workload, it's
not a surprise that the result will depend on the CPU used.
hackbench-pipes
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%)
Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%)
Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%)
Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%)
Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%)
Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%)
Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%)
Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%)
Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%)
Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%)
Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%)
Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%)
Some small gains and losses and while the variance data is not included,
it's close to the noise. The UMA machine did not show anything particularly
different
pipetest
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v2r2
Min Time 4.13 ( 0.00%) 3.99 ( 3.39%)
1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%)
2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%)
3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%)
Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%)
Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%)
Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%)
Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%)
Max Time 4.93 ( 0.00%) 4.83 ( 2.03%)
Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%)
Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%)
Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%)
Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%)
Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%)
Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%)
Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%)
Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%)
Small improvement and similar gains were seen on the UMA machine.
The gain is small but it stands to reason that doing less work in the
scheduler is a good thing. The downside is that the lack of schedstats and
tracepoints may be surprising to experts doing performance analysis until
they find the existence of the schedstats= parameter or schedstats sysctl.
It will be automatically activated for latencytop and sleep profiling to
alleviate the problem. For tracepoints, there is a simple warning as it's
not safe to activate schedstats in the context when it's known the tracepoint
may be wanted but is unavailable.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The isolcpus= kernel boot parameter restricts userspace from scheduling on
the specified CPUs.
If a CPU is specified that is outside the range of 0 to nr_cpu_ids,
cpulist_parse() will return -ERANGE, return an empty cpulist, and
fail silently.
This patch adds an error message to isolated_cpu_setup() to indicate to
the user that something has gone awry, and returns 0 on error.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454596680-10367-1-git-send-email-prarit@redhat.com
[ Twiddled some details. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Thomas Gleixner:
"Three small fixes in the scheduler/core:
- use after free in the numa code
- crash in the numa init code
- a simple spelling fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
pid: Fix spelling in comments
sched/numa: Fix use-after-free bug in the task_numa_compare
sched: Fix crash in sched_init_numa()
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The following PowerPC commit:
c118baf802 ("arch/powerpc/mm/numa.c: do not allocate bootmem memory for non existing nodes")
avoids allocating bootmem memory for non existent nodes.
But when DEBUG_PER_CPU_MAPS=y is enabled, my powerNV system failed to boot
because in sched_init_numa(), cpumask_or() operation was done on
unallocated nodes.
Fix that by making cpumask_or() operation only on existing nodes.
[ Tested with and w/o DEBUG_PER_CPU_MAPS=y on x86 and PowerPC. ]
Reported-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: <gkurz@linux.vnet.ibm.com>
Cc: <grant.likely@linaro.org>
Cc: <nikunj@linux.vnet.ibm.com>
Cc: <vdavydov@parallels.com>
Cc: <linuxppc-dev@lists.ozlabs.org>
Cc: <linux-mm@kvack.org>
Cc: <peterz@infradead.org>
Cc: <benh@kernel.crashing.org>
Cc: <paulus@samba.org>
Cc: <mpe@ellerman.id.au>
Cc: <anton@samba.org>
Link: http://lkml.kernel.org/r/1452884483-11676-1-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
- cgroup v2 interface is now official. It's no longer hidden behind a
devel flag and can be mounted using the new cgroup2 fs type.
Unfortunately, cpu v2 interface hasn't made it yet due to the
discussion around in-process hierarchical resource distribution and
only memory and io controllers can be used on the v2 interface at the
moment.
- The existing documentation which has always been a bit of mess is
relocated under Documentation/cgroup-v1/. Documentation/cgroup-v2.txt
is added as the authoritative documentation for the v2 interface.
- Some features are added through for-4.5-ancestor-test branch to
enable netfilter xt_cgroup match to use cgroup v2 paths. The actual
netfilter changes will be merged through the net tree which pulled in
the said branch.
- Various cleanups
* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: rename cgroup documentations
cgroup: fix a typo.
cgroup: Remove resource_counter.txt in Documentation/cgroup-legacy/00-INDEX.
cgroup: demote subsystem init messages to KERN_DEBUG
cgroup: Fix uninitialized variable warning
cgroup: put controller Kconfig options in meaningful order
cgroup: clean up the kernel configuration menu nomenclature
cgroup_pids: fix a typo.
Subject: cgroup: Fix incomplete dd command in blkio documentation
cgroup: kill cgrp_ss_priv[CGROUP_CANFORK_COUNT] and friends
cpuset: Replace all instances of time_t with time64_t
cgroup: replace unified-hierarchy.txt with a proper cgroup v2 documentation
cgroup: rename Documentation/cgroups/ to Documentation/cgroup-legacy/
cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- tickless load average calculation enhancements (Byungchul Park)
- vtime handling enhancements (Frederic Weisbecker)
- scalability improvement via properly aligning a key structure field
(Jiri Olsa)
- various stop_machine() fixes (Oleg Nesterov)
- sched/numa enhancement (Rik van Riel)
- various fixes and improvements (Andi Kleen, Dietmar Eggemann,
Geliang Tang, Hiroshi Shimamoto, Joonwoo Park, Peter Zijlstra,
Waiman Long, Wanpeng Li, Yuyang Du)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
sched/fair: Fix new task's load avg removed from source CPU in wake_up_new_task()
sched/core: Move sched_entity::avg into separate cache line
x86/fpu: Properly align size in CHECK_MEMBER_AT_END_OF() macro
sched/deadline: Fix the earliest_dl.next logic
sched/fair: Disable the task group load_avg update for the root_task_group
sched/fair: Move the cache-hot 'load_avg' variable into its own cacheline
sched/fair: Avoid redundant idle_cpu() call in update_sg_lb_stats()
sched/core: Move the sched_to_prio[] arrays out of line
sched/cputime: Convert vtime_seqlock to seqcount
sched/cputime: Introduce vtime accounting check for readers
sched/cputime: Rename vtime_accounting_enabled() to vtime_accounting_cpu_enabled()
sched/cputime: Correctly handle task guest time on housekeepers
sched/cputime: Clarify vtime symbols and document them
sched/cputime: Remove extra cost in task_cputime()
sched/fair: Make it possible to account fair load avg consistently
sched/fair: Modify the comment about lock assumptions in migrate_task_rq_fair()
stop_machine: Clean up the usage of the preemption counter in cpu_stopper_thread()
stop_machine: Shift the 'done != NULL' check from cpu_stop_signal_done() to callers
stop_machine: Kill cpu_stop_done->executed
stop_machine: Change __stop_cpus() to rely on cpu_stop_queue_work()
...
Pull locking updates from Ingo Molnar:
"So we have a laundry list of locking subsystem changes:
- continuing barrier API and code improvements
- futex enhancements
- atomics API improvements
- pvqspinlock enhancements: in particular lock stealing and adaptive
spinning
- qspinlock micro-enhancements"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op
futex: Cleanup the goto confusion in requeue_pi()
futex: Remove pointless put_pi_state calls in requeue()
futex: Document pi_state refcounting in requeue code
futex: Rename free_pi_state() to put_pi_state()
futex: Drop refcount if requeue_pi() acquired the rtmutex
locking/barriers, arch: Remove ambiguous statement in the smp_store_mb() documentation
lcoking/barriers, arch: Use smp barriers in smp_store_release()
locking/cmpxchg, arch: Remove tas() definitions
locking/pvqspinlock: Queue node adaptive spinning
locking/pvqspinlock: Allow limited lock stealing
locking/pvqspinlock: Collect slowpath lock statistics
sched/core, locking: Document Program-Order guarantees
locking, sched: Introduce smp_cond_acquire() and use it
locking/pvqspinlock, x86: Optimize the PV unlock code path
locking/qspinlock: Avoid redundant read of next pointer
locking/qspinlock: Prefetch the next node cacheline
locking/qspinlock: Use _acquire/_release() versions of cmpxchg() & xchg()
atomics: Add test for atomic operations with _relaxed variants
Pull RCU changes from Paul E. McKenney:
- Adding transitivity uniformly to rcu_node structure ->lock
acquisitions. (This is implemented by the first two commits
on top of v4.4-rc2 due to the pervasive nature of this change.)
- Documentation updates, including RCU requirements.
- Expedited grace-period changes.
- Miscellaneous fixes.
- Linked-list fixes, courtesy of KTSAN.
- Torture-test updates.
- Late-breaking fix to sysrq-generated crash.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit which went into mainline through networking tree
3b13758f51 ("cgroups: Allow dynamically changing net_classid")
conflicts in net/core/netclassid_cgroup.c with the following pending
fix in cgroup/for-4.4-fixes.
1f7dd3e5a6 ("cgroup: fix handling of multi-destination migration from subtree_control enabling")
The former separates out update_classid() from cgrp_attach() and
updates it to walk all fds of all tasks in the target css so that it
can be used from both migration and config change paths. The latter
drops @css from cgrp_attach().
Resolve the conflict by making cgrp_attach() call update_classid()
with the css from the first task. We can revive @tset walking in
cgrp_attach() but given that net_cls is v1 only where there always is
only one target css during migration, this is fine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Nina Schiff <ninasc@fb.com>
We need the scheduler's fastpaths to be, well, fast, and unnecessarily
disabling and re-enabling interrupts is not necessarily consistent with
this goal. Especially given that there are regions of the scheduler that
already have interrupts disabled.
This commit therefore moves the call to rcu_note_context_switch()
to one of the interrupts-disabled regions of the scheduler, and
removes the now-redundant disabling and re-enabling of interrupts from
rcu_note_context_switch() and the functions it calls.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Shift rcu_note_context_switch() to avoid deadlock, as suggested
by Peter Zijlstra. ]
If a system with large number of sockets was driven to full
utilization, it was found that the clock tick handling occupied a
rather significant proportion of CPU time when fair group scheduling
and autogroup were enabled.
Running a java benchmark on a 16-socket IvyBridge-EX system, the perf
profile looked like:
10.52% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
9.66% 0.05% java [kernel.vmlinux] [k] hrtimer_interrupt
8.65% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
8.56% 0.00% java [kernel.vmlinux] [k] update_process_times
8.07% 0.03% java [kernel.vmlinux] [k] scheduler_tick
6.91% 1.78% java [kernel.vmlinux] [k] task_tick_fair
5.24% 5.04% java [kernel.vmlinux] [k] update_cfs_shares
In particular, the high CPU time consumed by update_cfs_shares()
was mostly due to contention on the cacheline that contained the
task_group's load_avg statistical counter. This cacheline may also
contains variables like shares, cfs_rq & se which are accessed rather
frequently during clock tick processing.
This patch moves the load_avg variable into another cacheline
separated from the other frequently accessed variables. It also
creates a cacheline aligned kmemcache for task_group to make sure
that all the allocated task_group's are cacheline aligned.
By doing so, the perf profile became:
9.44% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
8.74% 0.01% java [kernel.vmlinux] [k] hrtimer_interrupt
7.83% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
7.74% 0.00% java [kernel.vmlinux] [k] update_process_times
7.27% 0.03% java [kernel.vmlinux] [k] scheduler_tick
5.94% 1.74% java [kernel.vmlinux] [k] task_tick_fair
4.15% 3.92% java [kernel.vmlinux] [k] update_cfs_shares
The %cpu time is still pretty high, but it is better than before. The
benchmark results before and after the patch was as follows:
Before patch - Max-jOPs: 907533 Critical-jOps: 134877
After patch - Max-jOPs: 916011 Critical-jOps: 142366
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building a kernel with a gcc 6 snapshot the compiler complains
about unused const static variables for prio_to_weight and prio_to_mult
for multiple scheduler files (all but core.c and autogroup.c)
The way the array is currently declared it will be duplicated in
every scheduler file that includes sched.h, which seems rather wasteful.
Move the array out of line into core.c. I also added a sched_ prefix
to avoid any potential name space collisions.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448859583-3252-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code accounts for the time a task was absent from the fair
class (per ATTACH_AGE_LOAD). However it does not work correctly when a
task got migrated or moved to another cgroup while outside of the fair
class.
This patch tries to address that by aging on migration. We locklessly
read the 'last_update_time' stamp from both the old and new cfs_rq,
ages the load upto the old time, and sets it to the new time.
These timestamps should in general not be more than 1 tick apart from
one another, so there is a definite bound on things.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Changelog, a few edits and !SMP build fix ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445616981-29904-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These are some notes on the scheduler locking and how it provides
program order guarantees on SMP systems.
( This commit is in the locking tree, because the new documentation
refers to a newly introduced locking primitive. )
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce smp_cond_acquire() which combines a control dependency and a
read barrier to form acquire semantics.
This primitive has two benefits:
- it documents control dependencies,
- its typically cheaper than using smp_load_acquire() in a loop.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Oleg noticed that its possible to falsely observe p->on_cpu == 0 such
that we'll prematurely continue with the wakeup and effectively run p on
two CPUs at the same time.
Even though the overlap is very limited; the task is in the middle of
being scheduled out; it could still result in corruption of the
scheduler data structures.
CPU0 CPU1
set_current_state(...)
<preempt_schedule>
context_switch(X, Y)
prepare_lock_switch(Y)
Y->on_cpu = 1;
finish_lock_switch(X)
store_release(X->on_cpu, 0);
try_to_wake_up(X)
LOCK(p->pi_lock);
t = X->on_cpu; // 0
context_switch(Y, X)
prepare_lock_switch(X)
X->on_cpu = 1;
finish_lock_switch(Y)
store_release(Y->on_cpu, 0);
</preempt_schedule>
schedule();
deactivate_task(X);
X->on_rq = 0;
if (X->on_rq) // false
if (t) while (X->on_cpu)
cpu_relax();
context_switch(X, ..)
finish_lock_switch(X)
store_release(X->on_cpu, 0);
Avoid the load of X->on_cpu being hoisted over the X->on_rq load.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Explain how the control dependency and smp_rmb() end up providing
ACQUIRE semantics and pair with smp_store_release() in
finish_lock_switch().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
root_domain::rto_mask allocated through alloc_cpumask_var()
contains garbage data, this may cause problems. For instance,
When doing pull_rt_task(), it may do useless iterations if
rto_mask retains some extra garbage bits. Worse still, this
violates the isolated domain rule for clustered scheduling
using cpuset, because the tasks(with all the cpus allowed)
belongs to one root domain can be pulled away into another
root domain.
The patch cleans the garbage by using zalloc_cpumask_var()
instead of alloc_cpumask_var() for root_domain::rto_mask
allocation, thereby addressing the issues.
Do the same thing for root_domain's other cpumask memembers:
dlo_mask, span, and online.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449057179-29321-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because wakeups can (fundamentally) be late, a task might not be in
the expected state. Therefore testing against a task's state is racy,
and can yield false positives.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: oleg@redhat.com
Fixes: 9067ac85d5 ("wake_up_process() should be never used to wakeup a TASK_STOPPED/TRACED task")
Link: http://lkml.kernel.org/r/1448933660-23082-1-git-send-email-sasha.levin@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nobody use the "priv" arg passed to can_fork/cancel_fork/fork we can
kill CGROUP_CANFORK_COUNT/SUBSYS_TAG/etc and cgrp_ss_priv[] in copy_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Consider the following v2 hierarchy.
P0 (+memory) --- P1 (-memory) --- A
\- B
P0 has memory enabled in its subtree_control while P1 doesn't. If
both A and B contain processes, they would belong to the memory css of
P1. Now if memory is enabled on P1's subtree_control, memory csses
should be created on both A and B and A's processes should be moved to
the former and B's processes the latter. IOW, enabling controllers
can cause atomic migrations into different csses.
The core cgroup migration logic has been updated accordingly but the
controller migration methods haven't and still assume that all tasks
migrate to a single target css; furthermore, the methods were fed the
css in which subtree_control was updated which is the parent of the
target csses. pids controller depends on the migration methods to
move charges and this made the controller attribute charges to the
wrong csses often triggering the following warning by driving a
counter negative.
WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
Modules linked in:
CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
...
ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
Call Trace:
[<ffffffff81551ffc>] dump_stack+0x4e/0x82
[<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
[<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
[<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
[<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
[<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
[<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
[<ffffffff81189016>] cgroup_attach_task+0x176/0x200
[<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
[<ffffffff81189684>] cgroup_procs_write+0x14/0x20
[<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
[<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
[<ffffffff81265f88>] __vfs_write+0x28/0xe0
[<ffffffff812666fc>] vfs_write+0xac/0x1a0
[<ffffffff81267019>] SyS_write+0x49/0xb0
[<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76
This patch fixes the bug by removing @css parameter from the three
migration methods, ->can_attach, ->cancel_attach() and ->attach() and
updating cgroup_taskset iteration helpers also return the destination
css in addition to the task being migrated. All controllers are
updated accordingly.
* Controllers which don't care whether there are one or multiple
target csses can be converted trivially. cpu, io, freezer, perf,
netclassid and netprio fall in this category.
* cpuset's current implementation assumes that there's single source
and destination and thus doesn't support v2 hierarchy already. The
only change made by this patchset is how that single destination css
is obtained.
* memory migration path already doesn't do anything on v2. How the
single destination css is obtained is updated and the prep stage of
mem_cgroup_can_attach() is reordered to accomodate the change.
* pids is the only controller which was affected by this bug. It now
correctly handles multi-destination migrations and no longer causes
counter underflow from incorrect accounting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Use list_is_singular() to check if run_list has only one entry.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a5453fafd735affcf28e53a1d0a3d6965cb5dbb5.1447582547.git.geliangtang@163.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At present scheduler resets task's wait start timestamp when the task
migrates to another rq. This misleads scheduler itself into reporting
less wait time than actual by omitting time spent for waiting prior to
migration and also more wait count than actual by counting migration as
wait end event which can be seen by trace or /proc/<pid>/sched with
CONFIG_SCHEDSTATS=y.
Carry forward migrating task's wait time prior to migration and
don't count migration as a wait end event to fix such statistics error.
In order to determine whether task is migrating mark task->on_rq with
TASK_ON_RQ_MIGRATING while dequeuing and enqueuing due to migration.
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: ohaugan@codeaurora.org
Link: http://lkml.kernel.org/r/20151113033854.GA4247@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle were:
- sched/fair load tracking fixes and cleanups (Byungchul Park)
- Make load tracking frequency scale invariant (Dietmar Eggemann)
- sched/deadline updates (Juri Lelli)
- stop machine fixes, cleanups and enhancements for bugs triggered by
CPU hotplug stress testing (Oleg Nesterov)
- scheduler preemption code rework: remove PREEMPT_ACTIVE and related
cleanups (Peter Zijlstra)
- Rework the sched_info::run_delay code to fix races (Peter Zijlstra)
- Optimize per entity utilization tracking (Peter Zijlstra)
- ... misc other fixes, cleanups and smaller updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
sched: Don't scan all-offline ->cpus_allowed twice if !CONFIG_CPUSETS
sched: Move cpu_active() tests from stop_two_cpus() into migrate_swap_stop()
sched: Start stopper early
stop_machine: Kill cpu_stop_threads->setup() and cpu_stop_unpark()
stop_machine: Kill smp_hotplug_thread->pre_unpark, introduce stop_machine_unpark()
stop_machine: Change cpu_stop_queue_two_works() to rely on stopper->enabled
stop_machine: Introduce __cpu_stop_queue_work() and cpu_stop_queue_two_works()
stop_machine: Ensure that a queued callback will be called before cpu_stop_park()
sched/x86: Fix typo in __switch_to() comments
sched/core: Remove a parameter in the migrate_task_rq() function
sched/core: Drop unlikely behind BUG_ON()
sched/core: Fix task and run queue sched_info::run_delay inconsistencies
sched/numa: Fix task_tick_fair() from disabling numa_balancing
sched/core: Add preempt_count invariant check
sched/core: More notrace annotations
sched/core: Kill PREEMPT_ACTIVE
sched/core, sched/x86: Kill thread_info::saved_preempt_count
sched/core: Simplify preempt_count tests
sched/core: Robustify preemption leak checks
sched/core: Stop setting PREEMPT_ACTIVE
...
If CONFIG_CPUSETS=n then "case cpuset" changes the state and runs
the already failed for_each_cpu() loop again for no reason.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20151010185315.GA24100@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpu_active() tests are not fundamentally part of stop_two_cpus(),
move then into the scheduler where they belong.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ensure the stopper thread is active 'early', because the load balancer
pretty much assumes that its available. And when 'online && active' the
load-balancer is fully available.
Not only the numa balancing stop_two_cpus() caller relies on it, but
also the self migration stuff does, and at CPU_ONLINE time the cpu
really is 'free' to run anything.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20151009160054.GA10176@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts:
8cb9764fc8 ("nohz: Set isolcpus when nohz_full is set")
We assumed that full-nohz users always want scheduler isolation on full
dynticks CPUs, therefore we included full-nohz CPUs on cpu_isolated_map.
This means that tasks run by default on CPUs outside the nohz_full range
unless their affinity is explicity overwritten.
This suits pure isolation workloads but when the machine is needed to
run common workloads, the available sets of CPUs to run common tasks
becomes reduced.
We reach an extreme case when CONFIG_NO_HZ_FULL_ALL is enabled as it
leaves only CPU 0 for non-isolation tasks, which makes people think that
their supercomputer regressed to 90's UP - which is true in a sense.
Some full-nohz users appear to be interested in running normal workloads
either before or after an isolation workload. Full-nohz isn't optimized
toward normal workloads but it's still better than UP performance.
We are reaching a limitation in kernel presets here. Lets revert this
cpu_isolated_map inclusion and let userspace do its own scheduler
isolation using cpusets or explicit affinity settings.
Reported-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1444663283-30068-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU updates from Paul E. McKenney:
- Miscellaneous fixes. (Paul E. McKenney, Boqun Feng, Oleg Nesterov, Patrick Marlier)
- Improvements to expedited grace periods. (Paul E. McKenney)
- Performance improvements to and locktorture tests for percpu-rwsem.
(Oleg Nesterov, Paul E. McKenney)
- Torture-test changes. (Paul E. McKenney, Davidlohr Bueso)
- Documentation updates. (Paul E. McKenney)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_exit() is called when a task exits and disassociates the
exiting task from its cgroups and half-attach it to the root cgroup.
This is unnecessary and undesirable.
No controller actually needs an exiting task to be disassociated with
non-root cgroups. Both cpu and perf_event controllers update the
association to the root cgroup from their exit callbacks just to keep
consistent with the cgroup core behavior.
Also, this disassociation makes it difficult to track resources held
by zombies or determine where the zombies came from. Currently, pids
controller is completely broken as it uncharges on exit and zombies
always escape the resource restriction. With cgroup association being
reset on exit, fixing it is pretty painful.
There's no reason to reset cgroup membership on exit. The zombie can
be removed from its css_set so that it doesn't show up on
"cgroup.procs" and thus can't be migrated or interfere with cgroup
removal. It can still pin and point to the css_set so that its cgroup
membership is maintained. This patch makes cgroup core keep zombies
associated with their cgroups at the time of exit.
* Previous patches decoupled populated_cnt tracking from css_set
lifetime, so a dying task can be simply unlinked from its css_set
while pinning and pointing to the css_set. This keeps css_set
association from task side alive while hiding it from "cgroup.procs"
and populated_cnt tracking. The css_set reference is dropped when
the task_struct is freed.
* ->exit() callback no longer needs the css arguments as the
associated css never changes once PF_EXITING is set. Removed.
* cpu and perf_events controllers no longer need ->exit() callbacks.
There's no reason to explicitly switch away on exit. The final
schedule out is enough. The callbacks are removed.
* On traditional hierarchies, nothing changes. "/proc/PID/cgroup"
still reports "/" for all zombies. On the default hierarchy,
"/proc/PID/cgroup" keeps reporting the cgroup that the task belonged
to at the time of exit. If the cgroup gets removed before the task
is reaped, " (deleted)" is appended.
v2: Build brekage due to missing dummy cgroup_free() when
!CONFIG_CGROUP fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
The new locktorture rtmutex_lock tests exercise priority boosting, which
means that they need to set some tasks to real-time priority. To do this,
they use sched_setscheduler_nocheck(). However, this is not exported to
modules, which results in the following error when building locktorture
as a module:
ERROR: "sched_setscheduler_nocheck" [kernel/locking/locktorture.ko] undefined!
This commit therefore adds an EXPORT_SYMBOL_GPL() to allow this function
to be invoked from locktorture when built as a module.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The parameter "int next_cpu" in the following function is unused:
migrate_task_rq(struct task_struct *p, int next_cpu)
Remove it.
Signed-off-by: xiaofeng.yan <yanxiaofeng@inspur.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1442991360-31945-1-git-send-email-yanxiaofeng@inspur.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
(1) For !CONFIG_BUG cases, the bug call is a no-op, so we couldn't care
less and the change is ok.
(2) PPC and MIPS, which HAVE_ARCH_BUG_ON, do not rely on branch predictions
as it seems to be pointless [1] and thus callers should not be trying to
push an optimization in the first place.
(3) For CONFIG_BUG and !HAVE_ARCH_BUG_ON cases, BUG_ON() contains an
unlikely compiler flag already.
Hence, we can drop unlikely behind BUG_ON().
[1] http://lkml.iu.edu/hypermail/linux/kernel/1101.3/02289.html
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/6fa7125979f98bbeac26e268271769b6ca935c8d.1444051018.git.geliangtang@163.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike Meyer reported the following bug:
> During evaluation of some performance data, it was discovered thread
> and run queue run_delay accounting data was inconsistent with the other
> accounting data that was collected. Further investigation found under
> certain circumstances execution time was leaking into the task and
> run queue accounting of run_delay.
>
> Consider the following sequence:
>
> a. thread is running.
> b. thread moves beween cgroups, changes scheduling class or priority.
> c. thread sleeps OR
> d. thread involuntarily gives up cpu.
>
> a. implies:
>
> thread->sched_info.last_queued = 0
>
> a. and b. results in the following:
>
> 1. dequeue_task(rq, thread)
>
> sched_info_dequeued(rq, thread)
> delta = 0
>
> sched_info_reset_dequeued(thread)
> thread->sched_info.last_queued = 0
>
> thread->sched_info.run_delay += delta
>
> 2. enqueue_task(rq, thread)
>
> sched_info_queued(rq, thread)
>
> /* thread is still on cpu at this point. */
> thread->sched_info.last_queued = task_rq(thread)->clock;
>
> c. results in:
>
> dequeue_task(rq, thread)
>
> sched_info_dequeued(rq, thread)
>
> /* delta is execution time not run_delay. */
> delta = task_rq(thread)->clock - thread->sched_info.last_queued
>
> sched_info_reset_dequeued(thread)
> thread->sched_info.last_queued = 0
>
> thread->sched_info.run_delay += delta
>
> Since thread was running between enqueue_task(rq, thread) and
> dequeue_task(rq, thread), the delta above is really execution
> time and not run_delay.
>
> d. results in:
>
> __sched_info_switch(thread, next_thread)
>
> sched_info_depart(rq, thread)
>
> sched_info_queued(rq, thread)
>
> /* last_queued not updated due to being non-zero */
> return
>
> Since thread was running between enqueue_task(rq, thread) and
> __sched_info_switch(thread, next_thread), the execution time
> between enqueue_task(rq, thread) and
> __sched_info_switch(thread, next_thread) now will become
> associated with run_delay due to when last_queued was last updated.
>
This alternative patch solves the problem by not calling
sched_info_{de,}queued() in {de,en}queue_task(). Therefore the
sched_info state is preserved and things work as expected.
By inlining the {de,en}queue_task() functions the new condition
becomes (mostly) a compile-time constant and we'll not emit any new
branch instructions.
It even shrinks the code (due to inlining {en,de}queue_task()):
$ size defconfig-build/kernel/sched/core.o defconfig-build/kernel/sched/core.o.orig
text data bss dec hex filename
64019 23378 2344 89741 15e8d defconfig-build/kernel/sched/core.o
64149 23378 2344 89871 15f0f defconfig-build/kernel/sched/core.o.orig
Reported-by: Mike Meyer <Mike.Meyer@Teradata.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150930154413.GO3604@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
preempt_schedule_common() is marked notrace, but it does not use
_notrace() preempt_count functions and __schedule() is also not marked
notrace, which means that its perfectly possible to end up in the
tracer from preempt_schedule_common().
Steve says:
| Yep, there's some history to this. This was originally the issue that
| caused function tracing to go into infinite recursion. But now we have
| preempt_schedule_notrace(), which is used by the function tracer, and
| that function must not be traced till preemption is disabled.
|
| Now if function tracing is running and we take an interrupt when
| NEED_RESCHED is set, it calls
|
| preempt_schedule_common() (not traced)
|
| But then that calls preempt_disable() (traced)
|
| function tracer calls preempt_disable_notrace() followed by
| preempt_enable_notrace() which will see NEED_RESCHED set, and it will
| call preempt_schedule_notrace(), which stops the recursion, but
| still calls __schedule() here, and that means when we return, we call
| the __schedule() from preempt_schedule_common().
|
| That said, I prefer this patch. Preemption is disabled before calling
| __schedule(), and we get rid of a one round recursion with the
| scheduler.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we stopped setting PREEMPT_ACTIVE, there is no need to mask it
out of preempt_count() tests.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we warn about a preempt_count leak; reset the preempt_count to
the known good value such that the problem does not ripple forward.
This is most important on x86 which has a per cpu preempt_count that is
not saved/restored (after this series). So if you schedule with an
invalid (!2*PREEMPT_DISABLE_OFFSET) preempt_count the next task is
messed up too.
Enforcing this invariant limits the borkage to just the one task.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nothing tests for PREEMPT_ACTIVE anymore, stop setting it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__trace_sched_switch_state() is the last remaining PREEMPT_ACTIVE
user, move trace_sched_switch() from prepare_task_switch() to
__schedule() and propagate the @preempt argument.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is only a single PREEMPT_ACTIVE use in the regular __schedule()
path and that is to circumvent the task->state check. Since the code
setting PREEMPT_ACTIVE is the immediate caller of __schedule() we can
replace this with a function argument.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Assuming units of PREEMPT_DISABLE_OFFSET for preempt_count() numbers.
Now that TASK_DEAD no longer results in preempt_count() == 3 during
scheduling, we will always call context_switch() with preempt_count()
== 2.
However, we don't always end up with preempt_count() == 2 in
finish_task_switch() because new tasks get created with
preempt_count() == 1.
Create FORK_PREEMPT_COUNT and set it to 2 and use that in the right
places. Note that we cannot use INIT_PREEMPT_COUNT as that serves
another purpose (boot).
After this, preempt_count() is invariant across the context switch,
with exception of PREEMPT_ACTIVE.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
TASK_DEAD is special in that the final schedule call from do_exit()
must be done with preemption disabled.
This means we end up scheduling with a preempt_count() higher than
usual (3 instead of the 'expected' 2).
Since future patches will want to rely on an invariant
preempt_count() value during schedule, fix this up.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the problem this patch is trying to address is as follows:
CPU0 CPU1
context_switch(A, B)
ttwu(A)
LOCK A->pi_lock
A->on_cpu == 0
finish_task_switch(A)
prev_state = A->state <-.
WMB |
A->on_cpu = 0; |
UNLOCK rq0->lock |
| context_switch(C, A)
`-- A->state = TASK_DEAD
prev_state == TASK_DEAD
put_task_struct(A)
context_switch(A, C)
finish_task_switch(A)
A->state == TASK_DEAD
put_task_struct(A)
The argument being that the WMB will allow the load of A->state on CPU0
to cross over and observe CPU1's store of A->state, which will then
result in a double-drop and use-after-free.
Now the comment states (and this was true once upon a long time ago)
that we need to observe A->state while holding rq->lock because that
will order us against the wakeup; however the wakeup will not in fact
acquire (that) rq->lock; it takes A->pi_lock these days.
We can obviously fix this by upgrading the WMB to an MB, but that is
expensive, so we'd rather avoid that.
The alternative this patch takes is: smp_store_release(&A->on_cpu, 0),
which avoids the MB on some archs, but not important ones like ARM.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@vger.kernel.org> # v3.1+
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: manfred@colorfullife.com
Cc: will.deacon@arm.com
Fixes: e4a52bcb9a ("sched: Remove rq->lock from the first half of ttwu()")
Link: http://lkml.kernel.org/r/20150929124509.GG3816@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fix from Thomas Gleixner:
"A single bug fix for the scheduler to prevent dequeueing of the idle
task when setting the cpus allowed mask"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix crash trying to dequeue/enqueue the idle thread
The 'sched_domain_topology' variable is only used within kernel/sched/core.c.
Make it static.
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1442918939-9907-1-git-send-email-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJV+/ucAAoJEL/70l94x66DV8YH/1KDym/1GJ+/Br/YkHZnM53l
3Q0PwSLu9cNcIL9lUuDLwGTaVj+y8ud1Hjr/uzvKwivktmUYVZhkdtnZmnanvGOM
qKB9K3nFXCPx8uqy8Dn7fOwEKcg9FmDOTTkWy13HDnXO+V4crSVVt+rPw+6FUMld
NV5tYdw9Lu7y3XrveDebPWaPtyDL7OAagzmeK47eMffxG7X9Hf1H2aT7HueRi7x/
SkLIe3gmiOWmHVJDPE9TOmFYIj19gywDFysKes1gdVJLVUIXiELMT7SrvAYnToVB
zISIEj7Zx4SINPxpf2dUn8REm7NsmJY+PffLIl/Nv+ozGggFQGFH0SMZ08p0bxw=
=tfmn
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Mostly stable material, a lot of ARM fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
sched: access local runqueue directly in single_task_running
arm/arm64: KVM: Remove 'config KVM_ARM_MAX_VCPUS'
arm64: KVM: Remove all traces of the ThumbEE registers
arm: KVM: Disable virtual timer even if the guest is not using it
arm64: KVM: Disable virtual timer even if the guest is not using it
arm/arm64: KVM: vgic: Check for !irqchip_in_kernel() when mapping resources
KVM: s390: Replace incorrect atomic_or with atomic_andnot
arm: KVM: Fix incorrect device to IPA mapping
arm64: KVM: Fix user access for debug registers
KVM: vmx: fix VPID is 0000H in non-root operation
KVM: add halt_attempted_poll to VCPU stats
kvm: fix zero length mmio searching
kvm: fix double free for fast mmio eventfd
kvm: factor out core eventfd assign/deassign logic
kvm: don't try to register to KVM_FAST_MMIO_BUS for non mmio eventfd
KVM: make the declaration of functions within 80 characters
KVM: arm64: add workaround for Cortex-A57 erratum #852523
KVM: fix polling for guest halt continued even if disable it
arm/arm64: KVM: Fix PSCI affinity info return value for non valid cores
arm64: KVM: set {v,}TCR_EL2 RES1 bits
...
Commit 2ee507c472 ("sched: Add function single_task_running to let a task
check if it is the only task running on a cpu") referenced the current
runqueue with the smp_processor_id. When CONFIG_DEBUG_PREEMPT is enabled,
that is only allowed if preemption is disabled or the currrent task is
bound to the local cpu (e.g. kernel worker).
With commit f781951299 ("kvm: add halt_poll_ns module parameter") KVM
calls single_task_running. If CONFIG_DEBUG_PREEMPT is enabled that
generates a lot of kernel messages.
To avoid adding preemption in that cases, as it would limit the usefulness,
we change single_task_running to access directly the cpu local runqueue.
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Fixes: 2ee507c472
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most of the policy-tests are done via the <class>_policy() helpers with
the notable exception of idle. A new wrapper for valid_policy() has also
been added to improve readability in set_load_weight().
This commit does not change the logical behavior of the scheduler core.
Signed-off-by: Henrik Austad <henrik@austad.us>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1441810841-4756-1-git-send-email-henrik@austad.us
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sasha reports that his virtual machine tries to schedule the idle
thread since commit 6c37067e27 ("sched: Change the
sched_class::set_cpus_allowed() calling context").
Hit trace shows this happening from idle_thread_get()->init_idle(),
which is the _second_ init_idle() invocation on that task_struct, the
first being done through idle_init()->fork_idle(). (this code is
insane...)
Because we call init_idle() twice in a row, its ->sched_class ==
&idle_sched_class and ->on_rq = TASK_ON_RQ_QUEUED. This means
do_set_cpus_allowed() think we're queued and will call dequeue_task(),
which is implemented with BUG() for the idle class, seeing how
dequeueing the idle task is a daft thing.
Aside of the whole insanity of calling init_idle() _twice_, change the
code to call set_cpus_allowed_common() instead as this is 'obviously'
before the idle task gets ran etc..
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6c37067e27 ("sched: Change the sched_class::set_cpus_allowed() calling context")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"A migrate_tasks() locking fix, and a late-coming nohz change plus a
nohz debug check"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: 'Annotate' migrate_tasks()
nohz: Assert existing housekeepers when nohz full enabled
nohz: Affine unpinned timers to housekeepers
Variable sched_numa_balancing is available for both CONFIG_SCHED_DEBUG
and !CONFIG_SCHED_DEBUG. All code paths now check for
sched_numa_balancing. Hence remove sched_feat(NUMA).
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-4-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 2a1ed24 ("sched/numa: Prefer NUMA hotness over cache hotness")
sets sched feature NUMA to true. However this can enable NUMA hinting
faults on a UMA system.
This commit ensures that NUMA hinting faults occur only on a NUMA system
by setting/resetting sched_numa_balancing.
This commit:
- Makes sched_numa_balancing common to CONFIG_SCHED_DEBUG and
!CONFIG_SCHED_DEBUG. Earlier it was only in !CONFIG_SCHED_DEBUG.
- Checks for sched_numa_balancing instead of sched_feat(NUMA).
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_exit() is not called from copy_process() after commit:
e8604cb436 ("cgroup: fix spurious lockdep warning in cgroup_exit()")
from do_exit(). So this check is useless and the comment is obsolete.
Signed-off-by: Kirill Tkhai <ktkhai@odin.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/55E444C8.3020402@odin.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The previous patches made the second argument go unused, remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kernel testing triggered this warning:
| WARNING: CPU: 0 PID: 13 at kernel/sched/core.c:1156 do_set_cpus_allowed+0x7e/0x80()
| Modules linked in:
| CPU: 0 PID: 13 Comm: migration/0 Not tainted 4.2.0-rc1-00049-g25834c7 #2
| Call Trace:
| dump_stack+0x4b/0x75
| warn_slowpath_common+0x8b/0xc0
| warn_slowpath_null+0x22/0x30
| do_set_cpus_allowed+0x7e/0x80
| cpuset_cpus_allowed_fallback+0x7c/0x170
| select_fallback_rq+0x221/0x280
| migration_call+0xe3/0x250
| notifier_call_chain+0x53/0x70
| __raw_notifier_call_chain+0x1e/0x30
| cpu_notify+0x28/0x50
| take_cpu_down+0x22/0x40
| multi_cpu_stop+0xd5/0x140
| cpu_stopper_thread+0xbc/0x170
| smpboot_thread_fn+0x174/0x2f0
| kthread+0xc4/0xe0
| ret_from_kernel_thread+0x21/0x30
As Peterz pointed out:
| So the normal rules for changing task_struct::cpus_allowed are holding
| both pi_lock and rq->lock, such that holding either stabilizes the mask.
|
| This is so that wakeup can happen without rq->lock and load-balance
| without pi_lock.
|
| From this we already get the relaxation that we can omit acquiring
| rq->lock if the task is not on the rq, because in that case
| load-balancing will not apply to it.
|
| ** these are the rules currently tested in do_set_cpus_allowed() **
|
| Now, since __set_cpus_allowed_ptr() uses task_rq_lock() which
| unconditionally acquires both locks, we could get away with holding just
| rq->lock when on_rq for modification because that'd still exclude
| __set_cpus_allowed_ptr(), it would also work against
| __kthread_bind_mask() because that assumes !on_rq.
|
| That said, this is all somewhat fragile.
|
| Now, I don't think dropping rq->lock is quite as disastrous as it
| usually is because !cpu_active at this point, which means load-balance
| will not interfere, but that too is somewhat fragile.
|
| So we end up with a choice of two fragile..
This patch fixes it by following the rules for changing
task_struct::cpus_allowed with both pi_lock and rq->lock held.
Reported-by: kernel test robot <ying.huang@intel.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[ Modified changelog and patch. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/BLU436-SMTP1660820490DE202E3934ED3806E0@phx.gbl
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull locking and atomic updates from Ingo Molnar:
"Main changes in this cycle are:
- Extend atomic primitives with coherent logic op primitives
(atomic_{or,and,xor}()) and deprecate the old partial APIs
(atomic_{set,clear}_mask())
The old ops were incoherent with incompatible signatures across
architectures and with incomplete support. Now every architecture
supports the primitives consistently (by Peter Zijlstra)
- Generic support for 'relaxed atomics':
- _acquire/release/relaxed() flavours of xchg(), cmpxchg() and {add,sub}_return()
- atomic_read_acquire()
- atomic_set_release()
This came out of porting qwrlock code to arm64 (by Will Deacon)
- Clean up the fragile static_key APIs that were causing repeat bugs,
by introducing a new one:
DEFINE_STATIC_KEY_TRUE(name);
DEFINE_STATIC_KEY_FALSE(name);
which define a key of different types with an initial true/false
value.
Then allow:
static_branch_likely()
static_branch_unlikely()
to take a key of either type and emit the right instruction for the
case. To be able to know the 'type' of the static key we encode it
in the jump entry (by Peter Zijlstra)
- Static key self-tests (by Jason Baron)
- qrwlock optimizations (by Waiman Long)
- small futex enhancements (by Davidlohr Bueso)
- ... and misc other changes"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits)
jump_label/x86: Work around asm build bug on older/backported GCCs
locking, ARM, atomics: Define our SMP atomics in terms of _relaxed() operations
locking, include/llist: Use linux/atomic.h instead of asm/cmpxchg.h
locking/qrwlock: Make use of _{acquire|release|relaxed}() atomics
locking/qrwlock: Implement queue_write_unlock() using smp_store_release()
locking/lockref: Remove homebrew cmpxchg64_relaxed() macro definition
locking, asm-generic: Add _{relaxed|acquire|release}() variants for 'atomic_long_t'
locking, asm-generic: Rework atomic-long.h to avoid bulk code duplication
locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations
locking, compiler.h: Cast away attributes in the WRITE_ONCE() magic
locking/static_keys: Make verify_keys() static
jump label, locking/static_keys: Update docs
locking/static_keys: Provide a selftest
jump_label: Provide a self-test
s390/uaccess, locking/static_keys: employ static_branch_likely()
x86, tsc, locking/static_keys: Employ static_branch_likely()
locking/static_keys: Add selftest
locking/static_keys: Add a new static_key interface
locking/static_keys: Rework update logic
locking/static_keys: Add static_key_{en,dis}able() helpers
...
Pull cgroup updates from Tejun Heo:
- a new PIDs controller is added. It turns out that PIDs are actually
an independent resource from kmem due to the limited PID space.
- more core preparations for the v2 interface. Once cpu side interface
is settled, it should be ready for lifting the devel mask.
for-4.3-unified-base was temporarily branched so that other trees
(block) can pull cgroup core changes that blkcg changes depend on.
- a non-critical idr_preload usage bug fix.
* 'for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: pids: fix invalid get/put usage
cgroup: introduce cgroup_subsys->legacy_name
cgroup: don't print subsystems for the default hierarchy
cgroup: make cftype->private a unsigned long
cgroup: export cgrp_dfl_root
cgroup: define controller file conventions
cgroup: fix idr_preload usage
cgroup: add documentation for the PIDs controller
cgroup: implement the PIDs subsystem
cgroup: allow a cgroup subsystem to reject a fork
The problem addressed in this patch is about affining unpinned
timers. Adaptive or Full Dynticks CPUs are currently disturbed
by unnecessary jitter due to firing of such timers on them.
This patch will affine timers to online CPUs which are not full
dynticks in NOHZ_FULL configured systems. It should not
introduce overhead in nohz full off case due to static keys.
Signed-off-by: Vatika Harlalka <vatikaharlalka@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1441119060-2230-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull NOHZ updates from Ingo Molnar:
"The main changes, mostly written by Frederic Weisbecker, include:
- Fix some jiffies based cputime assumptions. (No real harm because
the concerned code isn't used by full dynticks.)
- Simplify jiffies <-> usecs conversions. Remove dead code.
- Remove early hacks on nohz full code that avoided messing up idle
nohz internals. Now nohz integrates well full and idle and such
hack have become needless.
- Restart nohz full tick from irq exit. (A simplification and a
preparation for future optimization on scheduler kick to nohz
full)
- Code cleanups.
- Tile driver isolation enhancement on top of nohz. (Chris Metcalf)"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
nohz: Remove useless argument on tick_nohz_task_switch()
nohz: Move tick_nohz_restart_sched_tick() above its users
nohz: Restart nohz full tick from irq exit
nohz: Remove idle task special case
nohz: Prevent tilegx network driver interrupts
alpha: Fix jiffies based cputime assumption
apm32: Fix cputime == jiffies assumption
jiffies: Remove HZ > USEC_PER_SEC special case
Pull scheduler fix from Ingo Molnar:
"This is a leftover scheduler fix from the v4.2 cycle"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix cpu_active_mask/cpu_online_mask race
Pull scheduler updates from Ingo Molnar:
"The biggest change in this cycle is the rewrite of the main SMP load
balancing metric: the CPU load/utilization. The main goal was to make
the metric more precise and more representative - see the changelog of
this commit for the gory details:
9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
It is done in a way that significantly reduces complexity of the code:
5 files changed, 249 insertions(+), 494 deletions(-)
and the performance testing results are encouraging. Nevertheless we
need to keep an eye on potential regressions, since this potentially
affects every SMP workload in existence.
This work comes from Yuyang Du.
Other changes:
- SCHED_DL updates. (Andrea Parri)
- Simplify architecture callbacks by removing finish_arch_switch().
(Peter Zijlstra et al)
- cputime accounting: guarantee stime + utime == rtime. (Peter
Zijlstra)
- optimize idle CPU wakeups some more - inspired by Facebook server
loads. (Mike Galbraith)
- stop_machine fixes and updates. (Oleg Nesterov)
- Introduce the 'trace_sched_waking' tracepoint. (Peter Zijlstra)
- sched/numa tweaks. (Srikar Dronamraju)
- misc fixes and small cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
sched/deadline: Fix comment in enqueue_task_dl()
sched/deadline: Fix comment in push_dl_tasks()
sched: Change the sched_class::set_cpus_allowed() calling context
sched: Make sched_class::set_cpus_allowed() unconditional
sched: Fix a race between __kthread_bind() and sched_setaffinity()
sched: Ensure a task has a non-normalized vruntime when returning back to CFS
sched/numa: Fix NUMA_DIRECT topology identification
tile: Reorganize _switch_to()
sched, sparc32: Update scheduler comments in copy_thread()
sched: Remove finish_arch_switch()
sched, tile: Remove finish_arch_switch
sched, sh: Fold finish_arch_switch() into switch_to()
sched, score: Remove finish_arch_switch()
sched, avr32: Remove finish_arch_switch()
sched, MIPS: Get rid of finish_arch_switch()
sched, arm: Remove finish_arch_switch()
sched/fair: Clean up load average references
sched/fair: Provide runnable_load_avg back to cfs_rq
sched/fair: Remove task and group entity load when they are dead
sched/fair: Init cfs_rq's sched_entity load average
...
There is a race condition in SMP bootup code, which may result
in
WARNING: CPU: 0 PID: 1 at kernel/workqueue.c:4418
workqueue_cpu_up_callback()
or
kernel BUG at kernel/smpboot.c:135!
It can be triggered with a bit of luck in Linux guests running
on busy hosts.
CPU0 CPUn
==== ====
_cpu_up()
__cpu_up()
start_secondary()
set_cpu_online()
cpumask_set_cpu(cpu,
to_cpumask(cpu_online_bits));
cpu_notify(CPU_ONLINE)
<do stuff, see below>
cpumask_set_cpu(cpu,
to_cpumask(cpu_active_bits));
During the various CPU_ONLINE callbacks CPUn is online but not
active. Several things can go wrong at that point, depending on
the scheduling of tasks on CPU0.
Variant 1:
cpu_notify(CPU_ONLINE)
workqueue_cpu_up_callback()
rebind_workers()
set_cpus_allowed_ptr()
This call fails because it requires an active CPU; rebind_workers()
ends with a warning:
WARNING: CPU: 0 PID: 1 at kernel/workqueue.c:4418
workqueue_cpu_up_callback()
Variant 2:
cpu_notify(CPU_ONLINE)
smpboot_thread_call()
smpboot_unpark_threads()
..
__kthread_unpark()
__kthread_bind()
wake_up_state()
..
select_task_rq()
select_fallback_rq()
The ->wake_cpu of the unparked thread is not allowed, making a call
to select_fallback_rq() necessary. Then, select_fallback_rq() cannot
find an allowed, active CPU and promptly resets the allowed CPUs, so
that the task in question ends up on CPU0.
When those unparked tasks are eventually executed, they run
immediately into a BUG:
kernel BUG at kernel/smpboot.c:135!
Just changing the order in which the online/active bits are set
(and adding some memory barriers), would solve the two issues
above. However, it would change the order of operations back to
the one before commit 6acbfb9697 ("sched: Fix hotplug vs.
set_cpus_allowed_ptr()"), thus, reintroducing that particular
problem.
Going further back into history, we have at least the following
commits touching this topic:
- commit 2baab4e904 ("sched: Fix select_fallback_rq() vs cpu_active/cpu_online")
- commit 5fbd036b55 ("sched: Cleanup cpu_active madness")
Together, these give us the following non-working solutions:
- secondary CPU sets active before online, because active is assumed to
be a subset of online;
- secondary CPU sets online before active, because the primary CPU
assumes that an online CPU is also active;
- secondary CPU sets online and waits for primary CPU to set active,
because it might deadlock.
Commit 875ebe940d ("powerpc/smp: Wait until secondaries are
active & online") introduces an arch-specific solution to this
arch-independent problem.
Now, go for a more general solution without explicit waiting and
simply set active twice: once on the secondary CPU after online
was set and once on the primary CPU after online was seen.
set_cpus_allowed_ptr()")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@vger.kernel.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Wilson <msw@amazon.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6acbfb9697 ("sched: Fix hotplug vs. set_cpus_allowed_ptr()")
Link: http://lkml.kernel.org/r/1439408156-18840-1-git-send-email-jschoenh@amazon.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the calling context of sched_class::set_cpus_allowed() such
that we can assume the task is inactive.
This allows us to easily make changes that affect accounting done by
enqueue/dequeue. This does in fact completely remove
set_cpus_allowed_rt() and greatly reduces set_cpus_allowed_dl().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.667516139@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Give every class a set_cpus_allowed() method, this enables some small
optimization in the RT,DL implementation by avoiding a double
cpumask_weight() call.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.614517487@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because sched_setscheduler() checks p->flags & PF_NO_SETAFFINITY
without locks, a caller might observe an old value and race with the
set_cpus_allowed_ptr() call from __kthread_bind() and effectively undo
it:
__kthread_bind()
do_set_cpus_allowed()
<SYSCALL>
sched_setaffinity()
if (p->flags & PF_NO_SETAFFINITIY)
set_cpus_allowed_ptr()
p->flags |= PF_NO_SETAFFINITY
Fix the bug by putting everything under the regular scheduler locks.
This also closes a hole in the serialization of task_struct::{nr_,}cpus_allowed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.545640346@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Systems which have all nodes at a distance of at most 1 hop should be
identified as 'NUMA_DIRECT'.
However, the scheduler incorrectly identifies it as 'NUMA_BACKPLANE'.
This is because 'n' is assigned to sched_max_numa_distance but the
code (mis)interprets it to mean 'number of hops'.
Rik had actually used sched_domains_numa_levels for detecting a
'NUMA_DIRECT' topology:
http://marc.info/?l=linux-kernel&m=141279712429834&w=2
But that was changed when he removed the hops table in the
subsequent version:
http://marc.info/?l=linux-kernel&m=141353106106771&w=2
Fixing the issue here.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439256048-3748-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The idea of runnable load average (let runnable time contribute to weight)
was proposed by Paul Turner and Ben Segall, and it is still followed by
this rewrite. This rewrite aims to solve the following issues:
1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is
updated at the granularity of an entity at a time, which results in the
cfs_rq's load average is stale or partially updated: at any time, only
one entity is up to date, all other entities are effectively lagging
behind. This is undesirable.
To illustrate, if we have n runnable entities in the cfs_rq, as time
elapses, they certainly become outdated:
t0: cfs_rq { e1_old, e2_old, ..., en_old }
and when we update:
t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old }
t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old }
...
We solve this by combining all runnable entities' load averages together
in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based
on the fact that if we regard the update as a function, then:
w * update(e) = update(w * e) and
update(e1) + update(e2) = update(e1 + e2), then
w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2)
therefore, by this rewrite, we have an entirely updated cfs_rq at the
time we update it:
t1: update cfs_rq { e1_new, e2_new, ..., en_new }
t2: update cfs_rq { e1_new, e2_new, ..., en_new }
...
2. cfs_rq's load average is different between top rq->cfs_rq and other
task_group's per CPU cfs_rqs in whether or not blocked_load_average
contributes to the load.
The basic idea behind runnable load average (the same for utilization)
is that the blocked state is taken into account as opposed to only
accounting for the currently runnable state. Therefore, the average
should include both the runnable/running and blocked load averages.
This rewrite does that.
In addition, we also combine runnable/running and blocked averages
of all entities into the cfs_rq's average, and update it together at
once. This is based on the fact that:
update(runnable) + update(blocked) = update(runnable + blocked)
This significantly reduces the code as we don't need to separately
maintain/update runnable/running load and blocked load.
3. How task_group entities' share is calculated is complex and imprecise.
We reduce the complexity in this rewrite to allow a very simple rule:
the task_group's load_avg is aggregated from its per CPU cfs_rqs's
load_avgs. Then group entity's weight is simply proportional to its
own cfs_rq's load_avg / task_group's load_avg. To illustrate,
if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then,
task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then
cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share
To sum up, this rewrite in principle is equivalent to the current one, but
fixes the issues described above. Turns out, it significantly reduces the
code complexity and hence increases clarity and efficiency. In addition,
the new averages are more smooth/continuous (no spurious spikes and valleys)
and updated more consistently and quickly to reflect the load dynamics.
As a result, we have less load tracking overhead, better performance,
and especially better power efficiency due to more balanced load.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mathieu reported that since 317f394160 ("sched: Move the second half
of ttwu() to the remote cpu") trace_sched_wakeup() can happen out of
context of the waker.
This is a problem when you want to analyse wakeup paths because it is
now very hard to correlate the wakeup event to whoever issued the
wakeup.
OTOH trace_sched_wakeup() is issued at the point where we set
p->state = TASK_RUNNING, which is right were we hand the task off to
the scheduler, so this is an important point when looking at
scheduling behaviour, up to here its been the wakeup path everything
hereafter is due to scheduler policy.
To bridge this gap, introduce a second tracepoint: trace_sched_waking.
It is guaranteed to be called in the waker context.
Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Francis Giraldeau <francis.giraldeau@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150609091336.GQ3644@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The unregister_sysctl_table() function tests whether its argument is NULL
and then returns immediately. Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5597877E.3060503@users.sourceforge.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add two helpers to make it easier to treat the refcount as boolean.
Suggested-by: Jason Baron <jasonbaron0@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit renames rcu_lockdep_assert() to RCU_LOCKDEP_WARN() for
consistency with the WARN() series of macros. This also requires
inverting the sense of the conditional, which this commit also does.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Add a new cgroup subsystem callback can_fork that conditionally
states whether or not the fork is accepted or rejected by a cgroup
policy. In addition, add a cancel_fork callback so that if an error
occurs later in the forking process, any state modified by can_fork can
be reverted.
Allow for a private opaque pointer to be passed from cgroup_can_fork to
cgroup_post_fork, allowing for the fork state to be stored by each
subsystem separately.
Also add a tagging system for cgroup_subsys.h to allow for CGROUP_<TAG>
enumerations to be be defined and used. In addition, explicitly add a
CGROUP_CANFORK_COUNT macro to make arrays easier to define.
This is in preparation for implementing the pids cgroup subsystem.
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
that could have been waited for -rc2. Sending them now since I
was taking care of Peter's patch anyway.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJVmB5pAAoJEL/70l94x66DpLAH/A0p2HICsG5Qw3gnI3NxAmK4
YUvtMx0d67mFXPg0kuYRMO7C2Is6XHKtnmsX8oqkg3JTRFfn7XYqlwvrrK3Be08U
tGvhigneJTGDXwU74jyik+D6VLmyJP3CxEvXM3d9AFyy7Ro9Grxx0Ja8c9cmKGQE
esCwNAEJOcqaQMtNIix3WtXifOVFr40NZlbAawsMyxVw8LZK/K5maXyUTRDI57Qn
B1wbTN1KD847/0rLrit+8VlsGEZBorUgCFhueeYGy/7EdiY0bNkzhLWb4erlWnRq
ZlKzsLdfXmEg2CEepaHCm5jlLfIurgbLfoV1tzQ5jAuj/SHmUxq+k3lZZYTYA3w=
=vDKM
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Except for the preempt notifiers fix, these are all small bugfixes
that could have been waited for -rc2. Sending them now since I was
taking care of Peter's patch anyway"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: add hyper-v crash msrs values
KVM: x86: remove data variable from kvm_get_msr_common
KVM: s390: virtio-ccw: don't overwrite config space values
KVM: x86: keep track of LVT0 changes under APICv
KVM: x86: properly restore LVT0
KVM: x86: make vapics_in_nmi_mode atomic
sched, preempt_notifier: separate notifier registration from static_key inc/dec
Pull scheduler fixes from Ingo Molnar:
"Debug info and other statistics fixes and related enhancements"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Fix numa balancing stats in /proc/pid/sched
sched/numa: Show numa_group ID in /proc/sched_debug task listings
sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h
sched/stat: Expose /proc/pid/schedstat if CONFIG_SCHED_INFO=y
sched/stat: Simplify the sched_info accounting dependency
Commit 1cde2930e1 ("sched/preempt: Add static_key() to preempt_notifiers")
had two problems. First, the preempt-notifier API needs to sleep with the
addition of the static_key, we do however need to hold off preemption
while modifying the preempt notifier list, otherwise a preemption could
observe an inconsistent list state. KVM correctly registers and
unregisters preempt notifiers with preemption disabled, so the sleep
caused dmesg splats.
Second, KVM registers and unregisters preemption notifiers very often
(in vcpu_load/vcpu_put). With a single uniprocessor guest the static key
would move between 0 and 1 continuously, hitting the slow path on every
userspace exit.
To fix this, wrap the static_key inc/dec in a new API, and call it from
KVM.
Fixes: 1cde2930e1 ("sched/preempt: Add static_key() to preempt_notifiers")
Reported-by: Pontus Fuchs <pontus.fuchs@gmail.com>
Reported-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull scheduler updates from Thomas Gleixner:
"This series of scheduler updates depends on sched/core and timers/core
branches, which are already in your tree:
- Scheduler balancing overhaul to plug a hard to trigger race which
causes an oops in the balancer (Peter Zijlstra)
- Lockdep updates which are related to the balancing updates (Peter
Zijlstra)"
* 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched,lockdep: Employ lock pinning
lockdep: Implement lock pinning
lockdep: Simplify lock_release()
sched: Streamline the task migration locking a little
sched: Move code around
sched,dl: Fix sched class hopping CBS hole
sched, dl: Convert switched_{from, to}_dl() / prio_changed_dl() to balance callbacks
sched,dl: Remove return value from pull_dl_task()
sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
sched,rt: Remove return value from pull_rt_task()
sched: Allow balance callbacks for check_class_changed()
sched: Use replace normalize_task() with __sched_setscheduler()
sched: Replace post_schedule with a balance callback list
Pull NOHZ updates from Thomas Gleixner:
"A few updates to the nohz infrastructure:
- recursion protection for context tracking
- make the TIF_NOHZ inheritance smarter
- isolate cpus which belong to the NOHZ full set"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
nohz: Set isolcpus when nohz_full is set
nohz: Add tick_nohz_full_add_cpus_to() API
context_tracking: Inherit TIF_NOHZ through forks instead of context switches
context_tracking: Protect against recursion
Pull timer updates from Thomas Gleixner:
"A rather largish update for everything time and timer related:
- Cache footprint optimizations for both hrtimers and timer wheel
- Lower the NOHZ impact on systems which have NOHZ or timer migration
disabled at runtime.
- Optimize run time overhead of hrtimer interrupt by making the clock
offset updates smarter
- hrtimer cleanups and removal of restrictions to tackle some
problems in sched/perf
- Some more leap second tweaks
- Another round of changes addressing the 2038 problem
- First step to change the internals of clock event devices by
introducing the necessary infrastructure
- Allow constant folding for usecs/msecs_to_jiffies()
- The usual pile of clockevent/clocksource driver updates
The hrtimer changes contain updates to sched, perf and x86 as they
depend on them plus changes all over the tree to cleanup API changes
and redundant code, which got copied all over the place. The y2038
changes touch s390 to remove the last non 2038 safe code related to
boot/persistant clock"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
clocksource: Increase dependencies of timer-stm32 to limit build wreckage
timer: Minimize nohz off overhead
timer: Reduce timer migration overhead if disabled
timer: Stats: Simplify the flags handling
timer: Replace timer base by a cpu index
timer: Use hlist for the timer wheel hash buckets
timer: Remove FIFO "guarantee"
timers: Sanitize catchup_timer_jiffies() usage
hrtimer: Allow hrtimer::function() to free the timer
seqcount: Introduce raw_write_seqcount_barrier()
seqcount: Rename write_seqcount_barrier()
hrtimer: Fix hrtimer_is_queued() hole
hrtimer: Remove HRTIMER_STATE_MIGRATE
selftest: Timers: Avoid signal deadlock in leap-a-day
timekeeping: Copy the shadow-timekeeper over the real timekeeper last
clockevents: Check state instead of mode in suspend/resume path
selftests: timers: Add leap-second timer edge testing to leap-a-day.c
ntp: Do leapsecond adjustment in adjtimex read path
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
ntp: Introduce and use SECS_PER_DAY macro instead of 86400
...
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- lockless wakeup support for futexes and IPC message queues
(Davidlohr Bueso, Peter Zijlstra)
- Replace spinlocks with atomics in thread_group_cputimer(), to
improve scalability (Jason Low)
- NUMA balancing improvements (Rik van Riel)
- SCHED_DEADLINE improvements (Wanpeng Li)
- clean up and reorganize preemption helpers (Frederic Weisbecker)
- decouple page fault disabling machinery from the preemption
counter, to improve debuggability and robustness (David
Hildenbrand)
- SCHED_DEADLINE documentation updates (Luca Abeni)
- topology CPU masks cleanups (Bartosz Golaszewski)
- /proc/sched_debug improvements (Srikar Dronamraju)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
sched/deadline: Remove needless parameter in dl_runtime_exceeded()
sched: Remove superfluous resetting of the p->dl_throttled flag
sched/deadline: Drop duplicate init_sched_dl_class() declaration
sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target
sched/deadline: Make init_sched_dl_class() __init
sched/deadline: Optimize pull_dl_task()
sched/preempt: Add static_key() to preempt_notifiers
sched/preempt: Fix preempt notifiers documentation about hlist_del() within unsafe iteration
sched/stop_machine: Fix deadlock between multiple stop_two_cpus()
sched/debug: Add sum_sleep_runtime to /proc/<pid>/sched
sched/debug: Replace vruntime with wait_sum in /proc/sched_debug
sched/debug: Properly format runnable tasks in /proc/sched_debug
sched/numa: Only consider less busy nodes as numa balancing destinations
Revert 095bebf61a ("sched/numa: Do not move past the balance point if unbalanced")
sched/fair: Prevent throttling in early pick_next_task_fair()
preempt: Reorganize the notrace definitions a bit
preempt: Use preempt_schedule_context() as the official tracing preemption point
sched: Make preempt_schedule_context() function-tracing safe
x86: Remove cpu_sibling_mask() and cpu_core_mask()
x86: Replace cpu_**_mask() with topology_**_cpumask()
...
Eric reported that the timer_migration sysctl is not really nice
performance wise as it needs to check at every timer insertion whether
the feature is enabled or not. Further the check does not live in the
timer code, so we have an extra function call which checks an extra
cache line to figure out that it is disabled.
We can do better and store that information in the per cpu (hr)timer
bases. I pondered to use a static key, but that's a nightmare to
update from the nohz code and the timer base cache line is hot anyway
when we select a timer base.
The old logic enabled the timer migration unconditionally if
CONFIG_NO_HZ was set even if nohz was disabled on the kernel command
line.
With this modification, we start off with migration disabled. The user
visible sysctl is still set to enabled. If the kernel switches to NOHZ
migration is enabled, if the user did not disable it via the sysctl
prior to the switch. If nohz=off is on the kernel command line,
migration stays disabled no matter what.
Before:
47.76% hog [.] main
14.84% [kernel] [k] _raw_spin_lock_irqsave
9.55% [kernel] [k] _raw_spin_unlock_irqrestore
6.71% [kernel] [k] mod_timer
6.24% [kernel] [k] lock_timer_base.isra.38
3.76% [kernel] [k] detach_if_pending
3.71% [kernel] [k] del_timer
2.50% [kernel] [k] internal_add_timer
1.51% [kernel] [k] get_nohz_timer_target
1.28% [kernel] [k] __internal_add_timer
0.78% [kernel] [k] timerfn
0.48% [kernel] [k] wake_up_nohz_cpu
After:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.127050787@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Resetting the p->dl_throttled flag in rt_mutex_setprio() (for a task that is going
to be boosted) is superfluous, as the natural place to do so is in
replenish_dl_entity().
If the task was on the runqueue and it is boosted by a DL task, it will be enqueued
back with ENQUEUE_REPLENISH flag set, which can guarantee that dl_throttled is
reset in replenish_dl_entity().
This patch drops the resetting of throttled status in function rt_mutex_setprio().
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431496867-4194-6-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
preempt_notifier_unregister() documents:
"This is safe to call from within a preemption notifier."
However, both fire_sched_in_preempt_notifiers() and
fire_sched_out_preempt_notifiers() are using hlist_for_each_entry(),
which is not safe against entry removal during iteration.
Inspection of the KVM code does not reveal any use of
preempt_notifier_unregister() within the preempt notifiers.
Therefore, fix the comment.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431881590-1456-1-git-send-email-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to remove dropping rq->lock from the
switched_{to,from}()/prio_changed() sched_class methods, run the
balance callbacks after it.
We need to remove dropping rq->lock because its buggy,
suppose using sched_setattr()/sched_setscheduler() to change a running
task from FIFO to OTHER.
By the time we get to switched_from_rt() the task is already enqueued
on the cfs runqueues. If switched_from_rt() does pull_rt_task() and
drops rq->lock, load-balancing can come in and move our task @p to
another rq.
The subsequent switched_to_fair() still assumes @p is on @rq and bad
things will happen.
By using balance callbacks we delay the load-balancing operations
{rt,dl}x{push,pull} until we've done all the important work and the
task is fully set up.
Furthermore, the balance callbacks do not know about @p, therefore
they cannot get confused like this.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Link: http://lkml.kernel.org/r/20150611124742.615343911@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
preempt_schedule_context() is a tracing safe preemption point but it's
only used when CONFIG_CONTEXT_TRACKING=y. Other configs have tracing
recursion issues since commit:
b30f0e3ffe ("sched/preempt: Optimize preemption operations on __schedule() callers")
introduced function based preemp_count_*() ops.
Lets make it available on all configs and give it a more appropriate
name for its new position.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433432349-1021-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since function tracing disables preemption, it needs a safe preemption
point to use when preemption is re-enabled without worrying about tracing
recursion. Ie: to avoid tracing recursion, that preemption point can't
be traced (use of notrace qualifier) and it can't call any traceable
function before that preemption point disables preemption itself, which
disarms the recursion.
preempt_schedule() was fine until commit:
b30f0e3ffe ("sched/preempt: Optimize preemption operations on __schedule() callers")
because PREEMPT_ACTIVE (which has the property to disable preemption
and this disarm tracing preemption recursion) was set before calling
any further function.
But that commit introduced the use of preempt_count_add/sub() functions
to set PREEMPT_ACTIVE and because these functions are called before
preemption gets a chance to be disabled, we have a tracing recursion.
preempt_schedule_context() is one of the possible preemption functions
used by tracing. Its special purpose is to avoid tracing recursion
against context tracking. Lets enhance this function to become more
generally tracing safe by disabling preemption with raw accessors, such
that no function is called before preemption gets disabled and disarm
the tracing recursion.
This function is going to become the specific tracing-safe preemption
point in further commit.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433432349-1021-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull block fixes from Jens Axboe:
"Three small fixes that have been picked up the last few weeks.
Specifically:
- Fix a memory corruption issue in NVMe with malignant user
constructed request. From Christoph.
- Kill (now) unused blk_queue_bio(), dm was changed to not need this
anymore. From Mike Snitzer.
- Always use blk_schedule_flush_plug() from the io_schedule() path
when flushing a plug, fixing a !TASK_RUNNING warning with md. From
Shaohua"
* 'for-linus' of git://git.kernel.dk/linux-block:
sched: always use blk_schedule_flush_plug in io_schedule_out
nvme: fix kernel memory corruption with short INQUIRY buffers
block: remove export for blk_queue_bio
__schedule() disables preemption and some of its callers
(the preempt_schedule*() family) also set PREEMPT_ACTIVE.
So we have two preempt_count() modifications that could be performed
at once.
Lets remove the preemption disablement from __schedule() and pull
this responsibility to its callers in order to optimize preempt_count()
operations in a single place.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431441711-29753-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the below two commits (see Fixes) we have periodic timers that can
stop themselves when they're no longer required, but need to be
(re)-started when their idle condition changes.
Further complications is that we want the timer handler to always do
the forward such that it will always correctly deal with the overruns,
and we do not want to race such that the handler has already decided
to stop, but the (external) restart sees the timer still active and we
end up with a 'lost' timer.
The problem with the current code is that the re-start can come before
the callback does the forward, at which point the forward from the
callback will WARN about forwarding an enqueued timer.
Now, conceptually its easy to detect if you're before or after the fwd
by comparing the expiration time against the current time. Of course,
that's expensive (and racy) because we don't have the current time.
Alternatively one could cache this state inside the timer, but then
everybody pays the overhead of maintaining this extra state, and that
is undesired.
The only other option that I could see is the external timer_active
variable, which I tried to kill before. I would love a nicer interface
for this seemingly simple 'problem' but alas.
Fixes: 272325c482 ("perf: Fix mux_interval hrtimer wreckage")
Fixes: 77a4d1a1b9 ("sched: Cleanup bandwidth timers")
Cc: pjt@google.com
Cc: tglx@linutronix.de
Cc: klamm@yandex-team.ru
Cc: mingo@kernel.org
Cc: bsegall@google.com
Cc: hpa@zytor.com
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150514102311.GX21418@twins.programming.kicks-ass.net
Stephane asked about PERF_COUNT_SW_CPU_MIGRATIONS and I realized it
was borken:
> The problem is that the task isn't actually scheduled while its being
> migrated (obviously), and if its not scheduled, the counters aren't
> scheduled either, so there's no observing of the fact.
>
> A further problem with migrations is that many migrations happen from
> softirq context, which is nested inside the 'random' task context of
> whoemever happens to run at that time, similarly for the wakeup
> migrations triggered from (soft)irq context. All those end up being
> accounted in the task that's currently running, eg. your 'ls'.
The below cures this by marking a task as migrated and accounting it
on the subsequent sched_in().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is useful for locking primitives that can effect multiple
wakeups per operation and want to avoid lock internal lock contention
by delaying the wakeups until we've released the lock internal locks.
Alternatively it can be used to avoid issuing multiple wakeups, and
thus save a few cycles, in packet processing. Queue all target tasks
and wakeup once you've processed all packets. That way you avoid
waking the target task multiple times if there were multiple packets
for the same task.
Properties of a wake_q are:
- Lockless, as queue head must reside on the stack.
- Being a queue, maintains wakeup order passed by the callers. This can
be important for otherwise, in scenarios where highly contended locks
could affect any reliance on lock fairness.
- A queued task cannot be added again until it is woken up.
This patch adds the needed infrastructure into the scheduler code
and uses the new wake_list to delay the futex wakeups until
after we've released the hash bucket locks.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[tweaks, adjustments, comments, etc.]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris Mason <clm@fb.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: George Spelvin <linux@horizon.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430494072-30283-2-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'rt_period_us' is automatically type converted from u64 to long and then cast
back to u64 - this down/up conversion is unnecessary and can be removed to
improve readability.
This will also help us not truncate 'rt_period_us' to 32 bits on 32-bit kernels,
should we ever have so large values. (unlikely, not the least due to procfs.)
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430643116-24049-1-git-send-email-hofrat@osadl.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I could not find the loadavg code.. turns out it was hidden in a file
called proc.c. It further got mingled up with the cruft per rq load
indexes (which we really want to get rid of).
Move the per rq load indexes into the fair.c load-balance code (that's
the only thing that uses them) and rename proc.c to loadavg.c so we
can find it again.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Did minor cleanups to the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We removed __cpuinit support (leaving no-op stubs) quite some time
ago. However this one crept back in as of commit a803f0261b
("sched: Initialize rq->age_stamp on processor start")
Since we want to clobber the stubs too, get this removed now.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Corey Minyard <cminyard@mvista.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430174880-27958-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 3c18d447b3 ("sched/core: Check for available DL bandwidth in
cpuset_cpu_inactive()"), a SCHED_DEADLINE bugfix, had a logic error that
caused a regression in setting a CPU inactive during suspend. I ran into
this when a program was failing pthread_setaffinity_np() with EINVAL after
a suspend+wake up.
A simple reproducer:
$ ./a.out
sched_setaffinity: Success
$ systemctl suspend
$ ./a.out
sched_setaffinity: Invalid argument
... where ./a.out is:
#define _GNU_SOURCE
#include <errno.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
int main(void)
{
long num_cores;
cpu_set_t cpu_set;
int ret;
num_cores = sysconf(_SC_NPROCESSORS_ONLN);
CPU_ZERO(&cpu_set);
CPU_SET(num_cores - 1, &cpu_set);
errno = 0;
ret = sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);
perror("sched_setaffinity");
return ret ? EXIT_FAILURE : EXIT_SUCCESS;
}
The mistake is that suspend is handled in the action ==
CPU_DOWN_PREPARE_FROZEN case of the switch statement in
cpuset_cpu_inactive().
However, the commit in question masked out CPU_TASKS_FROZEN
from the action, making this case dead.
The fix is straightforward.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 3c18d447b3 ("sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()")
Link: http://lkml.kernel.org/r/1cb5ecb3d6543c38cce5790387f336f54ec8e2bc.1430733960.git.osandov@osandov.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ronny reported that the following scenario is not handled correctly:
T1 (prio = 10)
lock(rtmutex);
T2 (prio = 20)
lock(rtmutex)
boost T1
T1 (prio = 20)
sys_set_scheduler(prio = 30)
T1 prio = 30
....
sys_set_scheduler(prio = 10)
T1 prio = 30
The last step is wrong as T1 should now be back at prio 20.
Commit c365c292d0 ("sched: Consider pi boosting in setscheduler()")
only handles the case where a boosted tasks tries to lower its
priority.
Fix it by taking the new effective priority into account for the
decision whether a change of the priority is required.
Reported-by: Ronny Meeus <ronny.meeus@gmail.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Fixes: c365c292d0 ("sched: Consider pi boosting in setscheduler()")
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1505051806060.4225@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
nohz_full is only useful with isolcpus are also set, since
otherwise the scheduler has to run periodically to try to
determine whether to steal work from other cores.
Accordingly, when booting with nohz_full=xxx on the command
line, we should act as if isolcpus=xxx was also set, and set
(or extend) the isolcpus set to include the nohz_full cpus.
Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Jones <davej@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430928266-24888-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
TIF_NOHZ is used by context_tracking to force syscall slow-path
on every task in order to track userspace roundtrips. As such,
it must be set on all running tasks.
It's currently explicitly inherited through context switches.
There is no need to do it in this fast-path though. The flag
could simply be set once for all on all tasks, whether they are
running or not.
Lets do this by setting the flag for the init task on early boot,
and let it propagate through fork inheritance.
While at it, mark context_tracking_cpu_set() as init code, we
only need it at early boot time.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Dave Jones <davej@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430928266-24888-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commits 0a4e6be9ca
and 80f7fdb1c7.
The task migration notifier was originally introduced in order to support
the pvclock vsyscall with non-synchronized TSC, but KVM only supports it
with synchronized TSC. Hence, on KVM the race condition is only needed
due to a bad implementation on the host side, and even then it's so rare
that it's mostly theoretical.
As far as KVM is concerned it's possible to fix the host, avoiding the
additional complexity in the vDSO and the (re)introduction of the task
migration notifier.
Xen, on the other hand, hasn't yet implemented vsyscall support at
all, so we do not care about its plans for non-synchronized TSC.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Roman reported a 3 cpu lockup scenario involving __start_cfs_bandwidth().
The more I look at that code the more I'm convinced its crack, that
entire __start_cfs_bandwidth() thing is brain melting, we don't need to
cancel a timer before starting it, *hrtimer_start*() will happily remove
the timer for you if its still enqueued.
Removing that, removes a big part of the problem, no more ugly cancel
loop to get stuck in.
So now, if I understand things right, the entire reason you have this
cfs_b->lock guarded ->timer_active nonsense is to make sure we don't
accidentally lose the timer.
It appears to me that it should be possible to guarantee that same by
unconditionally (re)starting the timer when !queued. Because regardless
what hrtimer::function will return, if we beat it to (re)enqueue the
timer, it doesn't matter.
Now, because hrtimers don't come with any serialization guarantees we
must ensure both handler and (re)start loop serialize their access to
the hrtimer to avoid both trying to forward the timer at the same
time.
Update the rt bandwidth timer to match.
This effectively reverts: 09dc4ab039 ("sched/fair: Fix
tg_set_cfs_bandwidth() deadlock on rq->lock").
Reported-by: Roman Gushchin <klamm@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415095011.804589208@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer_start() now enforces a timer interrupt when an already expired
timer is enqueued.
Get rid of the __hrtimer_start_range_ns() invocations and the loops
around it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.531131739@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull NOHZ changes from Ingo Molnar:
"This tree adds full dynticks support to KVM guests (support the
disabling of the timer tick on the guest). The main missing piece was
the recognition of guest execution as RCU extended quiescent state and
related changes"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kvm,rcu,nohz: use RCU extended quiescent state when running KVM guest
context_tracking: Export context_tracking_user_enter/exit
context_tracking: Run vtime_user_enter/exit only when state == CONTEXT_USER
context_tracking: Add stub context_tracking_is_enabled
context_tracking: Generalize context tracking APIs to support user and guest
context_tracking: Rename context symbols to prepare for transition state
ppc: Remove unused cpp symbols in kvm headers
Pull cgroup updates from Tejun Heo:
"Nothing too interesting. Rik made cpuset cooperate better with
isolcpus and there are several other cleanup patches"
* 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset, isolcpus: document relationship between cpusets & isolcpus
cpusets, isolcpus: exclude isolcpus from load balancing in cpusets
sched, isolcpu: make cpu_isolated_map visible outside scheduler
cpuset: initialize cpuset a bit early
cgroup: Use kvfree in pidlist_free()
cgroup: call cgroup_subsys->bind on cgroup subsys initialization
Pull scheduler changes from Ingo Molnar:
"Major changes:
- Reworked CPU capacity code, for better SMP load balancing on
systems with assymetric CPUs. (Vincent Guittot, Morten Rasmussen)
- Reworked RT task SMP balancing to be push based instead of pull
based, to reduce latencies on large CPU count systems. (Steven
Rostedt)
- SCHED_DEADLINE support updates and fixes. (Juri Lelli)
- SCHED_DEADLINE task migration support during CPU hotplug. (Wanpeng Li)
- x86 mwait-idle optimizations and fixes. (Mike Galbraith, Len Brown)
- sched/numa improvements. (Rik van Riel)
- various cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
sched/core: Drop debugging leftover trace_printk call
sched/deadline: Support DL task migration during CPU hotplug
sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()
sched/deadline: Always enqueue on previous rq when dl_task_timer() fires
sched/core: Remove unused argument from init_[rt|dl]_rq()
sched/deadline: Fix rt runtime corruption when dl fails its global constraints
sched/deadline: Avoid a superfluous check
sched: Improve load balancing in the presence of idle CPUs
sched: Optimize freq invariant accounting
sched: Move CFS tasks to CPUs with higher capacity
sched: Add SD_PREFER_SIBLING for SMT level
sched: Remove unused struct sched_group_capacity::capacity_orig
sched: Replace capacity_factor by usage
sched: Calculate CPU's usage statistic and put it into struct sg_lb_stats::group_usage
sched: Add struct rq::cpu_capacity_orig
sched: Make scale_rt invariant with frequency
sched: Make sched entity usage tracking scale-invariant
sched: Remove frequency scaling from cpu_capacity
sched: Track group sched_entity usage contributions
sched: Add sched_avg::utilization_avg_contrib
...
ARM/ARM64: fixes for live migration, irqfd and ioeventfd support (enabling
vhost, too), page aging
s390: interrupt handling rework, allowing to inject all local interrupts
via new ioctl and to get/set the full local irq state for migration
and introspection. New ioctls to access memory by virtual address,
and to get/set the guest storage keys. SIMD support.
MIPS: FPU and MIPS SIMD Architecture (MSA) support. Includes some patches
from Ralf Baechle's MIPS tree.
x86: bugfixes (notably for pvclock, the others are small) and cleanups.
Another small latency improvement for the TSC deadline timer.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJVJ9vmAAoJEL/70l94x66DoMEH/R3rh8IMf4jTiWRkcqohOMPX
k1+NaSY/lCKayaSgggJ2hcQenMbQoXEOdslvaA/H0oC+VfJGK+lmU6E63eMyyhjQ
Y+Px6L85NENIzDzaVu/TIWWuhil5PvIRr3VO8cvntExRoCjuekTUmNdOgCvN2ObW
wswN2qRdPIeEj2kkulbnye+9IV4G0Ne9bvsmUdOdfSSdi6ZcV43JcvrpOZT++mKj
RrKB+3gTMZYGJXMMLBwMkdl8mK1ozriD+q0mbomT04LUyGlPwYLl4pVRDBqyksD7
KsSSybaK2E4i5R80WEljgDMkNqrCgNfg6VZe4n9Y+CfAAOToNnkMJaFEi+yuqbs=
=yu2b
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"First batch of KVM changes for 4.1
The most interesting bit here is irqfd/ioeventfd support for ARM and
ARM64.
Summary:
ARM/ARM64:
fixes for live migration, irqfd and ioeventfd support (enabling
vhost, too), page aging
s390:
interrupt handling rework, allowing to inject all local interrupts
via new ioctl and to get/set the full local irq state for migration
and introspection. New ioctls to access memory by virtual address,
and to get/set the guest storage keys. SIMD support.
MIPS:
FPU and MIPS SIMD Architecture (MSA) support. Includes some
patches from Ralf Baechle's MIPS tree.
x86:
bugfixes (notably for pvclock, the others are small) and cleanups.
Another small latency improvement for the TSC deadline timer"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (146 commits)
KVM: use slowpath for cross page cached accesses
kvm: mmu: lazy collapse small sptes into large sptes
KVM: x86: Clear CR2 on VCPU reset
KVM: x86: DR0-DR3 are not clear on reset
KVM: x86: BSP in MSR_IA32_APICBASE is writable
KVM: x86: simplify kvm_apic_map
KVM: x86: avoid logical_map when it is invalid
KVM: x86: fix mixed APIC mode broadcast
KVM: x86: use MDA for interrupt matching
kvm/ppc/mpic: drop unused IRQ_testbit
KVM: nVMX: remove unnecessary double caching of MAXPHYADDR
KVM: nVMX: checks for address bits beyond MAXPHYADDR on VM-entry
KVM: x86: cache maxphyaddr CPUID leaf in struct kvm_vcpu
KVM: vmx: pass error code with internal error #2
x86: vdso: fix pvclock races with task migration
KVM: remove kvm_read_hva and kvm_read_hva_atomic
KVM: x86: optimize delivery of TSC deadline timer interrupt
KVM: x86: extract blocking logic from __vcpu_run
kvm: x86: fix x86 eflags fixed bit
KVM: s390: migrate vcpu interrupt state
...
Commit:
3c18d447b3 ("sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()")
forgot a trace_printk() debugging piece in and Steve's banner screamed
in dmesg. Remove it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1428050570-21041-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hotplug operations are destructive w.r.t. cpusets. In case such an
operation is performed on a CPU belonging to an exlusive cpuset, the
DL bandwidth information associated with the corresponding root
domain is gone even if the operation fails (in sched_cpu_inactive()).
For this reason we need to move the check we currently have in
sched_cpu_inactive() to cpuset_cpu_inactive() to prevent useless
cpusets reconfiguration in the CPU_DOWN_FAILED path.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Link: http://lkml.kernel.org/r/1427792017-7356-2-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Obviously, 'rq' is not used in these two functions, therefore,
there is no reason for it to be passed as an argument.
Signed-off-by: Abel Vesa <abelvesa@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1425383427-26244-1-git-send-email-abelvesa@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
One version of sched_rt_global_constaints() (the !rt-cgroup one)
changes state, therefore if we fail the later sched_dl_global_constraints()
call the state is left in an inconsistent state.
Fix this by changing the order of the calls.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
[ Improved the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Link: http://lkml.kernel.org/r/1426590931-4639-2-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This new field 'cpu_capacity_orig' reflects the original capacity of a CPU
before being altered by rt tasks and/or IRQ
The cpu_capacity_orig will be used:
- to detect when the capacity of a CPU has been noticeably reduced so we can
trig load balance to look for a CPU with better capacity. As an example, we
can detect when a CPU handles a significant amount of irq
(with CONFIG_IRQ_TIME_ACCOUNTING) but this CPU is seen as an idle CPU by
scheduler whereas CPUs, which are really idle, are available.
- evaluate the available capacity for CFS tasks
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following point:
2. per-CPU pvclock time info is updated if the
underlying CPU changes.
Is not true anymore since "KVM: x86: update pvclock area conditionally,
on cpu migration".
Add task migration notification back.
Problem noticed by Andy Lutomirski.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
CC: stable@kernel.org # 3.11+
When non-realtime tasks get priority-inheritance boosted to a realtime
scheduling class, RLIMIT_RTTIME starts to apply to them. However, the
counter used for checking this (the same one used for SCHED_RR
timeslices) was not getting reset. This meant that tasks running with a
non-realtime scheduling class which are repeatedly boosted to a realtime
one, but never block while they are running realtime, eventually hit the
timeout without ever running for a time over the limit. This patch
resets the realtime timeslice counter when un-PI-boosting from an RT to
a non-RT scheduling class.
I have some test code with two threads and a shared PTHREAD_PRIO_INHERIT
mutex which induces priority boosting and spins while boosted that gets
killed by a SIGXCPU on non-fixed kernels but doesn't with this patch
applied. It happens much faster with a CONFIG_PREEMPT_RT kernel, and
does happen eventually with PREEMPT_VOLUNTARY kernels.
Signed-off-by: Brian Silverman <brian@peloton-tech.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: austin@peloton-tech.com
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1424305436-6716-1-git-send-email-brian@peloton-tech.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Needed by the next patch. Also makes cpu_isolated_map present
when compiled without SMP and/or with CONFIG_NR_CPUS=1, like
the other cpu masks.
At some point we may want to clean things up so cpumasks do
not exist in UP kernels. Maybe something for the CONFIG_TINY
crowd.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: cgroups@vger.kernel.org
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Current context tracking symbols are designed to express living state.
As such they are prefixed with "IN_": IN_USER, IN_KERNEL.
Now we are going to use these symbols to also express state transitions
such as context_tracking_enter(IN_USER) or context_tracking_exit(IN_USER).
But while the "IN_" prefix works well to express entering a context, it's
confusing to depict a context exit: context_tracking_exit(IN_USER)
could mean two things:
1) We are exiting the current context to enter user context.
2) We are exiting the user context
We want 2) but the reviewer may be confused and understand 1)
So lets disambiguate these symbols and rename them to CONTEXT_USER and
CONTEXT_KERNEL.
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Will deacon <will.deacon@arm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull scheduler fixes from Ingo Molnar:
"Thiscontains misc fixes: preempt_schedule_common() and io_schedule()
recursion fixes, sched/dl fixes, a completion_done() revert, two
sched/rt fixes and a comment update patch"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/rt: Avoid obvious configuration fail
sched/autogroup: Fix failure to set cpu.rt_runtime_us
sched/dl: Do update_rq_clock() in yield_task_dl()
sched: Prevent recursion in io_schedule()
sched/completion: Serialize completion_done() with complete()
sched: Fix preempt_schedule_common() triggering tracing recursion
sched/dl: Prevent enqueue of a sleeping task in dl_task_timer()
sched: Make dl_task_time() use task_rq_lock()
sched: Clarify ordering between task_rq_lock() and move_queued_task()
If the CPU is running a realtime task that does not round-robin
with another realtime task of equal priority, there is no point
in keeping the scheduler tick going. After all, whenever the
scheduler tick runs, the kernel will just decide not to
reschedule.
Extend sched_can_stop_tick() to recognize these situations, and
inform the rest of the kernel that the scheduler tick can be
stopped.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: fweisbec@redhat.com
Cc: mtosatti@redhat.com
Link: http://lkml.kernel.org/r/20150216152349.6a8ed824@annuminas.surriel.com
[ Small cleanliness tweak. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Setting the root group's cpu.rt_runtime_us to 0 is a bad thing; it
would disallow the kernel creating RT tasks.
One can of course still set it to 1, which will (likely) still wreck
your kernel, but at least make it clear that setting it to 0 is not
good.
Collect both sanity checks into the one place while we're there.
Suggested-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150209112715.GO24151@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because task_group() uses a cache of autogroup_task_group(), whose
output depends on sched_class, switching classes can generate
problems.
In particular, when started as fair, the cache points to the
autogroup, so when switching to RT the tg_rt_schedulable() test fails
for every cpu.rt_{runtime,period}_us change because now the autogroup
has tasks and no runtime.
Furthermore, going back to the previous semantics of varying
task_group() with sched_class has the down-side that the sched_debug
output varies as well, even though the task really is in the
autogroup.
Therefore add an autogroup exception to tg_has_rt_tasks() -- such that
both (all) task_group() usages in sched/core now have one. And remove
all the remnants of the variable task_group() output.
Reported-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Stefan Bader <stefan.bader@canonical.com>
Fixes: 8323f26ce3 ("sched: Fix race in task_group()")
Link: http://lkml.kernel.org/r/20150209112237.GR5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
io_schedule() calls blk_flush_plug() which, depending on the
contents of current->plug, can initiate arbitrary blk-io requests.
Note that this contrasts with blk_schedule_flush_plug() which requires
all non-trivial work to be handed off to a separate thread.
This makes it possible for io_schedule() to recurse, and initiating
block requests could possibly call mempool_alloc() which, in times of
memory pressure, uses io_schedule().
Apart from any stack usage issues, io_schedule() will not behave
correctly when called recursively as delayacct_blkio_start() does
not allow for repeated calls.
So:
- use ->in_iowait to detect recursion. Set it earlier, and restore
it to the old value.
- move the call to "raw_rq" after the call to blk_flush_plug().
As this is some sort of per-cpu thing, we want some chance that
we are on the right CPU
- When io_schedule() is called recurively, use blk_schedule_flush_plug()
which cannot further recurse.
- as this makes io_schedule() a lot more complex and as io_schedule()
must match io_schedule_timeout(), but all the changes in io_schedule_timeout()
and make io_schedule a simple wrapper for that.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ Moved the now rudimentary io_schedule() into sched.h. ]
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Link: http://lkml.kernel.org/r/20150213162600.059fffb2@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the function graph tracer needs to disable preemption, it might
call preempt_schedule() after reenabling it if something triggered the
need for rescheduling in between.
Therefore we can't trace preempt_schedule() itself because we would
face a function tracing recursion otherwise as the tracer is always
called before PREEMPT_ACTIVE gets set to prevent that recursion. This is
why preempt_schedule() is tagged as "notrace".
But the same issue applies to every function called by preempt_schedule()
before PREEMPT_ACTIVE is actually set. And preempt_schedule_common() is
one such example. Unfortunately we forgot to tag it as notrace as well
and as a result we are encountering tracing recursion since it got
introduced by:
a18b5d0181 ("sched: Fix missing preemption opportunity")
Let's fix that by applying the appropriate function tag to
preempt_schedule_common().
Reported-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1424110807-15057-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kirill reported that a dl task can be throttled and dequeued at the
same time. This happens, when it becomes throttled in schedule(),
which is called to go to sleep:
current->state = TASK_INTERRUPTIBLE;
schedule()
deactivate_task()
dequeue_task_dl()
update_curr_dl()
start_dl_timer()
__dequeue_task_dl()
prev->on_rq = 0;
This invalidates the assumption from commit 0f397f2c90 ("sched/dl:
Fix race in dl_task_timer()"):
"The only reason we don't strictly need ->pi_lock now is because
we're guaranteed to have p->state == TASK_RUNNING here and are
thus free of ttwu races".
And therefore we have to use the full task_rq_lock() here.
This further amends the fact that we forgot to update the rq lock loop
for TASK_ON_RQ_MIGRATE, from commit cca26e8009 ("sched: Teach
scheduler to understand TASK_ON_RQ_MIGRATING state").
Reported-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Link: http://lkml.kernel.org/r/20150217123139.GN5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There was a wee bit of confusion around the exact ordering here;
clarify things.
Reported-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20150217121258.GM5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main scheduler changes in this cycle were:
- various sched/deadline fixes and enhancements
- rescheduling latency fixes/cleanups
- rework the rq->clock code to be more consistent and more robust.
- minor micro-optimizations
- ->avg.decay_count fixes
- add a stack overflow check to might_sleep()
- idle-poll handler fix, possibly resulting in power savings
- misc smaller updates and fixes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/Documentation: Remove unneeded word
sched/wait: Introduce wait_on_bit_timeout()
sched: Pull resched loop to __schedule() callers
sched/deadline: Remove cpu_active_mask from cpudl_find()
sched: Fix hrtick_start() on UP
sched/deadline: Avoid pointless __setscheduler()
sched/deadline: Fix stale yield state
sched/deadline: Fix hrtick for a non-leftmost task
sched/deadline: Modify cpudl::free_cpus to reflect rd->online
sched/idle: Add missing checks to the exit condition of cpu_idle_poll()
sched: Fix missing preemption opportunity
sched/rt: Reduce rq lock contention by eliminating locking of non-feasible target
sched/debug: Print rq->clock_task
sched/core: Rework rq->clock update skips
sched/core: Validate rq_clock*() serialization
sched/core: Remove check of p->sched_class
sched/fair: Fix sched_entity::avg::decay_count initialization
sched/debug: Fix potential call to __ffs(0) in sched_show_task()
sched/debug: Check for stack overflow in ___might_sleep()
sched/fair: Fix the dealing with decay_count in __synchronize_entity_decay()
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- AMD range breakpoints support:
Extend breakpoint tools and core to support address range through
perf event with initial backend support for AMD extended
breakpoints.
The syntax is:
perf record -e mem:addr/len:type
For example set write breakpoint from 0x1000 to 0x1200 (0x1000 + 512)
perf record -e mem:0x1000/512:w
- event throttling/rotating fixes
- various event group handling fixes, cleanups and general paranoia
code to be more robust against bugs in the future.
- kernel stack overhead fixes
User-visible tooling side changes:
- Show precise number of samples in at the end of a 'record' session,
if processing build ids, since we will then traverse the whole
perf.data file and see all the PERF_RECORD_SAMPLE records,
otherwise stop showing the previous off-base heuristicly counted
number of "samples" (Namhyung Kim).
- Support to read compressed module from build-id cache (Namhyung
Kim)
- Enable sampling loads and stores simultaneously in 'perf mem'
(Stephane Eranian)
- 'perf diff' output improvements (Namhyung Kim)
- Fix error reporting for evsel pgfault constructor (Arnaldo Carvalho
de Melo)
Tooling side infrastructure changes:
- Cache eh/debug frame offset for dwarf unwind (Namhyung Kim)
- Support parsing parameterized events (Cody P Schafer)
- Add support for IP address formats in libtraceevent (David Ahern)
Plus other misc fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
perf: Decouple unthrottling and rotating
perf: Drop module reference on event init failure
perf: Use POLLIN instead of POLL_IN for perf poll data in flag
perf: Fix put_event() ctx lock
perf: Fix move_group() order
perf: Fix event->ctx locking
perf: Add a bit of paranoia
perf symbols: Convert lseek + read to pread
perf tools: Use perf_data_file__fd() consistently
perf symbols: Support to read compressed module from build-id cache
perf evsel: Set attr.task bit for a tracking event
perf header: Set header version correctly
perf record: Show precise number of samples
perf tools: Do not use __perf_session__process_events() directly
perf callchain: Cache eh/debug frame offset for dwarf unwind
perf tools: Provide stub for missing pthread_attr_setaffinity_np
perf evsel: Don't rely on malloc working for sz 0
tools lib traceevent: Add support for IP address formats
perf ui/tui: Show fatal error message only if exists
perf tests: Fix typo in sample-parsing.c
...
Pull scheduler fixes from Ingo Molnar:
"Misc fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Fix deadline parameter modification handling
sched/wait: Remove might_sleep() from wait_event_cmd()
sched: Fix crash if cpuset_cpumask_can_shrink() is passed an empty cpumask
sched/fair: Avoid using uninitialized variable in preferred_group_nid()
__schedule() disables preemption during its job and re-enables it
afterward without doing a preemption check to avoid recursion.
But if an event happens after the context switch which requires
rescheduling, we need to check again if a task of a higher priority
needs the CPU. A preempt irq can raise such a situation. To handle that,
__schedule() loops on need_resched().
But preempt_schedule_*() functions, which call __schedule(), also loop
on need_resched() to handle missed preempt irqs. Hence we end up with
the same loop happening twice.
Lets simplify that by attributing the need_resched() loop responsibility
to all __schedule() callers.
There is a risk that the outer loop now handles reschedules that used
to be handled by the inner loop with the added overhead of caller details
(inc/dec of PREEMPT_ACTIVE, irq save/restore) but assuming those inner
rescheduling loop weren't too frequent, this shouldn't matter. Especially
since the whole preemption path is now losing one loop in any case.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1422404652-29067-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The commit 177ef2a631 ("sched/deadline: Fix a precision problem in
the microseconds range") forgot to change the UP version of
hrtick_start(), do so now.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Fixes: 177ef2a631 ("sched/deadline: Fix a precision problem in the microseconds range")
[ Fixed the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1416962647-76792-7-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no need to dequeue/enqueue and push/pull if there are
no scheduling parameters changed for the DL class.
Both fair and RT classes already check if parameters changed for
them to avoid unnecessary overhead. This patch add the parameters
changed test for the DL class in order to reduce overhead.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
[ Fixed up the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1416962647-76792-5-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 67dfa1b756 ("sched/deadline: Implement cancel_dl_timer() to
use in switched_from_dl()") removed the hrtimer_try_cancel() function
call out from init_dl_task_timer(), which gets called from
__setparam_dl().
The result is that we can now re-init the timer while its active --
this is bad and corrupts timer state.
Furthermore; changing the parameters of an active deadline task is
tricky in that you want to maintain guarantees, while immediately
effective change would allow one to circumvent the CBS guarantees --
this too is bad, as one (bad) task should not be able to affect the
others.
Rework things to avoid both problems. We only need to initialize the
timer once, so move that to __sched_fork() for new tasks.
Then make sure __setparam_dl() doesn't affect the current running
state but only updates the parameters used to calculate the next
scheduling period -- this guarantees the CBS functions as expected
(albeit slightly pessimistic).
This however means we need to make sure __dl_clear_params() needs to
reset the active state otherwise new (and tasks flipping between
classes) will not properly (re)compute their first instance.
Todo: close class flipping CBS hole.
Todo: implement delayed BW release.
Reported-by: Luca Abeni <luca.abeni@unitn.it>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Fixes: 67dfa1b756 ("sched/deadline: Implement cancel_dl_timer() to use in switched_from_dl()")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150128140803.GF23038@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 8eb23b9f35 ("sched: Debug nested sleeps") added code to report
on nested sleep conditions, which we generally want to avoid because the
inner sleeping operation can re-set the thread state to TASK_RUNNING,
but that will then cause the outer sleep loop not actually sleep when it
calls schedule.
However, that's actually valid traditional behavior, with the inner
sleep being some fairly rare case (like taking a sleeping lock that
normally doesn't actually need to sleep).
And the debug code would actually change the state of the task to
TASK_RUNNING internally, which makes that kind of traditional and
working code not work at all, because now the nested sleep doesn't just
sometimes cause the outer one to not block, but will cause it to happen
every time.
In particular, it will cause the cardbus kernel daemon (pccardd) to
basically busy-loop doing scheduling, converting a laptop into a heater,
as reported by Bruno Prémont. But there may be other legacy uses of
that nested sleep model in other drivers that are also likely to never
get converted to the new model.
This fixes both cases:
- don't set TASK_RUNNING when the nested condition happens (note: even
if WARN_ONCE() only _warns_ once, the return value isn't whether the
warning happened, but whether the condition for the warning was true.
So despite the warning only happening once, the "if (WARN_ON(..))"
would trigger for every nested sleep.
- in the cases where we knowingly disable the warning by using
"sched_annotate_sleep()", don't change the task state (that is used
for all core scheduling decisions), instead use '->task_state_change'
that is used for the debugging decision itself.
(Credit for the second part of the fix goes to Oleg Nesterov: "Can't we
avoid this subtle change in behaviour DEBUG_ATOMIC_SLEEP adds?" with the
suggested change to use 'task_state_change' as part of the test)
Reported-and-bisected-by: Bruno Prémont <bonbons@linux-vserver.org>
Tested-by: Rafael J Wysocki <rjw@rjwysocki.net>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>,
Cc: Ilya Dryomov <ilya.dryomov@inktank.com>,
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Hurley <peter@hurleysoftware.com>,
Cc: Davidlohr Bueso <dave@stgolabs.net>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If an interrupt fires in cond_resched(), between the call to __schedule()
and the PREEMPT_ACTIVE count decrementation, and that interrupt sets
TIF_NEED_RESCHED, the call to preempt_schedule_irq() will be ignored
due to the PREEMPT_ACTIVE count. This kind of scenario, with irq preemption
being delayed because it's interrupting a preempt-disabled area, is
usually fixed up after preemption is re-enabled back with an explicit
call to preempt_schedule().
This is what preempt_enable() does but a raw preempt count decrement as
performed by __preempt_count_sub(PREEMPT_ACTIVE) doesn't handle delayed
preemption check. Therefore when such a race happens, the rescheduling
is going to be delayed until the next scheduler or preemption entrypoint.
This can be a problem for scheduler latency sensitive workloads.
Lets fix that by consolidating cond_resched() with preempt_schedule()
internals.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Ingo Molnar <mingo@kernel.org>
Original-patch-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1421946484-9298-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both Linus (most recent) and Steve (a while ago) reported that perf
related callbacks have massive stack bloat.
The problem is that software events need a pt_regs in order to
properly report the event location and unwind stack. And because we
could not assume one was present we allocated one on stack and filled
it with minimal bits required for operation.
Now, pt_regs is quite large, so this is undesirable. Furthermore it
turns out that most sites actually have a pt_regs pointer available,
making this even more onerous, as the stack space is pointless waste.
This patch addresses the problem by observing that software events
have well defined nesting semantics, therefore we can use static
per-cpu storage instead of on-stack.
Linus made the further observation that all but the scheduler callers
of perf_sw_event() have a pt_regs available, so we change the regular
perf_sw_event() to require a valid pt_regs (where it used to be
optional) and add perf_sw_event_sched() for the scheduler.
We have a scheduler specific call instead of a more generic _noregs()
like construct because we can assume non-recursion from the scheduler
and thereby simplify the code further (_noregs would have to put the
recursion context call inline in order to assertain which __perf_regs
element to use).
One last note on the implementation of perf_trace_buf_prepare(); we
allow .regs = NULL for those cases where we already have a pt_regs
pointer available and do not need another.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Javi Merino <javi.merino@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.cz>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Link: http://lkml.kernel.org/r/20141216115041.GW3337@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The original purpose of rq::skip_clock_update was to avoid 'costly' clock
updates for back to back wakeup-preempt pairs. The big problem with it
has always been that the rq variable is unaware of the context and
causes indiscrimiate clock skips.
Rework the entire thing and create a sense of context by only allowing
schedule() to skip clock updates. (XXX can we measure the cost of the
added store?)
By ensuring only schedule can ever skip an update, we guarantee we're
never more than 1 tick behind on the update.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150105103554.432381549@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Search all usage of p->sched_class in sched/core.c, no one check it
before use, so it seems that every task must belong to one sched_class.
Signed-off-by: Yao Dongdong <yaodongdong@huawei.com>
[ Moved the early class assignment to make it boot. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1419835303-28958-1-git-send-email-yaodongdong@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Child has the same decay_count as parent. If it's not zero,
we add it to parent's cfs_rq->removed_load:
wake_up_new_task()->set_task_cpu()->migrate_task_rq_fair().
Child's load is a just garbade after copying of parent,
it hasn't been on cfs_rq yet, and it must not be added to
cfs_rq::removed_load in migrate_task_rq_fair().
The patch moves sched_entity::avg::decay_count intialization
in sched_fork(). So, migrate_task_rq_fair() does not change
removed_load.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418644618.6074.13.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
"struct task_struct"->state is "volatile long" and __ffs() warns that
"Undefined if no bit exists, so code should check against 0 first."
Therefore, at expression
state = p->state ? __ffs(p->state) + 1 : 0;
in sched_show_task(), CPU might see "p->state" before "?" as "non-zero"
but "p->state" after "?" as "zero", which could result in
"state >= sizeof(stat_nam)" being true and bogus '?' is printed.
This patch changes "state" from "unsigned int" to "unsigned long" and
save "p->state" before calling __ffs(), in order to avoid potential call
to __ffs(0).
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/201412052131.GCE35924.FVHFOtLOJOMQFS@I-love.SAKURA.ne.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes a "BUG: sleeping function called from invalid context"
message is not indicative of locking problems, but is the result
of a stack overflow corrupting the thread info.
Witness http://oss.sgi.com/archives/xfs/2014-02/msg00325.html
for example, which took a few go-rounds to sort out.
If we're printing the warning, things are wonky already, and
it'd be informative to check for the stack end corruption at this
point, too.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/5490B158.4060005@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When allocating space for load_balance_mask, in sched_init, when
CPUMASK_OFFSTACK is set, we've managed to spill over
KMALLOC_MAX_SIZE on our 6144 core machine. The patch below
breaks up the allocations so that they don't overflow the max
alloc size. It also allocates the masks on the the node from
which they'll most commonly be accessed, to minimize remote
accesses on NUMA machines.
Suggested-by: George Beshers <gbeshers@sgi.com>
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Cc: George Beshers <gbeshers@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418928270-148543-1-git-send-email-athorlton@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
rcu_read_lock() can not protect p->real_parent if release_task(p) was
already called, change sched_show_task() to check pis_alive() like other
users do.
Note: we need some helpers to cleanup the code like this. And it seems
that that the usage of cpu_curr(cpu) in dump_cpu_task() is not safe too.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>,
Cc: Sterling Alexander <stalexan@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Roland McGrath <roland@hack.frob.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- 'Nested Sleep Debugging', activated when CONFIG_DEBUG_ATOMIC_SLEEP=y.
This instruments might_sleep() checks to catch places that nest
blocking primitives - such as mutex usage in a wait loop. Such
bugs can result in hard to debug races/hangs.
Another category of invalid nesting that this facility will detect
is the calling of blocking functions from within schedule() ->
sched_submit_work() -> blk_schedule_flush_plug().
There's some potential for false positives (if secondary blocking
primitives themselves are not ready yet for this facility), but the
kernel will warn once about such bugs per bootup, so the warning
isn't much of a nuisance.
This feature comes with a number of fixes, for problems uncovered
with it, so no messages are expected normally.
- Another round of sched/numa optimizations and refinements, for
CONFIG_NUMA_BALANCING=y.
- Another round of sched/dl fixes and refinements.
Plus various smaller fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched: Add missing rcu protection to wake_up_all_idle_cpus
sched/deadline: Introduce start_hrtick_dl() for !CONFIG_SCHED_HRTICK
sched/numa: Init numa balancing fields of init_task
sched/deadline: Remove unnecessary definitions in cpudeadline.h
sched/cpupri: Remove unnecessary definitions in cpupri.h
sched/deadline: Fix rq->dl.pushable_tasks bug in push_dl_task()
sched/fair: Fix stale overloaded status in the busiest group finding logic
sched: Move p->nr_cpus_allowed check to select_task_rq()
sched/completion: Document when to use wait_for_completion_io_*()
sched: Update comments about CLONE_NEWUTS and CLONE_NEWIPC
sched/fair: Kill task_struct::numa_entry and numa_group::task_list
sched: Refactor task_struct to use numa_faults instead of numa_* pointers
sched/deadline: Don't check CONFIG_SMP in switched_from_dl()
sched/deadline: Reschedule from switched_from_dl() after a successful pull
sched/deadline: Push task away if the deadline is equal to curr during wakeup
sched/deadline: Add deadline rq status print
sched/deadline: Fix artificial overrun introduced by yield_task_dl()
sched/rt: Clean up check_preempt_equal_prio()
sched/core: Use dl_bw_of() under rcu_read_lock_sched()
sched: Check if we got a shallowest_idle_cpu before searching for least_loaded_cpu
...
Pull RCU updates from Ingo Molnar:
"These are the main changes in this cycle:
- Streamline RCU's use of per-CPU variables, shifting from "cpu"
arguments to functions to "this_"-style per-CPU variable
accessors.
- signal-handling RCU updates.
- real-time updates.
- torture-test updates.
- miscellaneous fixes.
- documentation updates"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
rcu: Fix FIXME in rcu_tasks_kthread()
rcu: More info about potential deadlocks with rcu_read_unlock()
rcu: Optimize cond_resched_rcu_qs()
rcu: Add sparse check for RCU_INIT_POINTER()
documentation: memory-barriers.txt: Correct example for reorderings
documentation: Add atomic_long_t to atomic_ops.txt
documentation: Additional restriction for control dependencies
documentation: Document RCU self test boot params
rcutorture: Fix rcu_torture_cbflood() memory leak
rcutorture: Remove obsolete kversion param in kvm.sh
rcutorture: Remove stale test configurations
rcutorture: Enable RCU self test in configs
rcutorture: Add early boot self tests
torture: Run Linux-kernel binary out of results directory
cpu: Avoid puts_pending overflow
rcu: Remove "cpu" argument to rcu_cleanup_after_idle()
rcu: Remove "cpu" argument to rcu_prepare_for_idle()
rcu: Remove "cpu" argument to rcu_needs_cpu()
rcu: Remove "cpu" argument to rcu_note_context_switch()
rcu: Remove "cpu" argument to rcu_preempt_check_callbacks()
...
Locklessly doing is_idle_task(rq->curr) is only okay because of
RCU protection. The older variant of the broken code checked
rq->curr == rq->idle instead and therefore didn't need RCU.
Fixes: f6be8af1c9 ("sched: Add new API wake_up_if_idle() to wake up the idle cpu")
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Chuansheng Liu <chuansheng.liu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/729365dddca178506dfd0a9451006344cd6808bc.1417277372.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It appears that some SCHEDULE_USER (asm for schedule_user) callers
in arch/x86/kernel/entry_64.S are called from RCU kernel context,
and schedule_user will return in RCU user context. This causes RCU
warnings and possible failures.
This is intended to be a minimal fix suitable for 3.18.
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the p->nr_cpus_allowed check into kernel/sched/core.c: select_task_rq().
This change will make fair.c, rt.c, and deadline.c all start with the
same logic.
Suggested-and-Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "pang.xunlei" <pang.xunlei@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415150077-59053-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit d670ec1317 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc
test case in cost of breaking another one. After that commit, calling
clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result
of Y time being smaller than X time.
Reproducer/tester can be found further below, it can be compiled and ran by:
gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread
while ./tst-cpuclock2 ; do : ; done
This reproducer, when running on a buggy kernel, will complain
about "clock_gettime difference too small".
Issue happens because on start in thread_group_cputimer() we initialize
sum_exec_runtime of cputimer with threads runtime not yet accounted and
then add the threads runtime to running cputimer again on scheduler
tick, making it's sum_exec_runtime bigger than actual threads runtime.
KOSAKI Motohiro posted a fix for this problem, but that patch was never
applied: https://lkml.org/lkml/2013/5/26/191 .
This patch takes different approach to cure the problem. It calls
update_curr() when cputimer starts, that assure we will have updated
stats of running threads and on the next schedule tick we will account
only the runtime that elapsed from cputimer start. That also assure we
have consistent state between cpu times of individual threads and cpu
time of the process consisted by those threads.
Full reproducer (tst-cpuclock2.c):
#define _GNU_SOURCE
#include <unistd.h>
#include <sys/syscall.h>
#include <stdio.h>
#include <time.h>
#include <pthread.h>
#include <stdint.h>
#include <inttypes.h>
/* Parameters for the Linux kernel ABI for CPU clocks. */
#define CPUCLOCK_SCHED 2
#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
((~(clockid_t) (pid) << 3) | (clockid_t) (clock))
static pthread_barrier_t barrier;
/* Help advance the clock. */
static void *chew_cpu(void *arg)
{
pthread_barrier_wait(&barrier);
while (1) ;
return NULL;
}
/* Don't use the glibc wrapper. */
static int do_nanosleep(int flags, const struct timespec *req)
{
clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED);
return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL);
}
static int64_t tsdiff(const struct timespec *before, const struct timespec *after)
{
int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec;
int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec;
return after_i - before_i;
}
int main(void)
{
int result = 0;
pthread_t th;
pthread_barrier_init(&barrier, NULL, 2);
if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) {
perror("pthread_create");
return 1;
}
pthread_barrier_wait(&barrier);
/* The test. */
struct timespec before, after, sleeptimeabs;
int64_t sleepdiff, diffabs;
const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 };
/* The relative nanosleep. Not sure why this is needed, but its presence
seems to make it easier to reproduce the problem. */
if (do_nanosleep(0, &sleeptime) != 0) {
perror("clock_nanosleep");
return 1;
}
/* Get the current time. */
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) {
perror("clock_gettime[2]");
return 1;
}
/* Compute the absolute sleep time based on the current time. */
uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec;
sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000;
sleeptimeabs.tv_nsec = nsec % 1000000000;
/* Sleep for the computed time. */
if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) {
perror("absolute clock_nanosleep");
return 1;
}
/* Get the time after the sleep. */
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) {
perror("clock_gettime[3]");
return 1;
}
/* The time after sleep should always be equal to or after the absolute sleep
time passed to clock_nanosleep. */
sleepdiff = tsdiff(&sleeptimeabs, &after);
if (sleepdiff < 0) {
printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff);
result = 1;
printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec);
printf("After %llu.%09llu\n", after.tv_sec, after.tv_nsec);
printf("Sleep %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec);
}
/* The difference between the timestamps taken before and after the
clock_nanosleep call should be equal to or more than the duration of the
sleep. */
diffabs = tsdiff(&before, &after);
if (diffabs < sleeptime.tv_nsec) {
printf("clock_gettime difference too small: %" PRId64 "\n", diffabs);
result = 1;
}
pthread_cancel(th);
return result;
}
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While looking over the cpu-timer code I found that we appear to add
the delta for the calling task twice, through:
cpu_timer_sample_group()
thread_group_cputimer()
thread_group_cputime()
times->sum_exec_runtime += task_sched_runtime();
*sample = cputime.sum_exec_runtime + task_delta_exec();
Which would make the sample run ahead, making the sleep short.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20141112113737.GI10476@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On latest mm + KASan patchset I've got this:
==================================================================
BUG: AddressSanitizer: out of bounds access in sched_init_smp+0x3ba/0x62c at addr ffff88006d4bee6c
=============================================================================
BUG kmalloc-8 (Not tainted): kasan error
-----------------------------------------------------------------------------
Disabling lock debugging due to kernel taint
INFO: Allocated in alloc_vfsmnt+0xb0/0x2c0 age=75 cpu=0 pid=0
__slab_alloc+0x4b4/0x4f0
__kmalloc_track_caller+0x15f/0x1e0
kstrdup+0x44/0x90
alloc_vfsmnt+0xb0/0x2c0
vfs_kern_mount+0x35/0x190
kern_mount_data+0x25/0x50
pid_ns_prepare_proc+0x19/0x50
alloc_pid+0x5e2/0x630
copy_process.part.41+0xdf5/0x2aa0
do_fork+0xf5/0x460
kernel_thread+0x21/0x30
rest_init+0x1e/0x90
start_kernel+0x522/0x531
x86_64_start_reservations+0x2a/0x2c
x86_64_start_kernel+0x15b/0x16a
INFO: Slab 0xffffea0001b52f80 objects=24 used=22 fp=0xffff88006d4befc0 flags=0x100000000004080
INFO: Object 0xffff88006d4bed20 @offset=3360 fp=0xffff88006d4bee70
Bytes b4 ffff88006d4bed10: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
Object ffff88006d4bed20: 70 72 6f 63 00 6b 6b a5 proc.kk.
Redzone ffff88006d4bed28: cc cc cc cc cc cc cc cc ........
Padding ffff88006d4bee68: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
CPU: 0 PID: 1 Comm: swapper/0 Tainted: G B 3.18.0-rc3-mm1+ #108
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
ffff88006d4be000 0000000000000000 ffff88006d4bed20 ffff88006c86fd18
ffffffff81cd0a59 0000000000000058 ffff88006d404240 ffff88006c86fd48
ffffffff811fa3a8 ffff88006d404240 ffffea0001b52f80 ffff88006d4bed20
Call Trace:
dump_stack (lib/dump_stack.c:52)
print_trailer (mm/slub.c:645)
object_err (mm/slub.c:652)
? sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
kasan_report_error (mm/kasan/report.c:102 mm/kasan/report.c:178)
? kasan_poison_shadow (mm/kasan/kasan.c:48)
? kasan_unpoison_shadow (mm/kasan/kasan.c:54)
? kasan_poison_shadow (mm/kasan/kasan.c:48)
? kasan_kmalloc (mm/kasan/kasan.c:311)
__asan_load4 (mm/kasan/kasan.c:371)
? sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
kernel_init_freeable (init/main.c:869 init/main.c:997)
? finish_task_switch (kernel/sched/sched.h:1036 kernel/sched/core.c:2248)
? rest_init (init/main.c:924)
kernel_init (init/main.c:929)
? rest_init (init/main.c:924)
ret_from_fork (arch/x86/kernel/entry_64.S:348)
? rest_init (init/main.c:924)
Read of size 4 by task swapper/0:
Memory state around the buggy address:
ffff88006d4beb80: fc fc fc fc fc fc fc fc fc fc 00 fc fc fc fc fc
ffff88006d4bec00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bec80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bed00: fc fc fc fc 00 fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bed80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88006d4bee00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc 04 fc
^
ffff88006d4bee80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bef00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88006d4bef80: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
ffff88006d4bf000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88006d4bf080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Zero 'level' (e.g. on non-NUMA system) causing out of bounds
access in this line:
sched_max_numa_distance = sched_domains_numa_distance[level - 1];
Fix this by exiting from sched_init_numa() earlier.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Fixes: 9942f79ba ("sched/numa: Export info needed for NUMA balancing on complex topologies")
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1415372020-1871-1-git-send-email-a.ryabinin@samsung.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch simplifies task_struct by removing the four numa_* pointers
in the same array and replacing them with the array pointer. By doing this,
on x86_64, the size of task_struct is reduced by 3 ulong pointers (24 bytes on
x86_64).
A new parameter is added to the task_faults_idx function so that it can return
an index to the correct offset, corresponding with the old precalculated
pointers.
All of the code in sched/ that depended on task_faults_idx and numa_* was
changed in order to match the new logic.
Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: dave@stgolabs.net
Cc: riel@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141031001331.GA30662@winterfell
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As per commit f10e00f4bf ("sched/dl: Use dl_bw_of() under
rcu_read_lock_sched()"), dl_bw_of() has to be protected by
rcu_read_lock_sched().
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414497286-28824-1-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently used hrtimer_try_to_cancel() is racy:
raw_spin_lock(&rq->lock)
... dl_task_timer raw_spin_lock(&rq->lock)
... raw_spin_lock(&rq->lock) ...
switched_from_dl() ... ...
hrtimer_try_to_cancel() ... ...
switched_to_fair() ... ...
... ... ...
... ... ...
raw_spin_unlock(&rq->lock) ... (asquired)
... ... ...
... ... ...
do_exit() ... ...
schedule() ... ...
raw_spin_lock(&rq->lock) ... raw_spin_unlock(&rq->lock)
... ... ...
raw_spin_unlock(&rq->lock) ... raw_spin_lock(&rq->lock)
... ... (asquired)
put_task_struct() ... ...
free_task_struct() ... ...
... ... raw_spin_unlock(&rq->lock)
... (asquired) ...
... ... ...
... (use after free) ...
So, let's implement 100% guaranteed way to cancel the timer and let's
be sure we are safe even in very unlikely situations.
rq unlocking does not limit the area of switched_from_dl() use, because
this has already been possible in pull_dl_task() below.
Let's consider the safety of of this unlocking. New code in the patch
is working when hrtimer_try_to_cancel() fails. This means the callback
is running. In this case hrtimer_cancel() is just waiting till the
callback is finished. Two
1) Since we are in switched_from_dl(), new class is not dl_sched_class and
new prio is not less MAX_DL_PRIO. So, the callback returns early; it's
right after !dl_task() check. After that hrtimer_cancel() returns back too.
The above is:
raw_spin_lock(rq->lock); ...
... dl_task_timer()
... raw_spin_lock(rq->lock);
switched_from_dl() ...
hrtimer_try_to_cancel() ...
raw_spin_unlock(rq->lock); ...
hrtimer_cancel() ...
... raw_spin_unlock(rq->lock);
... return HRTIMER_NORESTART;
... ...
raw_spin_lock(rq->lock); ...
2) But the below is also possible:
dl_task_timer()
raw_spin_lock(rq->lock);
...
raw_spin_unlock(rq->lock);
raw_spin_lock(rq->lock); ...
switched_from_dl() ...
hrtimer_try_to_cancel() ...
... return HRTIMER_NORESTART;
raw_spin_unlock(rq->lock); ...
hrtimer_cancel(); ...
raw_spin_lock(rq->lock); ...
In this case hrtimer_cancel() returns immediately. Very unlikely case,
just to mention.
Nobody can manipulate the task, because check_class_changed() is
always called with pi_lock locked. Nobody can force the task to
participate in (concurrent) priority inheritance schemes (the same reason).
All concurrent task operations require pi_lock, which is held by us.
No deadlocks with dl_task_timer() are possible, because it returns
right after !dl_task() check (it does nothing).
If we receive a new dl_task during the time of unlocked rq, we just
don't have to do pull_dl_task() in switched_from_dl() further.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
[ Added comments]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414420852.19914.186.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In some cases this can trigger a true flood of output.
Requested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sched_move_task() is the only interface to change sched_task_group:
cpu_cgrp_subsys methods and autogroup_move_group() use it.
Everything is synchronized by task_rq_lock(), so cpu_cgroup_attach()
is ordered with other users of sched_move_task(). This means we do no
need RCU here: if we've dereferenced a tg here, the .attach method
hasn't been called for it yet.
Thus, we should pass "true" to task_css_check() to silence lockdep
warnings.
Fixes: eeb61e53ea ("sched: Fix race between task_group and sched_task_group")
Reported-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414473874.8574.2.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "cpu" argument to rcu_note_context_switch() is always the current
CPU, so drop it. This in turn allows the "cpu" argument to
rcu_preempt_note_context_switch() to be removed, which allows the sole
use of "cpu" in both functions to be replaced with a this_cpu_ptr().
Again, the anticipated cross-CPU uses of these functions has been
replaced by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
cond_resched() is a preemption point, not strictly a blocking
primitive, so exclude it from the ->state test.
In particular, preemption preserves task_struct::state.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: tglx@linutronix.de
Cc: ilya.dryomov@inktank.com
Cc: umgwanakikbuti@gmail.com
Cc: oleg@redhat.com
Cc: Alex Elder <alex.elder@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Axel Lin <axel.lin@ingics.com>
Cc: Daniel Borkmann <dborkman@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140924082242.656559952@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Validate we call might_sleep() with TASK_RUNNING, which catches places
where we nest blocking primitives, eg. mutex usage in a wait loop.
Since all blocking is arranged through task_struct::state, nesting
this will cause the inner primitive to set TASK_RUNNING and the outer
will thus not block.
Another observed problem is calling a blocking function from
schedule()->sched_submit_work()->blk_schedule_flush_plug() which will
then destroy the task state for the actual __schedule() call that
comes after it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: tglx@linutronix.de
Cc: ilya.dryomov@inktank.com
Cc: umgwanakikbuti@gmail.com
Cc: oleg@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140924082242.591637616@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
How we deal with updates to exclusive cpusets is currently broken.
As an example, suppose we have an exclusive cpuset composed of
two cpus: A[cpu0,cpu1]. We can assign SCHED_DEADLINE task to it
up to the allowed bandwidth. If we want now to modify cpusetA's
cpumask, we have to check that removing a cpu's amount of
bandwidth doesn't break AC guarantees. This thing isn't checked
in the current code.
This patch fixes the problem above, denying an update if the
new cpumask won't have enough bandwidth for SCHED_DEADLINE tasks
that are currently active.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/5433E6AF.5080105@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Exclusive cpusets are the only way users can restrict SCHED_DEADLINE tasks
affinity (performing what is commonly called clustered scheduling).
Unfortunately, such thing is currently broken for two reasons:
- No check is performed when the user tries to attach a task to
an exlusive cpuset (recall that exclusive cpusets have an
associated maximum allowed bandwidth).
- Bandwidths of source and destination cpusets are not correctly
updated after a task is migrated between them.
This patch fixes both things at once, as they are opposite faces
of the same coin.
The check is performed in cpuset_can_attach(), as there aren't any
points of failure after that function. The updated is split in two
halves. We first reserve bandwidth in the destination cpuset, after
we pass the check in cpuset_can_attach(). And we then release
bandwidth from the source cpuset when the task's affinity is
actually changed. Even if there can be time windows when sched_setattr()
may erroneously fail in the source cpuset, we are fine with it, as
we can't perfom an atomic update of both cpusets at once.
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: michael@amarulasolutions.com
Cc: luca.abeni@unitn.it
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/1411118561-26323-3-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_preempt_count() is pointless if preemption counter is per-cpu,
currently this is x86 only. It is only valid if the task is not
running, and even in this case the only info it can provide is the
state of PREEMPT_ACTIVE bit.
Change its single caller to check p->on_rq instead, this should be
the same if p->state != TASK_RUNNING, and kill this helper.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Alexander Graf <agraf@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20141008183348.GC17495@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both callers of finish_task_switch() need to recalculate this_rq()
and pass it as an argument, plus __schedule() does this again after
context_switch().
It would be simpler to call this_rq() once in finish_task_switch()
and return the this rq to the callers.
Note: probably "int cpu" in __schedule() should die; it is not used
and both rcu_note_context_switch() and wq_worker_sleeping() do not
really need this argument.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141009193232.GB5408@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
finish_task_switch() enables preemption, so post_schedule(rq) can be
called on the wrong (and even dead) CPU. Afaics, nothing really bad
can happen, but in this case we can wrongly clear rq->post_schedule
on that CPU. And this simply looks wrong in any case.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141008193644.GA32055@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Smaller NUMA systems tend to have all NUMA nodes directly connected
to each other. This includes the degenerate case of a system with just
one node, ie. a non-NUMA system.
Larger systems can have two kinds of NUMA topology, which affects how
tasks and memory should be placed on the system.
On glueless mesh systems, nodes that are not directly connected to
each other will bounce traffic through intermediary nodes. Task groups
can be run closer to each other by moving tasks from a node to an
intermediary node between it and the task's preferred node.
On NUMA systems with backplane controllers, the intermediary hops
are incapable of running programs. This creates "islands" of nodes
that are at an equal distance to anywhere else in the system.
Each kind of topology requires a slightly different placement
algorithm; this patch provides the mechanism to detect the kind
of NUMA topology of a system.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
[ Changed to use kernel/sched/sched.h ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/1413530994-9732-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Export some information that is necessary to do placement of
tasks on systems with multi-level NUMA topologies.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413530994-9732-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
preempt_schedule_context() does preempt_enable_notrace() at the end
and this can call the same function again; exception_exit() is heavy
and it is quite possible that need-resched is true again.
1. Change this code to dec preempt_count() and check need_resched()
by hand.
2. As Linus suggested, we can use the PREEMPT_ACTIVE bit and avoid
the enable/disable dance around __schedule(). But in this case
we need to move into sched/core.c.
3. Cosmetic, but x86 forgets to declare this function. This doesn't
really matter because it is only called by asm helpers, still it
make sense to add the declaration into asm/preempt.h to match
preempt_schedule().
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Chuck Ebbert <cebbert.lkml@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20141005202322.GB27962@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The race may happen when somebody is changing task_group of a forking task.
Child's cgroup is the same as parent's after dup_task_struct() (there just
memory copying). Also, cfs_rq and rt_rq are the same as parent's.
But if parent changes its task_group before it's called cgroup_post_fork(),
we do not reflect this situation on child. Child's cfs_rq and rt_rq remain
the same, while child's task_group changes in cgroup_post_fork().
To fix this we introduce fork() method, which calls sched_move_task() directly.
This function changes sched_task_group on appropriate (also its logic has
no problem with freshly created tasks, so we shouldn't introduce something
special; we are able just to use it).
Possibly, this decides the Burke Libbey's problem: https://lkml.org/lkml/2014/10/24/456
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414405105.19914.169.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Optimized support for Intel "Cluster-on-Die" (CoD) topologies (Dave
Hansen)
- Various sched/idle refinements for better idle handling (Nicolas
Pitre, Daniel Lezcano, Chuansheng Liu, Vincent Guittot)
- sched/numa updates and optimizations (Rik van Riel)
- sysbench speedup (Vincent Guittot)
- capacity calculation cleanups/refactoring (Vincent Guittot)
- Various cleanups to thread group iteration (Oleg Nesterov)
- Double-rq-lock removal optimization and various refactorings
(Kirill Tkhai)
- various sched/deadline fixes
... and lots of other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/dl: Use dl_bw_of() under rcu_read_lock_sched()
sched/fair: Delete resched_cpu() from idle_balance()
sched, time: Fix build error with 64 bit cputime_t on 32 bit systems
sched: Improve sysbench performance by fixing spurious active migration
sched/x86: Fix up typo in topology detection
x86, sched: Add new topology for multi-NUMA-node CPUs
sched/rt: Use resched_curr() in task_tick_rt()
sched: Use rq->rd in sched_setaffinity() under RCU read lock
sched: cleanup: Rename 'out_unlock' to 'out_free_new_mask'
sched: Use dl_bw_of() under RCU read lock
sched/fair: Remove duplicate code from can_migrate_task()
sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
sched: print_rq(): Don't use tasklist_lock
sched: normalize_rt_tasks(): Don't use _irqsave for tasklist_lock, use task_rq_lock()
sched: Fix the task-group check in tg_has_rt_tasks()
sched/fair: Leverage the idle state info when choosing the "idlest" cpu
sched: Let the scheduler see CPU idle states
sched/deadline: Fix inter- exclusive cpusets migrations
sched/deadline: Clear dl_entity params when setscheduling to different class
sched/numa: Kill the wrong/dead TASK_DEAD check in task_numa_fault()
...
Pull core locking updates from Ingo Molnar:
"The main updates in this cycle were:
- mutex MCS refactoring finishing touches: improve comments, refactor
and clean up code, reduce debug data structure footprint, etc.
- qrwlock finishing touches: remove old code, self-test updates.
- small rwsem optimization
- various smaller fixes/cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/lockdep: Revert qrwlock recusive stuff
locking/rwsem: Avoid double checking before try acquiring write lock
locking/rwsem: Move EXPORT_SYMBOL() lines to follow function definition
locking/rwlock, x86: Delete unused asm/rwlock.h and rwlock.S
locking/rwlock, x86: Clean up asm/spinlock*.h to remove old rwlock code
locking/semaphore: Resolve some shadow warnings
locking/selftest: Support queued rwlock
locking/lockdep: Restrict the use of recursive read_lock() with qrwlock
locking/spinlocks: Always evaluate the second argument of spin_lock_nested()
locking/Documentation: Update locking/mutex-design.txt disadvantages
locking/Documentation: Move locking related docs into Documentation/locking/
locking/mutexes: Use MUTEX_SPIN_ON_OWNER when appropriate
locking/mutexes: Refactor optimistic spinning code
locking/mcs: Remove obsolete comment
locking/mutexes: Document quick lock release when unlocking
locking/mutexes: Standardize arguments in lock/unlock slowpaths
locking: Remove deprecated smp_mb__() barriers